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Avalanche properties in striplike ferromagnetic systems
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We present numerical findings on the behavior of the athermal nonequilibrium random-field Ising model
of spins at the thin striplike L1 × L2 × L3 cubic lattices with L1 < L2 < L3. Changing of system sizes highly
influences the evolution and shape of avalanches. The smallest avalanches [classified as three-dimension- (3D)
like] are unaffected by the system boundaries, the larger are sandwiched between the top and bottom system
faces so are 2D-like, while the largest are extended over the system lateral cross section and propagate along
the length L3 like in 1D systems. Such a structure of avalanches causes double power-law distributions of their
size, duration, and energy with larger effective critical exponent corresponding to 3D-like and smaller to 2D-
like avalanches. The distributions scale with thickness L1 and are collapsible following the proposed scaling
predictions which, together with the distributions’ shape, might be important for analysis of the Barkhausen
noise experimental data for striplike samples. Finally, the impact of system size on external field that triggers the
largest avalanche for a given disorder is presented and discussed.
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I. INTRODUCTION

During the past two decades, the study of thin systems
has become widely attractive. Having wide industrial and
practical implementations, thin systems became an inevitable
aspect of everyday life. One important class of such systems
are ferromagnetic striplike systems. Thin ferromagnetic sys-
tems have been extensively experimentally studied throughout
several decades [1–9] which recently led to a number of
numerical and theoretical results [10–18].

The essence of the behavior of thin ferromagnetic sys-
tems is an avalanche-like relaxation following their exter-
nally caused disturbances. More generally, the avalanche-
like response of the externally driven systems turned out
to be a widespread mechanism in nature. Phenomena such
as neuronal activities in the brain [19,20], earthquakes [21],
the response of the mechanically pressured wooden mate-
rials [22], financial booms and busts [23], as well as the
already-mentioned behavior of ferromagnetic materials all
have in common that the underlying systems evolve through
the metastable states due to avalanche-like relaxation. Such
relaxation can eventually lead to extreme events such as huge
avalanches that almost span the whole system indicating phase
transition in the thermodynamic limit [24].

Within a set of models developed for theoretical and nu-
merical investigation of the avalanche-like behavior [11,25–
31], one of the most prominent and most considered remains
to be the random-field Ising model (RFIM) [32–34]. So
far, both the equilibrium and nonequilibrium versions of the
RFIM were intensively theoretically and numerically studied
[35–37].

A particular focus of the RFIM studies was the develop-
ment of the renormalization group approach for description of
the RFIM criticality, which turned out to be a rather difficult
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task. Perturbative approach gave incorrect predictions in three
dimensions [38–40], while the nonperturbative methods led
to better results [41,42]. Some recent progress offered impor-
tant answers on the universality principles [43], dimensional
reduction [44], and supersymmetry [45] in the equilibrium
model.

Along with the theoretical results, a significant number
of numerical studies appeared regarding the critical behavior
of RFIM for dimensions D � 3 [46–48], the scaling laws
of the avalanche parameters [49–51], the critical behavior
for D = 2 [52,53]. Recently, the question of the behavior of
the systems with changing geometry [54] emerged, together
with the reconsideration of the universality classes within the
RFIM [55,56].

Among two RFIM versions, the nonequilibrium model
appeared to be more relevant for the real experiments because
its local type dynamics is closer in describing what happens
inside the externally driven ferromagnets. Since in most of
experiments the thermal fluctuations are small, here we study
the athermal nonequilibrium model.

The paper is organized as follows. An introduction to the
model, together with simulation details, are given in Sec. II.
Section III presents different types of avalanches in the system
and the effective critical disorder is calculated for various
system sizes. The behavior of distributions of avalanche size,
duration, and energy is presented in Sec. IV and their collapses
in Sec. V. In Sec. VI we study how the value of external
field for which the susceptibility of the system reaches its
maximum changes with system dimensions. In Sec. VII we
compare our findings with the past experimental results and
finally give a conclusion in Sec. VIII.

II. MODEL AND SIMULATION DETAILS

The random-field Ising model describes N ferromagnet-
ically coupled classical spins Si = ±1 in a homogeneous

2470-0045/2020/102(2)/022124(11) 022124-1 ©2020 American Physical Society

https://orcid.org/0000-0001-6722-8489
https://orcid.org/0000-0001-8909-7360
https://orcid.org/0000-0001-5849-4451
https://orcid.org/0000-0003-2177-530X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.102.022124&domain=pdf&date_stamp=2020-08-17
https://doi.org/10.1103/PhysRevE.102.022124
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external magnetic field H and a random magnetic field {hi}N
i=1

acting at the sites i of the underlying lattice. The random-field
local values h are chosen from a probability distribution ρ(h),
here the Gaussian distribution ρ(h) = 1

R
√

2π
exp(− h2

2R2 ), fol-

lowing: (1) at each lattice site 〈hi〉 = 0 and 〈h2
i 〉 = R2, while

(2) the values hi and h j at different sites i and j are not corre-
lated, 〈hih j〉 = 0; here 〈...〉 denotes averaging over all random-
field configurations, and R is the distribution’s standard devi-
ation named disorder. Random field in this model plays the
role of impurities and irregularities in the real ferromagnetic
systems. The greater the R, the greater are those irregulari-
ties, which justifies the name assigned to R. In the athermal
version of the model, studied in this paper, the random field
is quenched (i.e., frozen in time) which is appropriate for the
ferromagnetic systems far below the critical temperature.

