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Boundary conditions at a thin membrane that generate non-Markovian normal diffusion
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We show that some boundary conditions assumed at a thin membrane may result in normal diffusion not being
the stochastic Markov process. We consider boundary conditions defined in terms of the Laplace transform
in which there is a linear combination of probabilities and probability fluxes defined on both membrane
surfaces. The coefficients of the combination may depend on the Laplace transform parameter. Such boundary
conditions are most commonly used when considering diffusion in a membrane system unless collective
or nonlocal processes in particles diffusion occur. We find Bachelier-Smoluchowski-Chapmann-Kolmogorov
(BSCK) equation in terms of the Laplace transform and we derive the criterion to check whether the boundary
conditions lead to fundamental solutions of diffusion equation satisfying this equation. If the BSCK equation is
not met, then the Markov property is broken. When a probability flux is continuous at the membrane, the general
forms of the boundary conditions for which the fundamental solutions meet the BSCK equation are derived. A
measure of broken of semi-group property is also proposed. The relation of this measure to the non-Markovian
property measure is discussed.
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I. INTRODUCTION

A lot of processes in biology and physics are based on
diffusion occurring in membrane systems in which a thin
membrane is represented by a partially permeable wall [1–3].
We mention here diffusion of substances through the skin [4],
in the brain [5], and between blood and a cell [6]. Various
kinds of diffusion are considered as stochastic processes
which can be classified according to different criteria, such as
nonstationarity, nonergodicity, non-Gaussianity, aging prop-
erty, Markovian property, and others [7–9]. Weak ergodicity is
breaking when the ensemble and time averaged mean square
displacement of a particle are different. Aging properties are
defined as dependence of physical observables on the time
difference between initialization of the process and the start of
the measurement. A diffusion process is Markovian when the
conditional probability density of finding a particle at the point
x at time t , provided that it was at points x′

1, . . . , x′
n−1, x′

n in
the earlier moments t ′

1 < · · · < t ′
n−1 < t ′

n satisfies the equation
P(x, t |x′

n, t ′
n; x′

n−1, t ′
n−1; . . . ; . . . ; x′

1, t ′
1) ≡ P(x, t |x′

n, t ′
n).

The nature of diffusion is characterized by its properties
and certain functions. An example is the relation 〈(�x(t ))2〉 ∼
f (t ), where 〈(�x)2〉 means square displacement of a diffusing
particle, which is often used to define normal or anomalous
diffusion; when f (t ) = tα normal diffusion is for α = 1, su-
perdiffusion for α > 1, and subdiffusion for 0 < α < 1, when
f (t ) is a slowly varying function, such as a logarithmic func-
tion, we have slow subdiffusion (ultraslow diffusion). How-
ever, a proper combination of subdiffusion and superdiffusion
processes leads to the relation characterized normal diffusion
although the process is non-Markovian and non-Gaussian in
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nature [10]. Thus, one needs to consider more properties
mentioned above to characterize a diffusion process. One of
the most important features is the Markov property. Although
van Kampen mentioned that “non-Markov is the rule, Markov
is the exception” [11], it is very often assumed that a con-
sidered process is Markovian, at least “approximately.” This
is due mainly to practical reasons, since a Markov process
is relatively easy to model. Namely, this process is fully
determined by both the conditional probability P(x, t |x′, t ′)
and the probability describing initial state P(x0, t0) only. If
the process is Markovian, then the conditional probability
fulfills the Bachelier-Smoluchowski-Chapmann-Kolmogorov
(BSCK) equation [12–14],

P(x, t |x0, t0) =
∫ ∞

−∞
dx′P(x, t |x′, t ′)P(x′, t ′|x0, t0). (1)

Thus, if Eq. (1) is not met, then there is a non-Markovian
process. In other words, the semigroup property is broken
[15]. However, if Eq. (1) is met, then it is not obvious if the
process is Markovian [16–18].

An example of a non-Markovian diffusion is subdiffu-
sion. Subdiffusion occurs in media in which particle jumps
are strongly hindered due to a complex structure of the
medium. The example are subdiffusion in gels [19,20], bi-
ological cells [8,21], membranes [22], and in media having
a fractal structure [23]. Within the Continuous Time Ran-
dom Walk model waiting time for the particle to jump is
anomalously long for subdiffusion; the probability density
distribution of this time ψ has a heavy tail, ψ (t ) ∼ 1/tα+1,
t → ∞, 0 < α < 1, which leads to infinite mean value of
this time [9,24]. Subdiffusion in a homogeneous system can
be described by a differential equation with the Riemann-
Liouville time derivative of a fractional order ∂P(x, t )/∂t =
Dα∂1−α/∂t1−α (∂2P(x, t )/∂x2), 0 < α < 1, where Dα is a
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subdiffusion coefficient. The Riemann-Liouville fractional
derivative is defined for β > 0 as

dβ f (t )

dtβ
= 1

�(n − β )

dn

dtn

∫ t

0
dt ′(t − t ′)n−β−1 f (t ′), (2)

where n = [β] + 1, [β] is the integral part of β. Power-law
distribution ψ with a heavy tail leads to aging of the system
as well as to WEB. The presence of a fractional derivative
in the subdiffusion equation shows that subdiffusion is not a
Markovian process unlike normal diffusion.

For normal diffusion in a homogeneous system the av-
erage waiting time for the particle to jump is finite, 〈τ 〉 =∫ ∞

0 ψ (τ )dτ < ∞, providing the process to be Markovian,
ergodic, and free of aging features. However, some factors
may change the properties. Weak ergodicity breaking of nor-
mal diffusion can be observed in heterogeneous medium [25].
Anomalous diffusion can emerge from ergodicity breaking
[26]. It has been shown that far from equilibrium transport
of a periodically driven inertial particle moving in a periodic
potential within a classical Markovian dynamics with Brow-
nian motion provides ergodicity breaking without the need to
introduce heavy-tailed distributions [27]. There are processes
in systems with normal diffusion in which an “obstacle” has
been located. Examples of this are diffusion in a system with
subdiffusive membrane [22,28] and diffusion of an antibiotic
in a system with a bacterial biofilm [29,30]. It has been shown
[31] that the Riemann-Liouville fractional time derivative of
the 1/2 order is involved in boundary conditions at a partially
permeable wall for normal diffusion. The question arises how
the presence of such an “obstacle” changes the properties of
normal diffusion.

