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Work statistics in the periodically driven quartic oscillator: Classical versus quantum dynamics
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In the thermodynamics of nanoscopic systems, the relation between classical and quantum mechanical
description is of particular importance. To scrutinize this correspondence we study an anharmonic oscillator
driven by a periodic external force with slowly varying amplitude both classically and within the framework
of quantum mechanics. The energy change of the oscillator induced by the driving is closely related to the
probability distribution of work for the system. With the amplitude λ(t ) of the drive increasing from zero to a
maximum λmax and then going back to zero again, the initial and final Hamiltonian coincide. The main quantity
of interest is then the probability density P(Ef |Ei ) for transitions from initial energy Ei to final energy Ef .
In the classical case nondiagonal transitions with Ef �= Ei mainly arise due to the mechanism of separatrix
crossing. We show that approximate analytical results within the pendulum approximation are in accordance
with numerical simulations. In the quantum case numerically exact results are complemented with analytical
arguments employing Floquet theory. For both the classical and quantum case we provide an intuitive explanation
for the periodic variation of P(Ef |Ei ) with the maximal amplitude λmax of the driving.
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I. INTRODUCTION

Thermodynamics of small systems with typical energy
turnover of the order of the thermal energy per degree of
freedom builds on probability distributions for the main
thermodynamic quantities [1–3]. As in macroscopic thermo-
dynamics, work and heat are of particular importance and
their respective distributions play a pivotal role in stochastic
thermodynamics. At the same time neither work nor heat is
a state variable—both depend on the whole process along
which a particular state is established. By the first law of
thermodynamics they are tied to the energy of the system such
that knowledge of one of the two is in general sufficient to
determine the other. If the system dynamics are described by
classical mechanics, there is a clear definition of work as the
integral of force along the trajectory. The situation is less clear
in the quantum case where no analog of the classical trajectory
exists. Different definitions of work in small quantum systems
have been proposed, each with its virtues and drawbacks
[4–8].

A first step to cope with the subtleties of defining work in a
quantum setting is to confine the attention to closed systems.
One then considers a system prepared in equilibrium at inverse
temperature β. Shortly before the process of interest starts,
the system and bath are decoupled from each other. Being
isolated, during the driving the work performed on the system
must be equal to its energy difference. The most obvious way
to quantify this difference is to measure the energy before and
after the process. This so-called two projective measurement
definition of work in a nonequilibrium quantum system is
simple and operative. On the down side, the measurements are
likely to destroy quantum interferences that may be decisive
for the nonclassical behavior of the system.

To clarify which correlations are destroyed by the two
projective measurement prescription and which are kept, it
is instructive to look in detail at the correspondence between
classical and quantum work distributions [9,10]. This has been
done in [11] for a quartic oscillator with a time-dependent
stiffness constant, a simple model system characterized by an
integrable classical dynamics.

The aim of the present paper is to extend this analysis
to a quartic oscillator driven by a periodic external force
modulated by a slowly varying envelope. This system is inter-
esting for various reasons. First, as typical for driven nonlinear
oscillators, its dynamics show the coexistence of integrable
and chaotic motion. It is therefore much more representative
than a harmonic oscillator with the same driving for which an
exact analytical solution is available. Second, already on the
classical level there are specific mechanisms for depositing
energy in the system due to the separatrix crossing [12,13].
These transitions show similarities with π pulses in quantum
systems, which in turn can be understood in terms of the
constructive or destructive interference of two Floquet states
responding adiabatically to the driving envelope [14].

The paper is organized as follows. In Sec. II we define
the system and fix the notation. Section III contains the
analysis within classical mechanics. Although all relevant
quantities may be expressed analytically, the explicit determi-
nation of the work distribution and the transition probability
requires the numerical solution of the equations of motion.
Transforming to action-angle variables of the undriven sys-
tem, we compare our numerical findings to results from the
so-called pendulum approximation. Section IV is devoted
to the quantum case. Results from the numerical solution
of the Schrödinger equation are augmented with arguments
from Floquet theory. In Sec. V we discuss the oscillatory
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FIG. 1. External force (2) over time for λmax = 3.5, ω = 7.7, and
t f = 100 2π/ω.

dependence of the transition probabilities on the maximal
amplitude of the driving. Finally, Sec. VI contains our con-
clusions.