In the short-range version of the model all spins are ferro-
magnetically coupled only with their nearest neighbors so the
Hamiltonian of the model reads

H = −J
∑
〈i, j〉

SiS j − H
∑

i

Si −
∑

i

hiSi, (1)

where in the first term the summation
∑

〈i, j〉 goes over all
distinct pairs of nearest neighbors and J is their coupling
constant, while the remaining two terms describe the coupling
of spins with the external field H and the local value hi of the
random field at the spin’s site.

The foregoing RFIM spin system is driven by the external
field that varies in time and in the nonequilibrium RFIM
version its evolution is governed by the following local dy-
namical rule: If at the moment t of (discrete) time t the
sign of spin Si differs from the sign of the effective field
heff

i = J
∑

〈 j〉 S j + H + hi at its site, then the spin is unstable
and will change its sign (i.e., flip) at the next moment of time
t + 1. The flipping of unstable spins may destabilize their
neighbors causing them to flip in the next next moment of
time, and so on, in which case an avalanche of spin flipping
is created lasting until all spins become stable at the current
value of H . In this paper we have studied the adiabatic
evolution in which H remains constant during avalanches
that is appropriate for the slowly driven systems with a fast
response to the changes of H . Total number of spins that are
flipped during one avalanche represents the avalanche size S
and the time interval between the first and the last flipped spin
in that avalanche represents the avalanche duration T . Another
important avalanche parameter is its energy, defined as E =∑T

t=1 S2
t , where St is the number of flipped spins in moment

t of an avalanche propagation and T is the above-mentioned
avalanche duration.

In this paper we study the RFIM systems at the striplike
L1 × L2 × L3 cubic lattices, with L1 < L2 < L3 (see Fig. 1),
using closed boundary conditions along length L3 and open
along thickness L1 and width L2. All spins are initially set
to Si = −1 and the external field to H = −∞. Thereupon,
and after each avalanche, H is increased so as to flip exactly
the least stable spin until reaching the final state with all
Si = +1. We have chosen the foregoing type of distribution
of random fields, as well as the initial and driving conditions,
because they were used in the majority of past studies of
the nonequilibrium athermal RFIM. Therefore, we consider

FIG. 1. Striplike system of type L1 × L2 × L3. The xyz coordi-
nate system is introduced for easier further reference.

them as a natural choice in the initial phase of research of the
current topic, leaving the studies under different conditions for
the future. The number of spins per one system ranges from
16 × 103 to 17 × 106, while the disorders for each system size
take values from R = 0.1 to R = 2.5. The number of different
random-field configurations for each system size ranges from
200 for the biggest to 30 000 for the smallest.

In order to minimize the simulation runtime we have
encoded in Fortran90 the sorted list algorithm [46,57]. This
algorithm efficiently finds the next most unstable spin once
the previous avalanche is over. Basically, all values, taken by
the random field in the current simulation, are sorted from the
largest to the smallest in one list in the beginning and when
avalanche ends the algorithm searches for the most unstable
spin among the list of spins that would have been most
unstable if they had zero flipped, one flipped, or two flipped
nearest neighbors. In this way the simulation time per single
run was greatly reduced which enabled large number of runs
necessary to collect reliable statistics. The simulations are
done on a Supermicro server 8047R-7RTF and one runtime
for the largest system and largest disorder was about 3 h.
The subsequent data analysis was performed with the aid of
proprietary programs encoded in Fortran90, Visual Basic, and
Wolfram Mathematica.

III. AVALANCHE FORM AND EVOLUTION

A. Effective critical disorder

As mentioned in the previous section, the studied RFIM
systems evolve throughout the avalanches of spin flipping.
The propagation of avalanches is pinned at the avalanche
traps, i.e., lattice sites having large value of random field that
prevents the spin at the site to flip until the external field
grows enough. If disorder R is large, then there are many
such spins so we do not expect large avalanches to appear.
As we decrease R, bigger and bigger avalanches appear until
at (and below) some value of R the largest avalanches span
the whole system along at least one of its dimensions. We
call these spanning avalanches. Since in this paper L1 and L2

are significantly smaller than L3, it becomes quite easy for an
avalanche to span the system along the thickness and width.
Therefore here we take as spanning only those avalanches that
span the whole system along its length.

Following Ref. [58], we fit the number N (R; L1, L2, L3)
of spanning avalanches per single run for the L1 × L2 × L3

systems by the model function:

NR0,W (R) = 0.5erfc((R − R0)/W ), (2)
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FIG. 2. Example of obtaining Reff
c (L1, L2, L3) in the case of

lattice with L1 = 8, L2 = 64, and L3 = 1024. Black dots represent
the simulation data for the number N (R; L1, L2, L3) (of spanning
avalanches per single run) averaged over 600 runs for each disorder,
while blue line represents the fit of these data by (2).

where erfc(x) = (2/
√

π )
∫ ∞

x e−t2
dt is the complementary er-

ror function. In (2), the argument of the complementary error
function is x = (R − R0)/W , so the model function is centered
at R = R0 and W is the width of its transition region (i.e.,
the region of disorder in which the number of spanning
avalanches per single run drops from 0.75 to 0.25). Figure 2
presents how the number of spanning avalanches per single
run is fitted by (2) with R0 = 1.421 ± 0.004 and W = 0.12 ±
0.01 for the system with L1 = 8, L2 = 64, and L3 = 1024.