An important issue is to find methods that allow one to
check property of diffusion processes. A distinction between
normal diffusion and subdiffusion can be made by means
of the single particle tracking method [32], fluorescence re-
covery after photobleaching method [33], the method based
on temporal evolution of near-membrane layers [19], and
others. Identifying the Markov property from experimental
results is a more difficult task. In practice, this is only pos-
sible in some processes, such as ion current flowing through
membrane channels [34]. Various measures of deviation from
the Markov property have been proposed. The considerations
mainly concern quantum systems [35]; see also Ref. [36]
and the references cited therein. The proposed methods are
not equivalent, they are often based on the interpretation
of the Markov process. The example is the measure based
on the failure of the semigroup property and on a quantum
information flow [37].

In this paper, we consider diffusion of a particle in a system
with a thin membrane. We derive criteria for checking whether
fundamental solutions meet the BSCK equation. We propose a
measure of how far fundamental solutions are from satisfying
the BSCK equation. We also discuss whether this measure
can be taken as a measure of broken Markov property. We
find the general form of fundamental solutions to normal
diffusion equation for these conditions, and then we derive
criteria to check whether the solutions also meet the BSCK
equation. Failure of the last equation shows that the process is
non-Markovian.

Modeling the diffusion process in a membrane system
is convenient to perform the considerations in terms of
the Laplace transform L[ f (t )] ≡ ∫ ∞

0 e−st f (t )dt ≡ f̂ (s). The
main results are presented in terms of the Laplace transform.

The organization of this paper is as follows. In Sec. II we
derive the BSCK equation in terms of the Laplace transform.
In Sec. III we discuss various forms of boundary conditions
at a thin membrane and the general forms of the fundamental
solutions to diffusion equation obtained for these boundary
conditions. We consider Laplace transforms of boundary con-
ditions as a linear combinations of probabilities describing
diffusion of a single particle and probability fluxes defined
on both membrane surfaces, with coefficient depending on
the Laplace transform parameter. Such boundary conditions
are often used when considering the diffusion in a mem-
brane system. We consider local boundary conditions for
the diffusion equation, the permeability membrane properties
do not change over time. In Sec. IV we derive criteria that
allow us to check whether fundamental solutions meet the
BSCK equation. Final remarks and conclusions are presented
in Sec. V. A method of solving the diffusion equation for
given boundary conditions at the membrane is described in
the Appendix.

II. BACHELIER-SMOLUCHOWSKI-CHAPMANN-
KOLMOGOROV EQUATION IN TERMS

OF THE LAPLACE TRANSFORM

Normal diffusion in a system with constant diffusion co-
efficient D is the Wiener stationary process. The conditional
probability density of finding a diffusing particle at the point
x at time t under condition that at the initial moment t0 the
particle was at the position x0 depends on the time difference
[12,13],

P(x, t |x0, t0) ≡ P(x, t − t0|x0). (3)

In further considerations we assume t0 = 0. The process is
described by the normal diffusion equation,

∂P(x, t |x0)

∂t
= D

∂2P(x, t |x0)

∂x2
, (4)

the initial condition is P(x, 0|x0) = δ(x − x0), where δ is the
Dirac delta function. The solution to Eq. (4) for this initial
condition is called the fundamental solution.

The Laplace transform of Eq. (4) reads

sP̂(x, s|x0) − P(x, 0|x0) = D
∂2P̂(x, s|x0)

∂x2
. (5)

We express Eq. (1) in terms of the Laplace transform. Using
Eq. (3), integrating both sides of Eq. (1) with respect to t ′ in
the time interval (0, t ) and putting t0 = 0, we obtain

tP(x, t |x0) =
∫ ∞

−∞
dx′

∫ t

0
dt ′P(x, t − t ′|x′)P(x′, t ′|x0). (6)

Due to the relations L[t f (t )] = −d f̂ (s)/ds and
L[

∫ t
0 f (t − t ′)g(t ′)dt ′] = f̂ (s)ĝ(s), we get

−dP̂(x, s|x0)

ds
=

∫ ∞

−∞
dx′P̂(x, s|x′)P̂(x′, s|x0). (7)
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FIG. 1. Diffusion in a system with a partially absorbing mem-
brane. A particle that has passed from region A to B cannot return
to the region A. In panel (a) the particle cannot stop inside the
membrane, in panel (b) the particle can do it. SA and SB denote
membrane surfaces, the parameters 1 − qi next to the arrows are the
probability of passing the particle through the surfaces.

Equation (7) is the BSCK equation in terms of the Laplace
transform.

III. BOUNDARY CONDITIONS AT A THIN MEMBRANE

Boundary conditions (BCs) at a thin membrane are associ-
ated with a certain process of transporting a particle through
the membrane. Such a process can be quite complex and cause
a disturbance of Markov properties for diffusion of particles
located especially near the membrane. The boundary condi-
tions with respect to normal diffusion have been often derived
by means of a phenomenological model or just assumed.
Membrane boundary conditions which are not equivalent to
one another have been presented in Refs. [38–42].

Nonlocal boundary conditions, such as the Wentzell-
Neumann one [43], are not considered here. We assume that
permeability membrane properties do not change over time.
Diffusing particles are not accumulated inside a membrane
and do not clog a membrane. Assuming that particles diffuse
independently of one another, the same boundary conditions
can be used for probability densities describing single particle
diffusion as well as for concentrations of the particles.