II. THE SYSTEM

We consider a particle with mass m moving in one dimen-
sion in a potential of the form

V (x) = kx4 (1)

at equilibrium with a heat bath at inverse temperature β. Here
k is a parameter that characterizes the strength of the potential.
At time t = 0 we detach the system from the bath and subject
it to the time-dependent external force

Fext = λ(t ) cos ωt, (2)

where ω is the frequency of the driving, and the envelope
function

λ(t ) = λmax sin2

(
π

tf
t

)
(3)

modulates the amplitude of the external force from zero at
the beginning of the process through a maximum λmax at t =
tf/2 and back to zero at the final time tf . We will always be
interested in the case tf � 2π/ω, with small changes of λ over
one period of the driving, see Fig. 1. For our numerical studies
we choose

tf = 1000
2π

ω
. (4)

Classically, the dynamics is described by the Hamiltonian

H (p, x, t ) = p2

2m
+ kx4 − xλ(t ) cos ωt

=: H0 − xλ(t ) cos ωt, (5)

where H0 denotes the time-independent part of the Hamilto-
nian. The quantum analog of (5) is given by

Ĥ = p̂2

2m
+ kx̂4 − x̂λ(t ) cos ωt =: Ĥ0 − x̂λ(t ) cos ωt . (6)

It fixes the time-evolution operator

Û (t, 0) := T e− i
h̄

∫ t
0 dt ′Ĥ (t ′ ) (7)

that describes the unitary dynamics of the system during
the driving between t = 0 and t = tf . Here T denotes time
ordering.

We use(
h̄2

2mk

)1/6

,
(2m)2/3

(h̄k)1/3
, and

(
h̄2

2m

)2/3

k1/3 (8)

as units of space, time, and energy, respectively, implying that
p, λ, and ω are measured in units of

h̄2/3(2mk)1/6, h̄

√
k

2m
, and

(h̄k)1/3

(2m)2/3
, (9)

respectively. The classical equation of motion then reads

∂2
t x = 2λ(t ) cos ωt − 8x3(t ), (10)

whereas the Schrödinger equation determining the time evo-
lution of the wave function ψ (x, t ) acquires the form

i∂tψ (x, t ) = −∂2
x ψ (x, t ) + x4ψ (x, t ) − xλ(t ) cos ωt ψ (x, t ).

(11)

The interplay between external driving and intrinsic dy-
namics is most interesting when ω is comparable to the free
oscillation frequency of the system. As typical for nonlinear
oscillators, the oscillation period depends on the amplitude or,
equivalently, on the energy. We denote by

Eω = π2

64
(
�

(
3
4

))8 ω4 � 0.03 ω4 (12)

the energy for which the undisturbed particle oscillates with
frequency ω. To ensure that energies of the order of Eω are
sufficiently likely to occur as initial energies we will mainly
choose β = 1/Eω.

III. CLASSICAL CASE

A. Work distribution

Classically, the work performed by the external driving is
well defined as the integral of the external force along the
trajectory of the particle,

W =
∫ xf

x0

dx Fext =
∫ tf

0
dt Fext ∂t x. (13)

Since the force vanishes at the initial and the final time, we
get, after a partial integration,

W = −
∫ tf

0
dt x ∂t Fext =

∫ tf

0
dt ∂t H

=
∫ tf

0
dt

dH

dt
= H (tf ) − H (0). (14)

Here we have used the fact that Fext is the only time-dependent
part of H , cf. Eq. (5), as well as ∂H/∂t = dH/dt , which
is well known from classical mechanics. The work is hence
equal to the difference between the final energy E f and the
initial energy Ei in accordance with the first law of thermo-
dynamics and the fact that the system is isolated during the
driving.

Since the system starts at equilibrium, the initial energy
Ei is a random quantity distributed in accordance with the
canonical distribution. We denote this initial distribution by
PC

i (E ), where the superscript indicates the classical case. With
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FIG. 2. Histogram of work values as defined in (15) obtained
from numerical integrations of the classical equation of motion (10).
Parameter values are λmax = 3.5, ω = 7.7, and tf = 1000 2π/ω. The
inverse temperature of the bath is β = 1/Eω, with Eω defined by (12).
The average value resulting from this distribution is indicated by the
red line.

Ei also the final energy, E f and the work performed, W , will be
random quantities. The probability distribution for the work
may then be written as

PC (W ) =
∫

dEi

∫
dE f PC

i (Ei )P
C
t (E f |Ei )δ(W − E f + Ei ),

(15)

where PC
t (E f |Ei ) denotes the transition probability to end up

in energy E f when started with energy Ei. Note that this is
a nontrivial quantity even for Hamiltonian systems. Although
the mapping from the initial values of x and p to their final
ones is deterministic, the determination of PC

t (E f |Ei ) requires
one to find the fraction of initial phase space points with H0 =
Ei that will end up in a final point with H0 = E f .

A possible way to determine PC
t (E f |Ei ) is by sampling

the initial energy shell microcanonically. To do so one picks
points on this shell at random with equal probability, uses
them as initial conditions for a numerical integration of the
equation of motion, and determines the final value of the
energy. Figure 2 shows an example of a work distribution
obtained in this way; in Fig. 3 the corresponding transition
probability PC

t (E f |Ei ) is displayed.
The work distribution is rather concentrated around W =

0 corresponding to E f = Ei, as can be clearly seen in the
inset. The logarithmic plot shown in the main figure, however,
demonstrates that PC (W ) has pronounced tails to rather large
values of |W |. These tails extend even beyond the interval of
W shown. The strong fluctuations and gaps in these tails are
due to the finite number of sampling points implemented.