In general, the disorder below which the magnetization
curve has jump in the thermodynamical limit for the given
type of RFIM systems is called critical disorder. In finite
systems the role of that disorder is played by the effective
critical disorder Reff

c (L1, L2, L3) obtained as the center R0 =
Reff

c (L1, L2, L3) of the model function (2) that best fits the
N (R; L1, L2, L3) data.

Table I gives the values of effective critical disorder
Reff

c (L1, L2, L3) for various L1 × L2 × L3 systems. It shows
that the effective critical disorder for the systems of the same
base L1 × L2 decreases with the increase of system length L3.
This is expected because it is harder for avalanches to propa-
gate along the whole length when it becomes larger. An addi-
tional conclusion following from Table I is that Reff

c increases
with the increase of L1 × L2. This is also expected since it
is easier for an avalanche to find a way to propagate along

length if there are more “options” in the perpendicular plane.
However, the question of the limit limL3→∞ Reff

c (L1, L2, L3)
for given L1 and L2 remains, and now we will show that it is
zero.

The flipping probability of a spin at disorder R and external
field H is

pH,R(S) =
∞∫

−(S+H )

ρ(h)dh = 1

2

[
1 + erf

(
S + H

R
√

2

)]
, (3)

where erf (x) = 2/
√

π
∫ x

0 exp(−t2)dt is the standard error
function, and S ≡ ∑

〈 j〉 S j is the value of the sum of the
nearest-neighbor spins; in what follows we will denote this
flipping probability simply by p(S).

Let us consider the avalanche with the front (i.e., the spins
flipped) at the current moment t0 composed of all L1 × L2

spins at the layer (i.e., xy cross-section plane) located at z0,
and let us find the probability PL1,L2 that no spins will be
flipped at the next moment t0 + 1 in the z0 + 1 cross-section
plane. Using notation qS = 1 − p(S) and taking into account
that there are

(i) 4 spins in the corners with S = −2,
(ii) 2(L1 − 2) + 2(L2 − 2) = 2(L1 + L2) − 8 spins at the

edges with S = −3,
(iii) (L1 − 2)(L2 − 2) spins “in the middle” with S = −4,
this probability reads

PL1,L2 = q4
−2q2(L1+L2 )−8

−3 q(L1−2)(L2−2)
−4 . (4)

What remained hidden in (4) is that the value of PL1,L2 also
depends on H (and R) so that it decreases when H increases.
Since the spanning avalanches are almost impossible to appear
at large values of H , say, H = 6R, one can conclude that the
values of PL1,L2 , calculated at given L1, L2, and R, are bounded
from below by some value P0

L1,L2
> 0. As the probability of

stopping a spanning avalanche is even greater than PL1,L2 ,
it follows that on average each avalanche on the strip with
L3 > 1/P0

L1,L2
will be stopped, and therefore there will be no

spanning avalanches at given L1, L2, and R. Finally, as for the
given L1 and L2, the foregoing conclusion holds for any R it
follows that limL3→∞ Reff

c (L1, L2, L3) = 0 for that L1 and L2.

B. Avalanche types

Because small avalanches in L1 × L2 × L3 systems do not
“see” the system’s boundaries the geometrical properties of

TABLE I. Values of effective critical disorders for various system sizes obtained as explained and shown in Fig. 2.

Reff
c (L1, L2, L3)

L1 × L2 L3 = 256 L3 = 512 L3 = 1024 L3 = 2048 L3 = 4096

4 × 16 0.981 ± 0.003 0.821 ± 0.003 0.669 ± 0.003 0.554 ± 0.003 0.472 ± 0.003
4 × 32 1.158 ± 0.003 1.029 ± 0.002 0.910 ± 0.003 0.809 ± 0.002 0.693 ± 0.003
4 × 64 1.266 ± 0.003 1.145 ± 0.003 1.049 ± 0.003 0.970 ± 0.003 0.926 ± 0.004
8 × 32 1.512 ± 0.003 1.404 ± 0.002 1.305 ± 0.002 1.211 ± 0.003 1.135 ± 0.006
8 × 64 1.613 ± 0.002 1.505 ± 0.002 1.421 ± 0.004 1.350 ± 0.002 1.283 ± 0.004
8 × 128 1.674 ± 0.002 1.573 ± 0.003 1.493 ± 0.002 1.423 ± 0.003 1.366 ± 0.002
16 × 64 1.843 ± 0.002 1.755 ± 0.002 1.677 ± 0.002 1.619 ± 0.002 1.562 ± 0.002
16 × 128 1.903 ± 0.002 1.813 ± 0.002 1.742 ± 0.001 1.687 ± 0.002 1.636 ± 0.001
16 × 256 1.964 ± 0.001 1.847 ± 0.001 1.783 ± 0.002 1.729 ± 0.001 1.690 ± 0.002
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FIG. 3. Examples of different avalanche types in the 8 × 32 × 256 system. (a) A small 3-like avalanche for disorder R = 2.5 at which only
3D-like avalanches appear; (b) 2D-like avalanche for R = 1.9 at which only 3D-like and 2D-like avalanches appear; (c) (nonspanning) 1D-like
avalanche for R = 1.5 at which all types of avalanches appear; and (d) magnetization curves for three mentioned values of disorder show that
a magnetization jump occurs only if 1D-like avalanches are present. Note that in (a) and (b) only part of the system is presented for better
visibility.

the cluster of spins flipped in a small avalanche should be
the same (in a statistical sense) as in the equilateral three-
dimensional (3D) systems. The maximum size of such 3D-like
avalanche is (roughly) L

D f

1 , where D f = 1/σν is the fractal
dimension of nonspanning avalanches in the 3D case [49].
One 3D-like avalanche, realized at disorder R = 2.5 in a
8 × 32 × 256 system, is presented in Fig. 3(a).