When deriving the boundary conditions at the membrane,
we have postulated the following rule [44]: If the diffusion
equation is derived from a certain theoretical model, then the
boundary conditions at a thin membrane can also be derived
from this model with additional assumptions taking into ac-
count the selective properties of the membrane. Examples
illustrating boundary conditions are shown in Figs. 1–3. The
symbols 1 − qi next to the arrows mean the probabilities of
passing of a diffusing particle through the membrane surface,
qi is the probability that particle is stopped at the membrane
surface. We assume that the membrane is thin enough that
it can be treated as a partially permeable wall or partially
absorbing wall located at x = 0. The particle may, with some
probability, jump into the membrane and back again, but its
diffusion inside the membrane is not possible. We mention
that if the membrane were sufficiently thick, the model could
be extended. Namely, we could consider diffusion in a three-

(b)

1

q1-

0 x

(a)

0

qA1-

qB1-

A B

SA SB

xr

FIG. 2. In panel (a) diffusion in a system with a partially absorb-
ing wall is shown. The particle can jump into the membrane and be
absorbed, r is the absorption parameter. The particle cannot penetrate
into region B. In panel (b) a one-sided fully permeable surface is at
x = 0. A particle that tries to jump over the surface by jumping from
the right side of the system to the left one can do it without any
obstacle.

layer system. The middle part would represent a membrane
inside which diffusion of particles takes place.

Particle random walk on a discrete lattice models are effec-
tive at deriving boundary conditions at the border between me-
dia. Some models assume that there is a point at the boundary
between media or inside the membrane at which the molecule
must be stopped temporarily [39]; see Figs. 1(b), 2(a), and
3(b). In another model, it is assumed that the molecule can
jump across the border between the media without having to
stop at the border [40,41]; see Figs. 1(a), 2(b), and 3(a). Both
models can lead to different boundary conditions.

In the following we mark the function P by the indexes
i and j which indicate the location of the points x and x0,
respectively. Assuming that a thin membrane is placed at x =
0, the indexes i and j denote the signs of x and x0, respectively.
In the time domain the diffusive fluxes are defined as

Ji j (x, t |x0) = −D
∂Pi j (x, t |x0)

∂x
, (8)

0

(b)
qB11-

qA11-

qA21- qB21-

x

A B

SA SB

0

(a)

qB1-

qA1-

x

A B

FIG. 3. Situation similar to the one presented in Fig. 1 but
for a partially permeable membrane for particles moving in both
directions.
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where i, j ∈ {−,+}. In terms of the Laplace transform, Eq. (8)
reads

Ĵi j (x, s|x0) = −D
∂P̂i j (x, s|x0)

∂x
. (9)

A. Diffusion in a half-space

We consider diffusion in a region A = (−∞, 0) bounded
by a thin membrane located at x = 0. Two boundary condi-
tions are needed to solve the diffusion equation. One condition
reads

P̂−−(−∞, s|x0) = 0, (10)

and the other is assumed at the membrane.

1. Partially absorbing wall

We suppose that the boundary condition takes the form

Ĵ−−(0−, s|x0) = 
̂(s)P̂−−(0−, s|x0). (11)

In the time domain this boundary condition reads

J−−(0−, t |x0) =
∫ t

0
dt ′
(t − t ′)P−−(0−, t ′|x0). (12)

The fundamental solution to Eq. (5) for boundary conditions
Eqs. (10) and (11) is

P̂−−(x, s|x0) = 1

2
√

Ds

[
e−|x−x0|

√
s
D

+
√

Ds − 
̂(s)√
Ds + 
̂(s)

e(x+x0 )
√

s
D

]
. (13)

In Figs. 1 and 2(a), the models of partially absorbing wall
are shown. In Fig. 1, a particle that is placed initially in the
region A = (−∞, 0) after moving to the region B = (0,∞)
cannot return to A. In Fig. 1(a), a particle can jump through
the membrane with 1 − qA probability without being able to
stop inside the membrane. In this case we get [40]

Ĵ−−(0−, s|x0) = λP̂−−(0−, s|x0), (14)

where λ is a constant coefficient controlled by the probability
1 − qA. In the time domain we have 
(t ) = λδ(t ) which leads
to the Robin boundary condition,

J−−(0−, t |x0) = λP−−(0−, t |x0). (15)

The processes presented in Figs. 1(b) and 2(a) lead to the
function 
̂(s) that may depend explicitly on the parameter s.
In Fig. 1(b) a particle can stop temporarily in the membrane
and can return to the region A with probability 1 − qA2 or
can jump to the region B with probability 1 − qB; a particle
that is in B cannot escape from this region. The dwell time
of the molecule inside the membrane depends on the prob-
abilities mentioned above as well as the distribution ψM of
the waiting time for a jump of the particle located inside the
membrane. In Fig. 2(a) a particle can be eliminated from fur-
ther diffusion, with the probability controlled by a parameter
r, due to absorption or irreversible chemical reactions. We
suppose that 
̂(s) may be complicated function of s, espe-
cially for multistage absorption process near an impenetrable
surface [45].

2. Fully reflecting or fully absorbing wall

The boundary condition at a fully reflecting wall is
J−−(0−, t |x0) = 0 which provides 
̂(s) ≡ 0, and BC for fully
absorbing wall is P−−(0−, t |x0) = 0 which leads to 
̂(s) ≡
∞. The fundamental solution reads

P̂−−(x, s|x0) = 1

2
√

Ds

[
e−|x−x0|

√
s
D ± e(x+x0 )

√
s
D
]
, (16)

where sign + before the last term is for fully reflecting wall
and − for fully absorbing wall.

B. Diffusion in an unbounded system

We assume that diffusion is considered in the regions A and
B simultaneously. To solve Eq. (5) in both regions separated
by the membrane one needs four boundary conditions. Two of
the boundary conditions read

P̂−±(−∞, s|x0) = P̂+±(∞, s|x0) = 0, (17)

and two others are fixed at the membrane.
The boundary conditions at an asymmetrical membrane

should be different depending on which part of the system
the diffusing particle is located initially. In order to justify this
statement let us consider diffusion of two particles U1 and
U2 located symmetrically with respect to the membrane at
the initial moment; their probability distributions are denoted
as PU1(x, t |x0) and PU2(x, t | − x0), respectively. The proba-
bilities of finding the particle U1 in the region x < 0 and the
particle U2 in the region x > 0 at time t > 0 cannot be equal
when the membrane is asymmetrical,

∫ 0
−∞ P̂U1(x, s|x0)dx �=∫ ∞

0 P̂U2(x, s| − x0)dx. This condition is fulfilled only if at
least one of the boundary conditions at the membrane is dif-
ferent for the particles U1 and U2. Thus, boundary conditions
are defined separately for the cases of x0 < 0 and x0 > 0.