From the inset one may have the impression that the dis-
tribution PC (W ) is symmetric around W = 0. Nevertheless,
the average value 〈W 〉 indicated by the red line in the figure is
positive and markedly different from the most probable values
of W . This is a consequence of the Jarzynski equality [15],

〈e−βW 〉 = e−β
F = 1, (16)

where the last equality follows from the fact that in the present
case the free-energy difference 
F is zero due to H (tf ) =

FIG. 3. The classical transition probability PC
t (Ef |Ei ) color-

coded as function of the initial and final energy. The parameters are
the same as in Fig. 2. Outside the transition window 0.5 � Ei/Eω �
1.6, the final energy is almost always identical with the initial
one. The green line shows the analytical result from the pendulum
approximation.

H (0) = H0. Consistently, the histogram of work values shown
in Fig. 2 yields

〈e−βW 〉hist = 1.011. (17)

By Jensen’s inequality Eq. (16) implies 〈W 〉 � 0. From
the plot it is also discernible that the differences between
the probabilities for positive and negative work values occur
mainly in the tails of the distribution. It is well known that the
Jarzynski equality is particularly sensitive to these tails [2].

The transition probability PC
t (E f |Ei ) shown in Fig. 3 has a

rather peculiar structure. Outside the interval 0.5 � Ei/Eω �
1.6 hardly any transition to other energy values occurs,
PC

t (E f |Ei ) ∼ δ(E f − Ei ). This part of PC
t (E f |Ei ) therefore

contributes almost exclusively to the central peak of PC (W ) at
W = 0. Within this energy window, on the other hand, there is
appreciable probability for nondiagonal transitions with E f �=
Ei. Except for a small region surrounding the point Ei = E f =
Eω, these transitions are remarkably concentrated around one
particular value of E f − Ei = W . Near the crossing of the
two main transition lines of the figure, at Ei � E f � Eω, the
transition probability is smeared out over a small region. In
the next section we provide approximate analytical arguments
to understand these features of PC

t (E f |Ei ) qualitatively and
quantitatively.

B. Action-angle variables

A transparent qualitative characterization of the classical
transition probability PC

t (E f |Ei ) can be obtained in terms of
action-angle variables of the unperturbed system character-
ized by H0, cf. Eq. (5). To transform from the initial canonical
variables x and p to the action-angle variables I and θ we
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FIG. 4. Poincaré sections showing the dependence of the action-angle variables (I, θ ) of the undriven system under a dynamics with
λ = const. Left: λ = 0 implying I (θ ) = const. Shown are lines for six different choices of Ei. Right: λ = λmax. The six lines I (θ ) are now bent
and may meet, forming closed loops, such that transitions by separatrix crossing to values Ef �= Ei may take place.

follow the standard procedure [16] and introduce

I := 1

2π

∮
H0

dx p(x; H0) = 1

2π
H3/4

0 B

(
1

4
,

3

2

)
, (18)

where the integral is over the classical orbit p(x) with H0(x, p)
staying constant, and

B(x, y) := �(x)�(y)

�(x + y)
(19)

denotes Euler’s β function [17]. Inverting (18) we find

H0(I ) = 34/3 �
(

3
4

)8/3

(2π )2/3
I4/3 =: C I4/3, (20)

where the various numerical prefactors were subsumed into
the constant C. For the oscillation frequency � of the undriven
system this implies

� = ∂H0

∂I
= 4

3
C I1/3. (21)

If the frequency of the undriven system, �, coincides with
the frequency of the external drive, ω, we are at resonance
characterized by the action

Iω :=
(

3ω

4C

)3

. (22)

Plugging (22) into (20) we find

Eω := H0(Iω ) = 81

256C3
ω4, (23)

which is equivalent to (12).
We may now write the complete Hamiltonian (5) in terms

of I and θ to find

H (I, θ, t ) = H0(I ) − x(I, θ )λ(t ) cos ωt . (24)

Here x(I, θ ) is a function fixed by the canonical transfor-
mation performed that may be written in terms of Jacobi
elliptic functions. Its explicit form is not needed for what
follows. It is only important that this function is periodic and

even in θ :

x(I, θ + 2π ) = x(I, θ ), x(I,−θ ) = x(I, θ ). (25)

It is instructive to consider Poincaré sections of the action I
as function of the angle θ for different constant values of λ. To
this end we choose initial conditions (xi, pi ) for the classical
equation of motion (10) that correspond to a prescribed value
of I (θ = 0) and integrate these equations numerically. From
the values of x and p at stroboscopic times tn = n 2π/ω we
determine I (tn) and θ (tn) that for each value of n give rise
to one point in the Poincaré plots. Figure 4 compares plots
generated in this way for λ = 0 (left) and λ = λmax (right).
As indicated by the colors, each curve in the right figure
derives from a corresponding one of the left figure under slow
variations of λ from λ = 0 to λ = λmax.