Avalanches larger than L
D f

1 typically span between the top
and bottom system faces. The smaller of them propagate like
2D avalanches not touching the system’s lateral sides so their
size has to be less than L1L2

2. One such 2D-like avalanche
is presented in Fig. 3(b) for system size 8 × 32 × 256 and
disorder R = 1.9.

Even larger avalanches typically span the L1 × L2 plane
and propagate like 1D avalanches along the system’s length.
An example of a 1D-like avalanche is shown in Fig. 3(c) for
the system size 8 × 32 × 256 and disorder R = 1.5. Note that
this avalanche is nonspanning as it does not span the system
along its length.

It is obvious that small 3D-like avalanches can appear in
any system at any disorder. This is not the case for bigger
avalanches, such as 2D-like and 1D-like, since lower values
of disorder are needed for these bigger avalanches to appear.

In Fig. 4 we present how the 1D-like avalanche from
Fig. 3(c) propagate along the system’s length flipping prac-
tically layer by layer of spins, as argued before.

IV. DISTRIBUTIONS OF AVALANCHE PARAMETERS

For each avalanche one can determine its size, dura-
tion, and energy, as well as other parameters describing the
avalanche. The distributions of avalanche parameters depend
on the position on the hysteresis loop at which they are
collected. Beside these binned-in-H distributions, one is also
interested in the integrated distributions pertaining to the
avalanches collected along the whole hysteresis loop. All
distributions in the rest of this paper are of the integrated type
and the uncertainty of each distribution value is estimated by
the standard error of the mean, see Ref. [59].

A. Distributions of avalanche size

Let us first describe the avalanche distributions for the
RFIM system of a given size L1 × L2 × L3.

At disorders R much larger than Reff
c (L1, L2, L3) only 3D-

like avalanches appear and the shapes of distributions are like
in equilateral 3D model. In the case of size distribution, this is
illustrated in the main part of Fig. 5(a) for the system of size
8 × 64 × 4096. Here the value of size exponent for various
disorders is the same within the error bars τ3D = 1.70 ± 0.01.

Next, as R decreases from large values toward
Reff

c (L1, L2, L3), the 2D-like avalanches also appear.
Therefore, as in the case illustrated in Fig. 5(b), the shape of
distributions is transformed from a power law into a double
power law [16] both ending with cutoff. The initial part of
this double power law comes from 3D-like avalanches and
bends at S ≈ 300 ≈ L

D f

1 = S3D
max into the second power law

that (almost entirely) comes from 2D-like avalanches. The
second part is described by the second effective exponent,
here τ2D = 1.32 ± 0.01, which turns out to be the same for all
disorders in questions, see Fig. 5(b). However, although one
could expect that the slopes in the S < S3D

max region should be
also the same and equal to τ3D for all distributions, this is not
the case because the lower the disorder, the easier it is for an
avalanche that is expected to be 3D-like to become 2D-like.

FIG. 4. One-dimension-like avalanche evolution in system of
size 8 × 32 × 256 and disorder R = 1.5. Darker sites represent spins
that flipped earlier.
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FIG. 5. Log-log plot of distributions D(S) of avalanche size S for the 8 × 64 × 4096 system; the number of different random-field
configurations used in averaging ranged from 400 for largest up to 4000 for lowest disorders. (a) In disorder range from R = 2.1 to R = 2.5
only 3D avalanches appear (slope of the linear part of curves is −1.7); spanning avalanches appear for R = 0.9 and R = 1.3 as shown in inset.
(b) For disorders from R = 1.5 to R = 2.0, both 2D-like and 3D-like avalanches appear, while 1D-like avalanches are absent; the slope of the
linear middle part of curves is −1.32.

That happens due to finite values of L1 and L2, so when an
avalanche reaches borders along these directions it comes in
contact with spins that have fewer nearest neighbors, which,
in combination with a small disorder, make those spins easier
to become unstable and flip. This is why there are fewer larger
3D avalanches as the disorder lowers, which consequently
makes the slope steeper in the S < S3D

max range.
Finally, the avalanches of size greater than the maximum

size S2D
max ∝ L1L2

2 for 2D-like avalanches, here S2D
max ≈ 32 000,

propagate as 1D-like avalanches which contribute to the tails
of distributions presented in Fig. 5(b). Distributions collected
at disorders R < Reff

c (L1, L2, L3), see the inset in Fig. 5(a),
have a jump at the very end caused by the spanning avalanche
that appears in almost each run, whose size is only slightly
smaller than the total number of spins in the system, here
≈2 × 106.