We assume that the boundary conditions at the membrane
in terms of the Laplace transform are as follows:

P̂+−(0+, s|x0) = 
̂1(s)P̂−−(0−, s|x0), (18)

Ĵ+−(0+, s|x0) = �̂1(s)Ĵ−−(0−, s|x0), (19)

for x0 < 0 and

P̂−+(0−, s|x0) = 
̂2(s)P̂++(0+, s|x0), (20)

Ĵ−+(0−, s|x0) = �̂2(s)Ĵ++(0+, s|x0), (21)

for x0 > 0. We assume that 
̂i(s), �̂i(s) � 0, i = 1, 2. In the
time domain, the boundary conditions read

P+−(0+, t |x0) =
∫ t

0
dt ′
1(t − t ′)P−−(0−, t ′|x0), (22)

J+−(0+, t |x0) =
∫ t

0
dt ′�1(t − t ′)J−−(0−, t ′|x0), (23)

for x0 < 0 and

P−+(0−, t |x0) =
∫ t

0
dt ′
2(t − t ′)P++(0+, t ′|x0), (24)

J−+(0−, t |x0) =
∫ t

0
dt ′�2(t − t ′)J++(0+, t ′|x0), (25)

for x0 > 0.
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The fundamental solutions to Eq. (5) for the boundary
conditions Eqs. (17)–(21) are (see the Appendix)

P̂−−(x, s|x0) = 1

2
√

Ds
e−|x−x0|

√
s
D

−
(


̂1(s) − �̂1(s)


̂1(s) + �̂1(s)

)
1

2
√

Ds
e(x+x0 )

√
s
D , (26)

P̂+−(x, s|x0) =
(


̂1(s)�̂1(s)


̂1(s) + �̂1(s)

)
1√
Ds

e−(x−x0 )
√

s
D , (27)

P̂−+(x, s|x0) =
(


̂2(s)�̂2(s)


̂2(s) + �̂2(s)

)
1√
Ds

e−(x0−x)
√

s
D ,(28)

P̂++(x, s|x0) = 1

2
√

Ds
e−|x−x0|

√
s
D

−
(


̂2(s) − �̂2(s)


̂2(s) + �̂2(s)

)
1

2
√

Ds
e−(x+x0 )

√
s
D . (29)

Below are considered examples of boundary conditions.
For simplicity, we assume that x0 < 0.

1. Partially permeable wall

The random walk model in a system with a thin membrane,
applying for the system presented in Fig. 3(a) (a particle
cannot be stopped inside the membrane), for 0 < qA, qB < 1,
provides [40]


̂1(s) = 1

a + b
√

s
, (30)

a, b > 0 are parameters controlled by the probabilities qA

and qB. The second boundary condition is that the flux is
continuous at the membrane

J−−(0−, t |x0) = J+−(0+, t |x0) ≡ J (x, t |x0), (31)

which provides �̂1(s) ≡ 1.
From Eqs. (26), (27), (30), and (31) we obtain the follow-

ing Laplace transforms of fundamental solutions

P̂−−(x, s|x0) = 1

2
√

Ds
e−|x−x0|

√
s
D

−
(

1 − a − b
√

s

1 + a + b
√

s

)
1

2
√

Ds
e(x+x0 )

√
s
D , (32)

P̂+−(x, s|x0) =
(

1

1 + a + b
√

s

)
1√
Ds

e−(x−x0 )
√

s
D . (33)

Using the formula

L
[

dβ f (t )

dtβ

]
= sβ f̂ (s), (34)

0 < β < 1, from Eqs. (18) and (30) we get

P−−(0−, t |x0) = aP+−(0+, t |x0) + b
∂1/2P+−(0+, t |x0)

∂t1/2
.

(35)

Thus, the boundary condition involves the Riemann-Liouville
fractional time derivative of the 1/2 order. Calculating the in-
verse Laplace transform of Eq. (35), the BC may be presented

in the following form:

P+−(0+, t |x0) =
∫ t

0
F (t − t ′)P−−(0−, t ′|x0)dt ′, (36)

where

F (t ) = 1

b

[
1√
Dt

− a

b
e

a2t
b2 erfc

(
a
√

t

b

)]
, (37)

b �= 0, erfc(u) ≡ (2/
√

π )
∫ ∞

u e−τ 2
dτ is the complementary

error function.
Let us consider the following BC at the membrane:

J (0, t |x0) = λ1P−−(0−, t |x0) − λ2P+−(0+, t |x0), (38)

where λ1, λ2 > 0. The fundamental solutions to the diffusion
equation Eq. (5) for the Laplace transforms of BCs Eqs. (31)
and (38) are

P̂−−(x, s|x0) = 1

2
√

Ds
e−|x−x0|

√
s
D

−
(

λ1 − λ2 − √
Ds

λ1 + λ2 + √
Ds

)
1

2
√

Ds
e(x+x0 )

√
s
D , (39)

P̂+−(x, s|x0) =
(

λ1

λ1 + λ2 + √
Ds

)
1√
Ds

e−(x−x0 )
√

s
D . (40)

Equations (32) and (33) are identical to Eqs. (39) and (40), re-
spectively, if a = λ2/λ1 and b = √

D/λ1. Because the bound-
ary conditions uniquely determine the solutions to the dif-
fusion equation, we conclude that the boundary conditions
Eqs. (35), (36), and (38) are equivalent to each other. Thus,
we have shown that the boundary condition Eq. (35) can be
written in two other equivalent forms that do not contain
a fractional time derivative. This example also shows that
the boundary conditions expressed in the form of a linear
combination of probabilities and fluxes can be represented
in the form of Eqs. (18) and (19), at least when the flux is
continuous at the membrane.