For λ = 0 the system is autonomous and integrable and
correspondingly, the action I is a constant of motion inde-
pendent of θ . The six lines shown in the left part of Fig. 4
correspond to six different values of I and therefore, via (20),
to six different values of the system energy Ei. As can be seen
from the right part of Fig. 4, for λ = λmax the curves bend up
or down near θ = ±π and three qualitatively different types
of trajectories can be distinguished.

The first type is exemplified by the two blue lines. Despite
their distortion they remain separated from each other for
all values of λ between zero and λmax, i.e., when starting
at say the lower blue line of the left figure at t = 0 and
increasing λ slowly, no transition to the upper one is likely
to occur during the whole driving. Eventually, when λ = 0
again at t = tf the systems returns back to the initial value of
I and hence also to its initial energy, E f = Ei. Lines of this
type, therefore, generate the black diagonal points outside the
transition window in Fig. 3.

The second type of lines is given by the red ones touching
at the boundary θ = ±π of the θ domain for just the maximal
value λmax of λ. They give the stroboscopic picture of the
separatrix at λ = λmax since they separate trajectories of the
blue type from those of the black one. For the complete
time-dependent process characterized by λ(t ) as given by (3),
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this means that for a short moment at maximal λ transitions
between the two red lines may take place. A small fraction
of systems starting at t = 0 on the lower red line may end
up at t = tf on the upper one with different energy, E f �= Ei.
The values of Ei corresponding to the two red lines in Fig. 4
therefore define the beginning and the end of the transition
window in Fig. 3.

Finally, the third type of lines represented by the black pair
in Fig. 4 stand for energy values inside this transition window.
For them there is a value λc with 0 < λc < λmax such that
their shape is similar to the blue lines in Fig. 4 for λ(t ) < λc

and like the red ones for λ(t ) = λc. At this point they cross
the separatrix, and for λ(t ) > λc trajectories originating from
different initial values of I mix on the same closed black line.
When, after reaching λmax, λ decreases again the trajectories
cross the separatrix again and reappear as separated black
lines that eventually deform back to their original shape when
λ = 0. Depending on the details of the dynamics, several
trajectories that started out at the lower value of I will end
up in the higher one and vice versa. This mechanism has been
dubbed separatrix crossing in [12,13] and gives rise to the
nondiagonal transitions seen in Fig. 3.

Note that the described transitions take place only for two
matching values of I and therefore also only for matching
pairs of Ei and E f . This explains the peculiar structure of
PC

t (E f |Ei ) shown in Fig. 3. Near the resonance region, Ei �
Eω, the simple picture of describing the full dynamics with
a time-dependent λ(t ) in terms of successive Poincaré plots
corresponding to constant values of λ breaks down and the
structure of the transition probability PC

t (E f |Ei ) becomes
richer.

C. Pendulum approximation

In addition to the qualitative understanding of the transi-
tions obtained in the previous section, it is possible also to
derive an approximate expression for the relation between Ei

and E f in these transitions by invoking the so-called pendulum
approximation [18,19]. Since x(I, θ ) is a periodic and even
function of θ , it may be represented by a Fourier series
involving cosine functions only:

x(I, θ ) =
∞∑

n=0

xn(I ) cos nθ. (26)

Here the xn(I ) are given as usual by

xn(I ) = 1

π

∫ π

−π

dθ x(I, θ ) cos nθ. (27)

For constant λ the Hamiltonian (24) then acquires the form

H (I, θ, t ) = H0(I ) − λ

∞∑
n=0

xn(I ) cos nθ cos ωt

= H0(I ) − λ

2

∞∑
n=0

xn(I )[cos(nθ − ωt )

+ cos(nθ + ωt )]. (28)

As discussed in the previous section, transitions to other
energy values occur only within an energy window around

Ei = Eω, i.e., for values of I not too different from the
resonance value Iω. We hence expand H0(I ) up to second order
at around Iω,

H0(I ) = H0(Iω ) + ω(I − Iω ) + 1

2M
(I − Iω )2 + · · · , (29)

where we have used (21) and introduced the abbreviation

M :=
(

∂2H0

∂I2

∣∣∣∣
I=Iω

)−1

= 9

4C
I2/3
ω . (30)

Moreover, we only keep the slowly time-dependent resonant
term cos(θ − ωt ) in (28) to obtain the approximate expression