Having demonstrated how the value of disorder influences
the shape of avalanche size distributions for the systems of
the same size, let us now show how the system size affects
this shape at the same disorders. In Fig. 6 are presented the
avalanche size distributions for two systems of size 8 × 32 ×
256 and 4 × 64 × 1024 at the same disorder R = 2.0. The
slopes of both solid and both dashed lines have the same
values, −1.7 and −1.32, corresponding to the distribution
parts dominated by the 3D-like and 2D-like avalanches, re-
spectively. Still, the distributions are significantly different
particularly because of different extent of 3D and 2D parts.

B. Distributions of avalanche duration

The shapes of avalanche duration distributions follow the
same trend as the avalanche size distributions. Their initial
parts are dominated by the 3D-like, middle parts by the 2D-
like, and ends by the 1D-like avalanches. The extent of these
parts vary with disorder so that for disorders far above the
effective critical disorder Reff

c (L1, L2, L3) only the 3D part is
visible, for lower disorders that are still above Reff

c (L1, L2, L3)
the 2D part and nonspanning 1D part appear, and, finally, the
spanning 1D part appears below Reff

c (L1, L2, L3).

Figure 7(a) shows five duration distributions for
the system of size 8 × 64 × 4096 and disorders R =
1.2, 1.6, 1.8, 2.2, 2.4, respectively. One can notice here that
for the two biggest disorders when only 3D-like avalanches
appear the distributions follow a power law specified by
the exponent α3D = 2.20 ± 0.01. This shape persists as
long as duration of all triggered avalanches is less than
T 3D

max ∝ Lz
1, where z is the dynamical critical exponent in the

three-dimensional model [15]. If this is not the case, then
the 2D-like, together with 3D-like, avalanches are triggered,
and the shape of distributions gradually transforms into
double power law. The second power law that corresponds
to the 2D-like avalanches is characterized by the exponent
α2D = 1.63 ± 0.01. Last, at disorders below the effective

FIG. 6. Avalanche size distributions for the systems of size 8 ×
32 × 256 (squares) and 4 × 64 × 1024 (circles). Disorder for both
systems is R = 2.0. Solid lines, whose slopes are −1.7 represent
the parts with 3D avalanches, while dashed lines, whose slopes are
−1.32, represent the parts with 2D-like avalanches. Values of the
8 × 32 × 256 curve have been shifted upward (multiplied by 20) to
make the image clearer.
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FIG. 7. (a) Avalanche duration distributions for the system of size 8 × 64 × 4096 and five different disorders R = 1.2, R = 1.6, R = 1.8,
R = 2.2, and R = 2.4. Solid lines represent slopes of 3D and 2D-like avalanches, whose values are −2.2 and −1.63 respectively. (b) Avalanche
duration distributions for the systems of size 8 × 32 × 256 (squares) and 4 × 64 × 1024 (circles), with same disorders, R = 2.0. Solid lines,
whose slopes are −2.2, represent the parts with 3D avalanches, while dashed lines, whose slopes are −1.63, represent the parts with 2D-like
avalanches. Values of the 8 × 32 × 256 curve have been shifted upward (multiplied by 20) to make the image clearer.

critical disorder spanning 1D-like avalanches are triggered as
well, and a peak arises at the far end of the curve.

Figure 7(b) presents two duration distributions for the 8 ×
32 × 256 and 4 × 64 × 1024 systems, and the same disorder
R = 2.0, that behave like the size distributions shown in
Fig. 6.

C. Distributions of avalanche energy

In Fig. 8 we present the avalanche energy distributions.
These distributions behave like the size and duration distribu-
tions from two previous subsections. Thus, the distributions
shown in Fig. 8(a) are obtained for the 8 × 64 × 4096 system
at five different disorders. The distributions for the two largest
disorders are of a power-law type specified by the exponent
ε3D = 1.53 ± 0.01 and are due to 3D-like avalanches only. At
lower disorders 2D-like avalanches appear, giving a dominant
contribution in the middle part of distributions starting at
energy that is greater than E3D

max, where E3D
max ∝ L

γE/SD f

1 and
γE/S is the exponent that describes how avalanche energy de-

pends on avalanche size 〈E〉 ∼ SγE/S [15]. The power-law part
that corresponds to two 2D-like avalanches is characterized
by the exponent ε2D = 1.21 ± 0.01. For disorders below the
effective critical disorder a peak arises at the far end of the
distribution curve caused by the spanning avalanche.

Figure 8(b) shows energy distributions for systems with
different sizes, 8 × 32 × 256 (squares) and 4 × 64 × 1024
(circles), and the same disorder R = 2.0. These curves show
that not only disorder but also the system size affects the
distribution shape, since the extent of 3D-like and 2D-like
parts varies greatly.