2. One-sided fully permeable wall

For the situation presented in Fig. 2(b) the random walk
model provides the flux continuity �̂1(s) ≡ 1 and [40]


̂1(s) = 1 − qA

s
. (41)

In the examples presented above, it was assumed that
the particle cannot stop inside the membrane. However, if
we assume that such a retention of the particle is possible,
the continuity of the flux could be broken. In such cases,
the functions 
̂i(s), �̂i(s), i = 1, 2, may take more compli-
cated forms.

IV. WHEN FUNDAMENTAL SOLUTIONS MEET
BSCK EQUATION

The conditions checking if fundamental solutions meet the
BSCK equation are derived separately for diffusion in half-
space and in an unbounded system.
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A. Diffusion in a half space

We consider diffusion of a particle in the region A =
(−∞, 0). The BSCK equation in this region reads

−dP̂−−(x, s|x0)

ds
=

∫ 0

−∞
dx′P̂−−(x, s|x′)P̂−−(x′, s|x0). (42)

x, x0 < 0. The function R−− is defined by its Laplace trans-
form as follows:

R̂−−(x, s|x0) = −dP̂−−(x, s|x0)

ds

−
∫ 0

−∞
dx′P̂−−(x, s|x′)P̂−−(x′, s|x0). (43)

1. Partially absorbing wall

From Eqs. (13) and (43) we get

R̂−−(x, s|x0) = 
̂′(s)

(
√

Ds + 
̂(s))2
e(x+x0 )

√
s
D , (44)

x, x0 < 0, where 
̂′(s) = d
̂(s)/ds. The function Eq. (13)
fulfills BSCK equation if

R̂−−(x, s|x0) = 0, (45)

which provides 
̂(s) = κ = const . In the time domain we get


(t ) ≡ κδ(t ). (46)

Thus, if the integral operator kernel in a boundary con-
dition is time-dependent, i.e., the boundary condition is not
given as J (0−, t |x0) = λP(0−, t |x0) with a constant λ, then
the BSCK equation is not met and the diffusion process is
non-Markovian.

2. Fully reflecting or fully absorbing wall

For diffusion in systems with fully reflecting wall or fully
absorbing wall fundamental solution Eq. (16) fulfills Eq. (45),
the BSCK equation is met in this case.

B. Diffusion in an unbounded system

Using the notation of fundamental solutions defined in this
paper, Eq. (7) takes the following form:

−dP̂i j (x, s|x0)

ds
=

∫ 0

−∞
dx′P̂i−(x, s|x′)P̂− j (x

′, s|x0)

+
∫ ∞

0
dx′P̂i+(x, s|x′)P̂+ j (x

′, s|x0), (47)

i, j ∈ {−,+}. We define the function Ri j (x, t |x0) by means of
its Laplace transform

R̂i j (x, s|x0) = −dP̂i j (x, s|x0)

ds

−
∫ 0

−∞
dx′P̂i−(x, s|x′)P̂− j (x

′, s|x0)

−
∫ ∞

0
dx′P̂i+(x, s|x′)P̂+ j (x

′, s; |0). (48)

From Eqs. (26)–(29) and (48) we get

R̂−−(x, s|x0)

= 1

2
√

Ds3
e(x+x0 )

√
s
D

×
{


̂1(s)�̂1(s)


̂1(s) + �̂1(s)

[
1


̂1(s) + �̂1(s)
− 
̂2(s)�̂2(s)


̂2(s) + �̂2(s)

]

+ 2s

̂′

1(s)�̂1(s) − 
̂1(s)�̂′
1(s)

[
̂1(s) + �̂1(s)]2

}
, (49)

R̂+−(x, s|x0)

= 1

2
√

Ds3
e−(x−x0 )

√
s
D

×
{


̂1(s)�̂1(s)


̂1(s) + �̂1(s)

[

̂1(s)


̂1(s) + �̂1(s)
− �̂2(s)


̂2(s) + �̂2(s)

]

− 2s

̂′

1(s)�̂2
1(s) + 
̂2

1(s)�̂′
1(s)

[
̂1(s) + �̂1(s)]2

}
, (50)

R̂−+(x, s|x0)

= 1

2
√

Ds3
e−(x0−x)

√
s
D

×
{


̂2(s)�̂2(s)


̂2(s) + �̂2(s)

[

̂2(s)


̂2(s) + �̂2(s)
− �̂1(s)


̂1(s) + �̂1(s)

]

− 2s

̂′

2(s)�̂2
2(s) + 
̂2

2(s)�̂′
2(s)

(
̂2(s) + �̂2(s))2

}
, (51)

R̂++(x, s|x0)

= 1

2
√

Ds3
e−(x+x0 )

√
s
D

×
{


̂2(s)�̂2(s)


̂2(s) + �̂2(s)

[
1


̂2(s) + �̂2(s)
− 
̂1(s)�̂1(s)


̂1(s) + �̂1(s)

]

+ 2s

̂′

2(s)�̂2(s) − 
̂2(s)�̂′
2(s)

ˆ[
2(s) + �̂2(s)]2

}
, (52)

where 
̂′
i(s) = d
̂i(s)/ds and �̂′

i(s) = d�̂i(s)/ds.
The functions 
̂1, �̂1, 
̂2, and �̂2 provide the fundamental

solutions which fulfill the BSCK equation Eq. (7) if

R̂i j (x, s|x0) = 0, (53)

for all i and j. Combining the equations R̂−−(x, s|x0) = 0 and
R̂+−(x, s|x0) = 0 we get


̂1(s)�̂2(s)[
̂1(s)
̂2(s) − 1]


̂2(s) + �̂2(s)
= 2s
̂′

1(s), (54)


̂2(s)�̂1(s)[
̂1(s) + �̂1(s)][1 − �̂1(s)�̂2(s)]

[
̂2(s) + �̂2(s)][1 + �̂1(s)]
= 2s�̂′

1(s),

(55)
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and from the equations R̂−+(x, s|x0) = 0 and R̂++(x, s|x0) =
0 we obtain


̂2(s)�̂1(s)[
̂1(s)
̂2(s) − 1]


̂1(s) + �̂1(s)
= 2s
̂′

2(s), (56)


̂1(s)�̂2(s)[
̂2(s) + �̂2(s)][1 − �̂1(s)�̂2(s)]

[
̂1(s) + �̂1(s)][1 + �̂2(s)]
= 2s�̂′

2(s).