H (I, θ, t ) ≈ H0(Iω ) + ω(I − Iω ) + 1

2m
(I − Iω )2

− λ

2
x1(Iω ) cos(θ − ωt ). (31)

Next we perform yet another canonical transformation
from (I, θ ) to (P, φ) defined by the generating function

F (I, φ, t ) = −(I − Iω )(φ + ωt ). (32)

It gives rise to

P = −∂F

∂φ
= I − Iω, (33)

θ = −∂F

∂I
= φ + ωt, (34)

as well as to the new Hamiltonian

K (P, φ) = H + ∂F

∂t
− H0 = 1

2m
P2 − λ

2
x1(Iω ) cos φ, (35)

where we have subtracted the irrelevant constant H0(Iω ).
The new Hamiltonian K is not explicitly time dependent

and describes a simple one-dimensional pendulum with mass
M and potential

U (φ) = λ

2
x1(Iω ) cos φ =: U0 cos φ. (36)

The separatrix for the pendulum is given by K = U0. The
corresponding value of the momentum is

Psx = ±
√

2M(K + U0 cos φ) = ±
√

2M(U0 + U0 cos φ)

= ±
√

4MU0

∣∣∣∣ cos

(
φ

2

)∣∣∣∣. (37)

Transforming back to I and θ according to (33) and (34)
and using the definitions of U0 and M in (36) and (30),
respectively, we find for the corresponding value of I

Isx = Iω ± 
I (λ)

∣∣∣∣cos

(
θ − ωt

2

)∣∣∣∣ (38)

with


I (λ) =
√

9λ

2C
I2/3
ω x1(Iω ). (39)

Figure 5 compares Poincaré plots for the full system (24)
with those within the pendulum approximation at λ = 1. The
red lines correspond to I = Isx, as defined in (38). There is
good agreement between the numerical results for the original
system and the approximate analytic theory. This agreement
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FIG. 5. Poincaré sections for the original system (24) (full lines)
and for the pendulum approximation (31) (dashed lines) for λ = 1.
Note that the colors do not correspond to the same values of Ei in
Fig. 4 since the value of λ is different.

is, however, confined to comparatively small values of λ.
That the pendulum approximation becomes less reliable with
increasing λ can already be anticipated by comparing the
full lines of Fig. 4 (right) and Fig. 5 corresponding to λ =
λmax = 3.5 and λ = 1, respectively; the asymmetry between
upper and lower parts of the curves increases with λ. Since
(38) implies a symmetric shape of the corresponding curves
for the pendulum approximation, the deviation between exact
results and the analytical approximation necessarily grows
with increasing λ. This is, of course, also in accordance with
the truncated expansion in (29).

Within the pendulum approximation the transitions occur
between values Ii and I f that are located symmetrically around
Iω, cf. (38). Hence

I f = 2Iω − Ii, (40)

and using (20) we find

E f

Eω

=
[

2 −
(

Ei

Eω

) 3
4
] 4

3

. (41)

This relation is shown as a green line in Fig. 3. It agrees well
with the numerical results from the full dynamics if Ei does
not differ too much from Eω, i.e., for small values of W . At
the border of the transition window in Fig. 3, larger values
of λ dominate the transitions and, as discussed above, the
pendulum approximation becomes less accurate.

To determine the size of the transition window within the
pendulum approximation, i.e., the points at which the green
line in Fig. 3 starts and ends, we need to find the values of Ei

associated with the upper and the lower part of the dotted red
line in Fig. 5. This could be done similarly to Fig. 4 by numeri-
cally solving the equation of motion corresponding to K (P, φ)
for a slowly decreasing λ(t ). It is, however, more direct to use
the adiabatic invariance [20] of the action IK of the pendulum
Hamiltonian K (P, φ). To determine the maximal size of the
transition window, we have to consider the separatrix, i.e., to

put K = U0, for the case λ = λmax:

IK (λmax) : = 1

2π

∮
K

dφ Psx(φ; K )

= ± 1

2π

√
4MU0(λmax)

∫ π

−π

dφ

∣∣∣∣cos
φ

2

∣∣∣∣
= ± 2

π

√
4MU0(λmax) = ± 2

π

I (λmax). (42)

For slow variation of λ these values do not change down
to λ = 0, where they give rise to the two initial values of the
action

I0 = Iω ± 2

π

I (λmax) . (43)

Via (20), these two values of I0 determine the boundaries of
the transition window within the pendulum approximation.

IV. QUANTUM CASE

A. Work distribution

As discussed already in the Introduction, the concept of
work for a quantum system is intricate. A definition similar
to (13) is impossible because there is no quantum analog
to the trajectory x(t ). In what follows we will use the two
projective measurement prescription of work and measure the
energy of the system before the driving starts at t = 0 and
a second time immediately after the driving ends at t = tf .
The corresponding energy values are again called Ei and E f ,
respectively, and the work is defined as their difference

W := E f − Ei. (44)

Although this expression looks deceptively similar to (14),
two differences must be kept in mind. First, there is no longer
a connection with a definition like (13), and second, the
difference of the Hamiltonians is replaced by the difference
of their measurement values.