V. SCALING OF AVALANCHE DISTRIBUTIONS

To achieve proper scaling of distributions of avalanche
parameters for L1 × L2 × L3 striplike systems it is convenient
to start from the general scaling relation (5) for the joint
distribution D(S, T, E ; h′, r, 1/L1, 1/L2, 1/L3) of size S, du-
ration T , and energy E of avalanches collected at reduced
magnetic field h′ and reduced disorder r, which integrated

FIG. 8. (a) Avalanche energy distributions for the system of size 8 × 64 × 4096 and five different disorders R = 1.2, R = 1.6, R = 1.8,
R = 2.2, and R = 2.4. Solid lines mark the 3D-like and 2D-like parts having slopes −1.53 and −1.21, respectively. (b) Avalanche energy
distributions for the systems of size 8 × 32 × 256 (squares) and 4 × 64 × 1024 (circles), with the same disorders, R = 2.0. Solid lines, whose
slopes are −1.53, represent the parts with 3D avalanches, while dashed lines, whose slopes are −1.21, represent the parts with 2D-like
avalanches. Values of the 8 × 32 × 256 curve have been shifted upward (multiplied by 20) for better visibility.
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FIG. 9. Collapsing of avalanche size distributions using (11) in (a) and (d), duration distributions using (13) in (b) and (e), and energy
distributions in (c) and (f) using (14). The employed values for L1:L2:L3 are as follows: 1:4:64 in (a) and 1:16:256 in (d), 1:4:64 in (b) and
1:16:256 in (e), and 1:4:64 in (c) and 1:16:256 in (f). The values of disorder R are adjusted to achieve the constant value of L1/νr for all
distributions from the same panel.

over the entire hysteresis loop gives (6). Here r = R/R3D
c − 1,

and h′ = H − Hc + Br, where R3D
c = 2.16 and Hc = 1.435

are the critical disorder and critical field of 3D model on
equilateral lattices, while B = 0.39 is the “rotation” parameter
keeping track of the shifting of the susceptibility curves
maxima. Additionally, in the present section, the standard
RFIM exponents, expressed in (7)–(9) in terms of nonstandard
exponents from (5) and (6), are given the values from the 3D
model [35,46–48,60],

D(λaS S, λaT T, λaE E ; λbh h′, λbr r, λbL1 /L1, λ
bL2 /L2, λ

bL3 /L3)

= λD(S, T, E ; h′, r, 1/L1, 1/L2, 1/L3); (5)

D(λaS S, λaT T, λaE E ; , λbr r, λbL1 /L1, λ
bL2 /L2, λ

bL3 /L3)

= λ1+bh D(S, T, E ; r, 1/L1, 1/L2, 1/L3); (6)

τ = 1 − 1 + a

aS
, α = 1 − 1 + a

aT
, ε = 1 − 1 + a

aE
; (7)

a = aS + aT + aE ,

a

1 + a
= 1

1 − τ
+ 1

1 − α
+ 1

1 − ε
; (8)

br = −aSσ, bh = −aSσβδ, bL = −aSσν. (9)

By integrating (6) over T and E we get the scaling predic-
tion

D(λaS S; λbr r, λbL /L1, λ
bL /L2, λ

bL /L3)

= λ1+a−aS+bh D(S; r, 1/L1, 1/L2, 1/L3),
(10)

for the avalanche size distribution and subsequently

D

(
S

L
D f

1

; L1/ν

1 r, 1,
L1

L2
,

L1

L3

)
= L

τ ′D f

1 D

(
S; r,

1

L1
,

1

L2
,

1

L3

)
,

(11)

by using (7), (8), (9), (10), and τ ′ = τ + σβδ(= 2.03), taking
that

λ = L
−D f /aS

1 , (12)

so that the avalanche size S rescales its biggest value S3D
max ∝

L
D f

1 for the 3D-like avalanches. For the systems with the
same aspect ratios L1/L2 and L1/L3 at disorders providing the
same value of rL1/ν

1 , (11) implies that the size distribution

curves multiplied by L
τ ′D f

1 should collapse onto one curve

when presented against S/L
D f

1 . This is shown in Figs. 9(a)
and 9(b), where L1/L2 = 1/4, L1/L3 = 1/64, rL1/ν

1 = −0.82
and L1/L2 = 1/16, L1/L3 = 1/256, rL1/ν

1 = −0.7, both for
1/ν = 0.71.

In an analogous way, one can derive the scaling predictions
for the avalanche duration and avalanche energy distributions
by choosing λ = L−z/aT

1 for duration and λ = L
−γE/SD f /aE

1 for
avalanche energy. Thus, the scaling prediction for avalanche
duration distribution reads

D(T/Lz
1; L1/ν

1 r, 1, L1/L2, L1/L3)

= Lz(α+σβδ(α−1)/(τ−1))
1 D(T ; r, 1/L1, 1/L2, 1/L3), (13)
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while for avalanche energy distribution is

D(E/L
γE/SD f

1 ; L1/ν

1 r, 1, L1/L2, L1/L3)

= L
γE/SD f (ε+σβδ(ε−1)/(τ−1))
1 D(T ; r, 1/L1, 1/L2, 1/L3).

(14)

Figures 9(b) and 9(e) present the collapses of duration
distributions, and Figs. 9(c) and 9(f) present energy distribu-
tions obtained for the same system parameters as for the size
distributions.

VI. EFFECTIVE CRITICAL FIELD

In response to variation of the external magnetic field
H , the magnetization M of the RFIM spin system changes
at the rate χ = dM/dH , called susceptibility; for another
definition of susceptibility in RFIM, see Refs. [61,62]. The
value of H at which the system susceptibility curve, taken
at the current disorder R, attains its maximum, which we
take as the effective critical field H eff

c (R) of the system at
disorder R. Besides R, the effective critical field depends on
the system size, but this is omitted in its notation for the sake
of simplicity.