(57)

Solutions to Eqs. (54)–(57) can be found for some special
cases only. These equations should be treated as the crite-
rion whether the boundary conditions at the thin membrane
Eqs. (18)–(21) lead to the fundamental solutions which fulfill
the BSCK equation. Below we consider three specific cases of
boundary conditions at the membrane.

1. Continuous flux at the membrane

We assume that the flux is continuous at the membrane

Ĵ−i(0
−, s|x0) = Ĵ+i(0

+, s|x0), (58)

i ∈ {−,+}. Then, �̂1(s) = �̂2(s) = 1 and Eqs. (54) and (56)
read


̂1(s)[
̂1(s)
̂2(s) − 1]


̂2(s) + 1
= 2s
̂′

1(s), (59)


̂2(s)[
̂1(s)
̂2(s) − 1]


̂1(s) + 1
= 2s
̂′

2(s). (60)

The solutions to Eqs. (59) and (60) are


̂1(s) = 1
1
α

+ η
√

s
, (61)


̂2(s) = 1

α + αη
√

s
, (62)

where α and η are constants, α > 0. For η �= 0, the inverse
Laplace transform of Eqs. (18) and (20) with the kernels given
by Eqs. (61) and (62), respectively, provides the boundary
conditions of the forms expressed by Eqs. (35), (36), and (38).
For η = 0 we get 
1(t ) = αδ(t ) and 
2(t ) = δ(t )/α, then
the ratio of probabilities defined at both membrane surfaces
is constant.

From Eqs. (18), (20), (34), (61), and (62) we get the
boundary conditions in the time domain

P−−(0−, t |x0) = 1

α
P+−(0+, t |x0) + η

∂1/2P+−(0+, t |x0)

∂t1/2

(63)
for x0 < 0

P++(0+, t |x0) = αP−+(0−, t |x0) + αη
∂1/2P−+(0−, t |x0)

∂t1/2

(64)

for x0 > 0, where α > 0 and η � 0. Assuming that the flux is
continuous at the membrane, any deviation from the boundary
conditions Eqs. (63) and (64) causes the BSCK equation is not
met and the process is non-Markovian.

2. One-sided fully permeable membrane

We consider a thin membrane that is fully permeable to
particles diffusing from the region x > 0 to the region x < 0
and partially permeable to particles moving in the opposite
direction, similar situation is presented in Fig. 2(b). Then,
we suppose that �̂2(s) ≡ 
̂2(s) ≡ 1. From Eqs. (54)–(57)
we get 
̂1(s) = 0 or 
̂1(s) = 1 and �̂1(s) = 0 or �̂1(s) =
1. This result means that the BSCK equation is fulfilled if
the membrane is fully permeable, fully reflecting, or fully
absorbing for particles diffusing from the left-hand part to
right-hand part of the system. If the membrane is one-sided
partially permeable, then we have 
̂1(s) �= 0, 
̂1(s) �= 1,

and/or �̂2(s) �= 0, �̂2(s) �= 1. Then, Eqs. (54)–(57) are not
met and the process is non-Markovian.

3. Partially absorbing membrane

When a particle can be absorbed with a certain probability
at the membrane, then �̂1(s) = β1 and/or �̂2(s) = β2, where
β1 and β2 are constant absorption probabilities, 0 < β1, β2 <

1. Assuming additionally that the membrane is not fully
absorbing, 
̂1 �= 0 and 
̂2 �= 0, we find that Eqs. (55) and
(57) are not met in this case. Then, the process is definitely
non-Markovian.

V. FINAL REMARKS

We have considered normal diffusion described by Eq. (5)
with membrane boundary conditions Eqs. (18)–(21) in an
unbounded system and with boundary condition Eq. (11)
in a half-space. We have shown that when diffusion in an
unbounded system is considered, the fundamental solutions
to the diffusion equation fulfill the BSCK equation only if the
Laplace transforms of the functions �1, �2, 
1, and 
2, that
determine the boundary conditions at a thin membrane, meet
Eqs. (54)–(57). If we consider diffusion in a half-space, then
the BSCK equation is satisfied only when 
̂(s) = const., see
Eqs. (44)–(46). The examples considered in this paper provide
the following answer to the question if fundamental solutions
to the diffusion equation fulfill the BSCK equation. Failure
to meet this equation shows that the process is certainly non-
Markovian.

(1) The case of an unbounded system.
(a) If the flux is continuous at a partially permeable mem-

brane, then the BSCK equation is satisfied when the boundary
conditions in the time domain are expressed by Eqs. (63)
and (64) with α > 0 [in terms of the Laplace transform BCs
are expressed by Eqs. (18), (20), (61), and (62)]. The BSCK
equation is not satisfied if there is a deviation from these
equations, e.g., the form of one of the equations is

P−−(0−, t |x0) = aP+−(0+, t |x0) + b
∂βP+−(0+, t |x0)

∂tβ
,

(65)

with β �= 1/2.
(b) The BSCK equation is not satisfied in a system with a

one-sided fully permeable membrane when the other side of
the membrane is partially permeable for diffusing particles;
see Sec. IV B 2.
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(c) The BSCK equation is not satisfied in a system with
partially absorbing membrane at which the ratio of the fluxes
on both sides of the membrane is constant and is different
from 1; see Sec. IV B 3.

(2) Diffusion in a half-space.
(a) Assuming the boundary condition Eq. (11) in which

there is a linear relation between probability P and flux J
at the membrane, the BSCK equation is satisfied only when
the coefficient relating P and J is independent on time, which
means that the function 
̂ does not depend on the Laplace
transform parameter s. In the time domain the boundary
condition is expressed by Eq. (15).

(b) The BSCK equation is satisfied in the system with fully
absorbing wall and with fully reflecting wall.

The examples given above do not exhaust the bound-
ary conditions at the membrane. Eqs. (54)–(57) should be
treated as criteria to check whether the boundary conditions
expressed in terms of the Laplace transform by Eqs. (18)–
(21) with assumed �̂i and 
̂i, i = 1, 2, provide fundamental
solutions that satisfy the BSCK equation.