The probability distribution of the work has a form similar
to (15),

PQ(W ) =
∑
i, f

PQ
i (Ei )P

Q
t (E f |Ei ) δW,E f −Ei , (45)

where the integrals are replaced by sums that run over all
initial and final states. Similar to the classical case, PQ

i (Ei )
is determined by the canonical distribution characterizing the
equilibrium state of the system at t = 0. The first energy
measurement projects the state of the system to an energy
eigenstate |φi〉 of the undriven Hamiltonian Ĥ0 defined in (6)
with probability

PQ
i (Ei ) = 1

Z
e−βEi . (46)

Here Ei is the eigenvalue corresponding to |φi〉, and Z denotes
the canonical partition function

Z :=
∑

n

e−βEn . (47)

The stationary Schrödinger equation with quartic potential
cannot be solved analytically, and we have to determine a
characteristic set of eigenvalues and eigenstates numerically.
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FIG. 6. Quantum transition probability PQ

t (Ef |Ei ) color coded as
a function of the initial and final energy. The parameters are the same
as in Fig. 3, and the time step used in the numerical integration of the
Schrödinger equation is 
t = 4 × 10−5.

For a meaningful comparison with the classical results dis-
cussed in Sec. III, eigenstates |φn〉 up to n = 40 are needed.
Discretizing the x axis in the interval −8 � x � 8 into 4000
points, we found the matrix Numerov method [21] an efficient
and accurate tool to generate these states together with their
eigenvalues.

Contrary to the classical case in which the Hamiltonian dy-
namics during the driving is deterministic, the second energy
measurement involves an additional piece of randomness that
is of genuine quantum nature. It is contained in the transition
probability PQ

t (E f |Ei ) that is again the central quantity of
interest.

B. Quantum transition probability

To calculate the transition probability PQ
t (E f |Ei ), we need

to know the state

|φ〉 := Û (tf , 0)|φi〉 (48)

to which the system evolves during the driving when started
in |φi〉 at t = 0. The second energy measurement then gives
rise to

PQ
t (E f |Ei ) = |〈φ f |φ〉|2 = |〈φ f |Û (tf , 0)|φi〉|2. (49)

We determine |φ〉 from a numerical solution of the time-
dependent Schrödinger equation using the Crank-Nicolson
method [22,23]. This methods builds on the discretization of
the time-evolution operator (7) in Cayley form,

Û (t + 
t, t ) = T e−i
∫ t+
t

t dt ′Ĥ (t ′ ) = 1 − iĤ (t )
t
2

1 + iĤ (t )
t
2

+ O(
t2),

where 
t denotes the temporal step size. The main virtue of
this replacement is that the leading term on the right-hand side
is unitary and therefore norm preserving.

Figure 6 shows results for the quantum transition probabil-
ity obtained in this way. The diagonal structure is similar to
the classical case shown in Fig. 3. Outside an energy window
around Eω � E19 there are only few transitions to other energy

-60 -40 -20 0 20 40 60
W
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10-1

100

P
Q

(W
) -5 -2.5 0 2.5 5

W

0

0.5

1

P
Q

(W
)

FIG. 7. Histogram of work values for the quantum case. The
parameters are the same as in Fig. 2, and the time step used in the
numerical integration of the Schrödinger equation is 
t = 4 × 10−5.
The average value of the work resulting from the histogram and
indicated by the red line is again positive, as required by the Jarzynski
equality (16).

values and the system mostly returns to its initial energy Ei at
t = tf . Inside this window transitions always occur to just one
final energy E f �= Ei, which is very similar to the energy E f

found in the classical case. It is clear that due to the discrete
energy spectrum fewer values of 
E are realized. There are
three important differences between the classical and quantum
mechanical case.

First, the quantum transition window is much smaller than
the classical one. For the transitions found 
E is near to an
even multiple of ω and the largest value observed is 
E =
8ω. Due to the fact that the energy spectrum of the quartic
oscillator is not equidistant, there is no matching pair of
energy eigenstates i, f satisfying |E f − Ei| = 
E for larger
even multiples of ω.

Second, the transition with 
E = 6ω, although within the
accessible energy window, is missing in the quantum case,
giving rise to a gap in the secondary diagonal formed by
transitions with E f �= Ei. This can be understood as a con-
sequence of destructive interference between Floquet states,
as we discuss in detail in the next section.