Two examples of the susceptibility curves χ = χ (H ), ob-
tained by averaging 10 000 different random-field configura-
tions, are given in Fig. 10. The curves correspond to the 4 ×
16 × 4096 system at disorders R = 0.6 in Fig. 10(a) and R =
1.1 in Fig. 10(b). In Fig. 10(a) H eff

c = 2.18 ± 0.05, and H eff
c =

1.80 ± 0.04 in Fig. 10(b), with the error bars calculated as
half of the maximum absolute deviation of H eff

c (R) from the
ordinates of maxima of the single run susceptibilities. The
insets in Fig. 10 present the sample-to-sample variations of
the susceptibility curves which are smaller for larger disorder,
leading to a smoother curve. The values of H eff

c (R), obtained
in this way, are presented in Figs. 11(a), 11(b) and 11(c) for
the systems with the same L1 and L2 but different L3, while
in Figs. 11(d), 11(e) and 11(f) show the data for the systems
with the same L3 but different L1 and L2.

Let us first point out that for small R, the effective critical
disorder depends linearly on R for all finite striplike systems
studied in this paper. Indeed, all spins in such systems are
initially set to Si = −1 and remain stable at R = 0 until the
external magnetic field grows from H = −∞ to H = +4. At
this value of H all spins at the system edges flip because they
have only four nearest neighbors. Their flipping destabilizes
all of their nearest neighbors which will flip in the next
moment of time destabilizing all of their nearest neighbors,
and so on, creating thus a single avalanche that flips all spins
in the system.

Having the smallest number of nearest neighbors (=4), the
spins at system edges are the first candidates for flipping at
any R because of the greatest flipping probability p(−4), see
(3). For

H � 4 − R
√

2erf−1

(
1 − 2

4L3

)
, (15)

where erf−1(x) is the inverse error function, it follows that

p(−4) � 1

4L3
, (16)

FIG. 10. Susceptibility curves for the 4 × 16 × 4096 system
averaged over 10 000 different random-field configurations (main
panels) and for two single runs, presented in solid black line and
dashed red line in insets. The curves in (a) are obtained at disorder
R = 0.6 and at R = 1.1 in (b).

so at least one of the edge spins will flip on average. The
flipping of an edge spin Si causes the sum of nearest-neighbor
spins

∑
〈i′, j〉 S j for each of its edge nearest neighbors Si′ to

be −2 at least. So if not already flipped, then Si′ will flip
because its flipping probability p(−2) at H ≈ 4 is almost 1
if disorder R is sufficiently small. In this way the flipping
of single edge spin results at sufficiently small disorder in
flipping of all spins located at the same edge. This holds for
all four system edges and, in a further consequence, leads to
emergence of a spanning avalanche. For all of the foregoing
reasons, at sufficiently small disorder R, the effective critical
field is a linear function

H eff
c (R) = 4 − R

√
2erf−1

(
1 − 2

4L3

)
, (17)

of R with the y intercept equal to 4 and gradient
−√

2erf−1(1 − 2/4L3), as is confirmed by Fig. 11.
Besides H eff

c (R), one can calculate the value H (R, L3) of
the external field at which it is likely that all spins at an
edge will be flipped if a single spin is already flipped at that

022124-8



AVALANCHE PROPERTIES IN STRIPLIKE … PHYSICAL REVIEW E 102, 022124 (2020)

FIG. 11. Critical external fields for disorders in range from R = 0.1 to R = 1.9. In upper panels L1 and L2 are the same, while L3 ranges
from 256 to 4096; (a) L1 = 4, L2 = 16; (b) L1 = 8, L2 = 128; and (c) L1 = 16, L2 = 256. In lower panels L3 is the same while L1 × L2 take
values 4 × 16, 8 × 128, and 16 × 256; (d) L3 = 256; (e) L3 = 1024; (f) L3 = 4096. Straight lines represent linear dependence Hc(R) given by
(17) for L3 = 256 (solid line), L3 = 1024 (dashed line), and L3 = 4096 (dash-dotted line).

edge. To this end, let us consider the avalanches triggered
by flipping by the external field H one of the two nearest
neighbors of the flipped spin that are located at the edge.
The number L of spins comprising such avalanche can take
the value from L = 1 (when none of the two neighbors is
flipped by H) to L = L3 (when all spins at the edge are flipped
by H). Now let the index l counts the spins at the edge
starting from l = 0 at the flipped spin so l = 1 and l = L3 − 1
are its two nearest edge neighbors. The probability p1 that
H will not flip any edge spin (of having only one flipped
spin at the edge) is p1 = q2; here q = 1 − p and p is the
flipping probability by H of an edge spin having one flipped
neighbor. Likewise, the probability of having L flipped spins
at the edge is pL = LpL−1q2 for 1 � L � L3 − 2. On the other
hand, if L3 − 1 edge spins are already flipped by H , then the
remaining spin having two flipped edge neighbors will almost
surely flip as well, giving pL3 = (L3 − 1)pL3−2. Thus, when
pL3 >

∑L3−2
l=1 pl , one may say that it is likely that all edge

spins are flipped by H , which gives that

(L3 − 1)pL3−2 = q2
L3−2∑
l=1

l pl−1, (18)

is satisfied at H = H (R, L3). The field H (R, L3), numerically
determined from (18) for L3 = 1024 and p = pH (R,L3 ),R(−2)
given by (3), is shown versus disorder R in Fig. 12 to-
gether with H eff

c (R), see (17). For R � 0.37, H eff
c (R) �

H (R, L3 = 1024), showing that the first flipping of edge spin
occurring at H = H eff

c (R) continues into a spanning avalanche
and, therefore, such disorders can be taken as small. For
higher disorders, more than one edge spin has to be flipped,

meaning that H eff
c (R) > 4 − R

√
2erf−1(1 − 2

4L3
) but less than

H (R, L3), giving an upper bound for creation of spanning
avalanche by flipping of an additional edge spin.