In Ref. [31] there has been shown the procedure of experi-
mental derivation of boundary conditions at a thin membrane
directly from experimentally obtained concentration profiles
of the diffusing substance. The idea of this method is as
follows. We choose functions that characterize the diffusion
process in the membrane system and that can be easily de-
termined experimentally. The example of the function is the
temporal evolution of the amount of substance that diffused
through the membrane from the region A to B (at the initial
moment the substance was completely in the region A). The
theoretically calculated functions depend on �̂1(s) and 
̂1(s).
Assuming that the flux is continuous at the thin membrane,
�̂1(s) = 1, and comparing theoretical and experimental re-
sults, we determine the functions 
̂1(s). The functions have
been considered in terms of the Laplace transform. Laplace
transforms of experimentally determined functions have been
calculated by means of the Gauss– Laguerre quadrature and
the spline interpolation method. For the case of ethanol
diffusion in water, the boundary conditions at the artificial
nephrophan hemodialyzer thin membrane made of cellulose
acetate in time domain is given by Eq. (65) with β = 1/2. The
results presented in Ref. [31] prove that the concentrations
of the diffusing substance determined experimentally can be
described by solutions to the diffusion equation with the
boundary conditions at the membrane given by Eqs. (63) and
(64). However, the method cannot be treated as a method of
experimentally checking whether or not the diffusion process
in a membrane system is Markovian.

We define a measure of how far the diffusion process is
from the semigroup property as

R(x, t |x0) =
∣∣∣∣P(x, t |x0)

−
∫ ∞

−∞
dx′P(x, t − t ′|x′)P(x′, t ′|x0)

∣∣∣∣. (66)

From Eqs. (49)–(52) and (66) we get

R(x, t |x0) = L−1

⎡
⎣ ∑

i, j∈{−,+}
|R̂i j (x, s|x0)|

⎤
⎦. (67)

For diffusion in a half-space the measure is R(x, t |x0) =
L−1[|R̂−−(x, s|x0)|]. If R(x, t |x0) �= 0, then the diffusion pro-
cess is definitely non-Markovian.

The condition R(x, t |x0) ≡ 0 does not determine whether
or not the process is Markovian. If diffusion of a particle
is considered in the region far from the membrane, then the
effect of the membrane on diffusion is negligibly small and
the process is Markovian. Then, there is |x|, |x0| � 0, so R
is close to zero due to the fact that the functions R̂i j are

controlled by a factor e−
√

s
D (|x|+|x0|). In this case the condition

R(x, t |x0) = 0 corresponds to the Markovian property.
According to van Kampen’s statement Markov process is

an exception. Diffusion model depends on the assumptions
made. Considering different time scales in a particle random
walk model, diffusion can be described by a parabolic dif-
fusion equation, which leads to the Markov property or by
a hyperbolic diffusion equation [46], which describes non-
Markovian diffusion. Hyperbolic diffusion equation reads

τ
∂2P(x, t |x0)

∂t2
+ ∂P(x, t |x0)

∂t
= D

∂2P(x, t |x0)

∂x2
, (68)

where the parameter τ is defined by means of the flux
equation J (x, t + τ |x0) = −D∂P(x, t |x0)/∂x; combining the
flux equation with the continuity equation one gets Eq. (68)
in the limit of small τ . Equation (68) can be derived from
a persistent random walk model [47,48]. In this model, the
direction of a particle jump is preferred in the next step due
to the inertia of the particle. The parameter τ controls this
effect. If τ �= 0, then the process is non-Markovian. However,
if the time interval between observations of particle Brownian
motion is long enough, the subsequent jumps are independent
of each other. Then τ = 0 and the process is described by the
parabolic diffusion equation as the Markov process. Usually,
the easier-to-solve parabolic equation is preferred to use.
However, the hyperbolic diffusion equation gives qualitatively
different results than the parabolic equation even for a small
parameter τ when we consider diffusion impedance [49] or
a process in which diffusing particles can chemically react
with other molecules [50]. In many other cases, the solutions
to the parabolic and hyperbolic diffusion equations are so
close to each other for small τ that it cannot be determined
from experimental studies which of them better describes the
process. An example is diffusion in a homogeneous system
and in a membrane system [51]. In such cases, one can use
a parabolic equation to describe diffusion, treating it as a
Markovian approximation of the process.

An experimental checking of whether or not a process
is Markovian can be carried out by various methods not
equivalent to each other, often based on the interpretation of
the Markov process. The measure of deviation from Markov
property is, in fact, most often based on the measure of break-
ing the BSCK equation or equations equivalent to it such as
normalized correlation functions equation [17]. As discussed
in [17], the experimental verification whether the BSCK equa-
tion is met requires a very large number of measurements of
the four-dimensional matrix elements (x, t |x′, t ′). However,
a large number of measurements means that the error of
the determined value can be relatively large. Statistical tests
can check the null hypothesis R = 0 at some confidence
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level. Similar remark concerns a measure of deviation from
the Markov property. We do not expect that empirical data
provide the answer whether or not a process is Markovian with
absolute certainty.