Third, there is a small but nonzero transition probability
between the states with n = 3 and m = 9 as visible in the
lower left corner of Fig. 6. This transition has no classical
analog. Its mechanism can again be understood within the
framework of Floquet theory, cf. Sec. IV C.

The quantum work distribution (45) resulting from (46)
and the numerical determination of PQ

t (E f |Ei ) is shown in
Fig. 7. There is close correspondence with Fig. 6. The central
peak at W = 0 derives from the diagonal transitions in Fig. 6.
The six highest peaks at nonzero W correspond to the transi-
tions with 
E = 2ω, 4ω, and 8ω on the secondary diagonal
in Fig. 6. Again, the gap at W = ±6ω is clearly seen. The
smaller peaks near W = 4ω are due to the transitions between
states 3 and 9.

Despite looking rather symmetric around W = 0, the his-
togram compiles slightly more probability at positive W so
that the average value 〈W 〉 is again larger than zero, in
accordance with the Jarzynski equality (16). More precisely,
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we find from the numerical data,

〈e−βW 〉hist = 0.999. (50)

C. Floquet theory

Similar to the classical case, cf. Sec. III B, important qual-
itative features of the transition probability PQ

t (E f |Ei ) may
be understood from an analysis of the system at constant
λ. We are then concerned with a quantum system with a
time-periodic Hamiltonian that is most conveniently analyzed
within Floquet theory [24–28]. For a quantum system with
time-periodic Hamiltonian, Ĥ (t ) = Ĥ (t + T ), where T :=
2π/ω in our case, the states |ψn(t )〉 have the general form

|ψn(t )〉 = |ϕn(t )〉e−iεnt . (51)

Here the Floquet functions |ϕn(t )〉 share the periodic time
dependence with the Hamiltonian

|ϕn(t )〉 = |ϕn(t + T )〉, (52)

and the quantity εn is known as quasienergy. Similar to quasi-
momentum in spatially periodic quantum systems, quasiener-
gies are only defined within integer multiples of ω such that
all values

εn,m := εn + m ω, m ∈ Z (53)

are equivalent to each other. The main virtue of the Floquet
states (51) is that a general solution of the Schrödinger
equation may be written as their superposition with time-
independent coefficients.

As a rule, the determination of the Floquet functions and
their corresponding quasienergies can only be done numeri-
cally, e.g., from the relation

Û (t + T, t )|ψn(t )〉 = e−iεnT |ψn(t )〉, (54)

characterizing the time evolution for one period of the driving.
To do so in the present context we work in the basis of energy
eigenstates φn of the undriven Hamiltonian H0, i.e., for a given
value of λ we propagate the first 40 states φn, n = 1, . . . , 40,
for one period T with the Crank-Nicolson method, determine
the matrix elements

Un,m := 〈φn|Û (T, 0)|φm〉, (55)

and find the eigenvectors and eigenvalues (54) that fix the
corresponding |ϕn(t )〉 and εn according to (51).

Figure 8 shows results obtained in this way for the pa-
rameter values of Figs. 6 and 7. All quasienergies have been
mapped to the interval 0 � εn/ω < 1 by appropriately chosen
values of m in (53). The upper and the lower boundaries of the
figure corresponding to εn/ω = 1 and εn/ω = 0, respectively,
have hence to be identified. Points arising from neighboring
values of λ are connected if the absolute value of the scalar
product between their corresponding Floquet functions is
larger than with any other Floquet function. Note that all
energy levels En of the unperturbed system give rise to a
quasienergy in the interval [0,1), cf. (53). Therefore only a
selection of lines is shown.

For a slowly evolving amplitude λ(t ) the system will
adiabatically follow the lines εn(λ) up to λ = λmax and then go

0 0.5 1 1.5 2 2.5 3 3.5
0

0.25

0.5

0.75

1

n/

FIG. 8. Selection of quasienergies εn divided by ω for n =
9, . . . , 29 as function of λ for the parameter values of Fig. 6. The
red lines correspond to the transitions on the secondary diagonal in
Fig. 6, the black ones to the transitions between states 3 and 9.

back again. At the various crossings or avoided crossings on
its way it may perform transitions to other quasienergies and
then end up in a different state when λ = 0 at t = tf . Whether
such transitions occur or not depends on the specifics of both
the crossing and the participating states and has to be carefully
checked for each situation individually.

But even without pinpointing the details at each cross-
ing we may understand the transitions found or missing in
Fig. 6 on the basis of Fig. 8 in a qualitative way. Let us
focus first on the transition on the secondary diagonal. Their
corresponding εn(λ) lines are shown in red in Fig. 8. As can
be seen, they always come in pairs starting at λ = 0 with
the same quasienergy. This is simply a consequence of their
initial energies differing by a multiple of ω. With increasing
λ they evolve along different lines and pick up different
phases. Finally merging again for t = tf , at the same value
of εn these phases may induce constructive or destructive
interference, in this way deciding whether a transition occurs
or not.