At the opposite end, more precisely for R � 1.5, the curves
shown in Fig. 11 merge, meaning that the susceptibility curves
at each such value of disorder attain their maximum at the
same value of H irrespectively of the system size which
happens because then the entire system response becomes
independent on the system size.

FIG. 12. System length is L3 = 1024. Squares represent external
field needed for the first spin to flip, obtained from (17). Circles
show the values of external field needed for the biggest avalanche
to appear, obtained from (18).
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In the intermediate range of disorder the curves for differ-
ent system sizes diverge so that (1) for the curves correspond-
ing to the same values of L1 and L2, the greater the L3, the
lower the H eff

c (R) (because it is easier to trigger the largest
avalanche at longer edge), and (2) conversely, for larger L1

and L2 but same L3, because then it is easier to trigger all spins
from the L1 × L2 planes.

VII. DISCUSSION

Our findings from previous sections may have significant
implications for data analysis of Barkhausen noise experi-
ments performed on striplike samples. Reported values of
the critical exponents, estimated from experimental avalanche
distributions, are (1) roughly equal to the (absolute value
of) slope of the scaling region of the distribution’s log-log
plot and (2) vary from experiment to experiment. Although
differences in these values may originate in a vast variety of
reasons, here we argue that they may be to some extent also
attributed to the different geometrical aspects of the employed
samples.

Also, we believe that our findings might give a clue as to
what the relative values of disorder in real systems are, i.e., to
tell which of two systems has a greater disorder.

Thus, the experimental values of avalanche size exponent
and avalanche duration exponent, τexp = 1.73 and αexp =
2.28, are reported in Ref. [1], τexp = 1.77 and αexp = 2.22
in Ref. [2], and τexp ≈ 1.3 and αexp = 1.5 in Refs. [3–5,9].
We report approximately the same values for the pair τ3D, α3D

describing the 3D-like avalanches, see Fig. 5(a) and Fig. 7(a),
and for the pair τ2D, α2D describing the 2D-like avalanches,
see Fig. 5(b) and Fig. 7(a), which opens the door for speculat-
ing that this could be due to an interplay between geometrical
aspects and disorder. So for the samples that are either thick
enough and/or with large disorder, the 3D-like avalanches are
dominantly present, causing the advent of τ3D-like and α3D-
like values of exponents, whereas 2D-like avalanches, and
therefore τ2D-like and α2D-like values of exponents, appear
in the opposite case.

The foregoing similarities are followed, however, by im-
portant differences possibly coming from rather smaller ex-
perimental aspect ratios L1/L2 and L1/L3 which might result

in a shorter 3D part. In addition, the small avalanches from
the 3D part are, much more than larger avalanches, affected
(or even hidden) by the concomitant noise, overall resolution,
and choice of threshold level in experiments. Together with
smaller experimental aspect ratios, this may cause the absence
of bending between the 3D-like and 2D-like behaviors in
experimental distributions.

VIII. CONCLUSION

In conclusion, we presented a study of behavior of the
athermal nonequilibrium random-field Ising model in adia-
batic regime of spins located at the striplike L1 × L2 × L3

cubic lattices with L1 < L2 < L3, using closed boundary con-
ditions along their length L3 and open along thickness L1

and width L2. The smallest avalanches in such systems are
unaffected by the boundaries and are, therefore, classified as
3D like. Larger avalanches spread between the bottom and
top faces of the system and propagate as in 2D systems,
whereas the largest avalanches are classified as 1D like be-
cause they advance along the system length by flipping almost
all spins from the cross section at the avalanche front. The
presence of these avalanche types is manifested in the shape
of distributions of avalanche size, duration, and energy as 3D-
like, 2D-like, and 1D-like parts having different slopes (i.e.,
effective exponents) and extent controlled by disorder R. The
distributions are collapsible following the derived finite-size
scaling laws which employ aspect ratios L1/L2, L1/L3, and
the (standard choice for) reduced disorder r = R/Rc − 1. Here
Rc is the critical disorder not for this model (which is zero
according to the provided evidences) but for the 3D model on
the equilateral lattices. Besides the effective critical disorder,
we have also determined the behavior of the effective critical
field (i.e., the field triggering the biggest avalanche) for the
finite striplike systems and provided its analytic expression
in the range of small disorders. Finally, we discussed the
relevance that our findings might have for the interpretation
of the Barkhausen noise experimental data.
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Hysteresis, edited by G. Bertotti and I. Mayergoyz (Academic
Press, Amsterdam, 2006).

[26] K. A. Dahmen, J. P. Sethna, M. C. Kuntz, and O. Perković,
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[46] O. Perković, K. A. Dahmen, and J. P. Sethna, arXiv:cond-

mat/9609072 v1 (1996).
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