In our opinion, taking into account the above remarks the
question should be: can a process under study be modeled as a
Markov process? The answer is not obvious and this question
may be treated as open. However, we put the following
hypothesis: if R = 0, then diffusion in a membrane system can
be modeled as a Markovian process, if there are no specific
strong arguments for its non-Markovianity. A specific strong
argument may be, for example, the incompatibility of empiri-
cal data with theoretical results obtained from a model based
on the assumption that the process is Markovian. We note that
the occurrence of a fractional time derivative of 1/2 order
in the boundary condition at the membrane gives no reason
to interpret that the diffusion process is non-Markovian. The
reason is that the boundary condition can be replaced by an
equivalent condition Eq. (38) without a fractional derivative.
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APPENDIX

We present the procedure of solving the diffusion equation
Eq. (5) for the boundary conditions assumed at the mem-
brane by means of the Laplace transform method. The thin
membrane is located at point x = 0. Let x0 < 0. The general
solutions to Eq. (5) for the initial conditions P−−(x, 0|x0) =
δ(x − x0) and P+−(x, 0|x0) = 0, given in terms of the Laplace
transform, are [52]

P̂−−(x, s|x0) = A ex
√

s
D + B e−x

√
s
D

+ 1

2
√

Ds
e−|x−x0|

√
s
D , (A1)

P̂+−(x, s|x0) = E ex
√

s
D + F e−x

√
s
D . (A2)

The Laplace transforms of the fluxes Ĵ−−(x, s|x0) =
−D∂P̂−−(x, s|x0)/∂x and Ĵ+−(x, s|x0) = −D∂P̂+−(x, s|x0)/
∂x read

Ĵ−−(x, s|x0) =
√

Ds
( − A ex

√
s
D + B e−x

√
s
D
)

+ sgn (x − x0)

2
e−|x−x0|

√
s
D , (A3)

Ĵ+−(x, s|x0) =
√

Ds
( − E ex

√
s
D + F e−x

√
s
D
)
, (A4)

where sgn (u) denotes the signum function, sgn (u) = 1 for
u � 0 and sgn (u) = −1 for u < 0. From the boundary condi-
tions P̂−−(−∞, s|x0) = 0 and P̂+−(∞, s|x0) = 0 we get B =
0 and E = 0, respectively. Then, putting Eqs. (A1)–(A4) into
the boundary conditions at the membrane Eqs. (18) and (19)
we get the following equations:

F = 
̂1(s)
(

A + 1

2
√

Ds
ex0

√
s
D

)
, (A5)

√
DsF = �̂1(s)

(
−

√
DsA + 1

2
ex0

√
s
D

)
. (A6)

The solutions to Eqs. (A5) and (A6) are

A =
(

�̂1(s) − 
̂1(s)

�̂1(s) + 
̂1(s)

)
1

2
√

Ds
ex0

√
s
D , (A7)

F =
(


̂1(s)�̂1(s)

�̂1(s) + 
̂1(s)

)
1√
Ds

ex0

√
s
D . (A8)

From Eqs. (A1), (A2) and (A7), (A8) we obtain Eqs. (26) and
(27). In a similar way, we derive the solutions to diffusion
equation Eqs. (28) and (29) for the case of x0 > 0. If we
consider diffusion in a half-space x � 0, then we assume only
one boundary condition at the membrane. In this case we use
Eqs. (A1) and (A3) (both with B = 0) which substituted into
the boundary condition provide the coefficient A.
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E 83, 061140 (2011); V. Sposini, A. V. Chechkin, F. Seno, G.
Pagnini, and R. Metzler, New J. Phys. 20, 043044 (2018); J. P.
Bouchaud, J. Phys. I 2, 1705 (1992); J. H. P. Schulz, E. Barkai,
and R. Metzler, Phys. Rev. X 4, 011028 (2014); R. Metzler,
Int. J. Modern Phys.: Conf. Series 36, 1560007 (2015); G. Bel
and E. Barkai, Phys. Rev. Lett. 94, 240602 (2005); Phys. Rev.
E 73, 016125 (2006); M. Khoury, A. M. Lacasta, J. M. Sancho,
and K. Lindenberg, Phys. Rev. Lett. 106, 090602 (2011); A.
Lubelski, I. M. Sokolov, and J. Klafter, ibid. 100, 250602
(2008); A. Rebenshtok and E. Barkai, ibid. 99, 210601 (2007);
Y. He, S. Burov, R. Metzler, and E. Barkai, ibid. 101, 058101
(2008); I. M. Sokolov, ibid. 8, 9043 (2012); I. M. Sokolov,
E. Heinsalu, P. Haänggi, and I. Goychuk, Europhys. Lett. 86,
041119 (2010); G. Aquino, P. Grigolini, and B. J. West, ibid.
80, 10002 (2007).

[8] E. Barkai, Y. Garini, and R. Metzler, Phys. Today 65(8), 29
(2012).

022123-9

https://doi.org/10.1016/j.jtbi.2009.10.016
https://doi.org/10.1016/j.mri.2008.01.025
https://doi.org/10.1016/j.jtbi.2004.03.003
https://doi.org/10.1016/j.jtbi.2007.09.009
https://doi.org/10.1016/j.jtbi.2007.12.005
https://doi.org/10.1039/C4CP03465A
https://doi.org/10.1103/PhysRevE.83.061140
https://doi.org/10.1088/1367-2630/aab696
https://doi.org/10.1103/PhysRevX.4.011028
https://doi.org/10.1142/S2010194515600071
https://doi.org/10.1103/PhysRevLett.94.240602
https://doi.org/10.1103/PhysRevE.73.016125
https://doi.org/10.1103/PhysRevLett.106.090602
https://doi.org/10.1103/PhysRevLett.100.250602
https://doi.org/10.1103/PhysRevLett.99.210601
https://doi.org/10.1103/PhysRevLett.101.058101
https://doi.org/10.1039/c2sm25701g
https://doi.org/10.1209/0295-5075/80/10002
https://doi.org/10.1063/PT.3.1677


TADEUSZ KOSZTOŁOWICZ PHYSICAL REVIEW E 102, 022123 (2020)

[9] J. Klafter and I. M. Sokolov, First Step in Random Walks: From
Tools to Applications (Oxford University Press, NY, 2011).

[10] B. Dybiec and E. Gudowska-Nowak, Phys. Rev. E 80, 061122
(2009).

[11] N. G. van Kampen, Braz. J. Phys. 28, 90 (1998).
[12] C. W. Gardiner, Handbook of Stochastic Methods for Physics,

Chemistry and the Natural Sciences (Springer, Berlin, 2004).
[13] H. Risken, The Fokker-Planck Equation. Methods of Solution

and Applications (Springer, Berlin, 1989).
[14] N. G. van Kampen, Stochastic Processes in Physics and Chem-

istry (North-Holland, Amsterdam, 1992).
[15] W. Feller, Ann. Math. 55, 468 (1952); Trans. Amer. Math. Soc.

77, 1 (1954).
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