This is a simple and robust transition mechanism, since no
level crossing is involved. All that is needed are two states of
the undriven system with energies separated by a multiple of
ω. It is rather reminiscent of the classical transitions discussed
in Sec. III B. Nevertheless, a transition is not guaranteed.
Depending on the detailed behavior of the participating εn(λ)
lines destructive interference, the final value λ = 0 may sup-
press a transition that otherwise seems completely plausible.
This is the reason for the absence of transitions between
i = 16 and f = 22 and vice versa in Fig. 6.

The transitions between i = 3 and f = 9 shown by the
black lines in Fig. 8 are of a different nature. This is already
evident from the fact that the participating quasienergies do
not coincide at λ = 0. Correspondingly, E9 − E3 is no mul-
tiple of ω. Let us assume that we start in |φ3〉 at t = 0. The
state then closely follows the one emerging from this initial
condition with hardly any additional component up to almost
λ = λmax. However, near λ � 3.4 there is an avoided crossing
of quasienergies. In fact, the explicit calculation shows that
the instantaneous energies of the states originating from |φ3〉
and |φ9〉 differ at λ � 3.4 by just 4ω. The initial wave packet
splits in a generalized Landau-Zener transition, and the new
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FIG. 9. Classical (blue) and quantum (red) transition probability
P(E16|E16) as a function of λmax. Parameter values are the same as in
the other figures.

contribution to the state from |φ9〉 remains present in the
superposition all the way down back to λ = 0. There it gives
rise to a nonzero probability for E9 in the second energy
measurement.

Let us at this point emphasize again that an identification
of really occurring transitions solely on the basis of Fig. 8
is impossible. For each line εn(λ) there are, rather, many
avoided crossings. Whether or not they really give rise to a
transition with appreciable probability depends on the details
of the associated Floquet state and the system state at the
corresponding time, i.e., on information that goes well beyond
what is contained in Fig. 8.

V. THE DEPENDENCE ON λmax

A peculiar feature of our system—both classical and
quantum mechanical—is an oscillatory variation of the
transition probabilities PC (E f |Ei ) and PQ(E f |Ei ), respec-
tively, with the maximal amplitude λmax of the driving. In

Fig. 9 this is shown exemplarily for the case i = f = 16
in the interval 2 � λmax � 2.5. The oscillations are clearly
visible, and classical and quantum results are in close
correspondence.

For the quantum case there is simple explanation for this
behavior. As discussed already in Sec. IV C, the quantum tran-
sition probability depends on whether the two participating
Floquet states interfere constructively or destructively at the
end of the driving process. Since these states collect different
phases during the driving that depend on λmax the oscillatory
dependence seems natural.

With the interference of probability amplitudes being a
genuine quantum phenomenon, it is not obvious to find the
mechanism behind these oscillations for the classical case.
Nevertheless, it is rather analogous.

In Fig. 10 we compare two Poincaré plots for the full
dynamics with time-dependent λ(t ) with slightly different
values of λmax. The upper and lower parts of the orbits derive
from the initial energies Ei = E16 and Ei = E22, respectively.
Shown is the situation exactly at the moment when the two
parts detach at decreasing λ. The black dots correspond to a
selection of systems that started with Ei = E16 at t = 0.

For λmax = 2.05 (left part of the figure) practically all these
black dots are on the lower part of the curve and will therefore
return to their initial energy value E f = E16. This corresponds
to the first maximum of the blue line in Fig. 9. If λmax is
only slightly larger, λmax = 2.085, the dynamics are such that
almost all black points are located on the upper part of the
orbit just before the separation takes place. This is shown
in the right part of Fig. 10. These points, although started
with Ei = E16, will end up in a state with final energy E f =
E22. Therefore the transition probability PC (E16|E16) will be
small in accordance with the second minimum of the blue
line in Fig. 9. The different phases of the Floquet functions
hence find their classical equivalent in the different number of
circulations the phase space points undergo on the joint orbit
at sufficiently large λ.
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FIG. 10. Poincaré sections of classical orbits originating from Ei = E16 (lower parts) and Ei = E22 (upper parts) just before the two parts
separate again in the course of decreasing λ(t ) for λmax = 2.05 (left) and λmax = 2.085 (right). For both initial energy values, 2500 classical
trajectories were generated (red points), and 500 randomly selected initial conditions with Ei = E16 give rise to the black dots. In the left figure
almost all of these black points return to their initial energy value; in the right one most end up at Ef = E22.
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VI. CONCLUSION

The present paper was concerned with the classical and
quantum mechanical analysis of a periodically driven an-
harmonic oscillator, where the slowly varying amplitude of
the driving smoothly increased from zero up to a maximum
value and then returned back to zero in the end. The system
is sufficiently simple to allow a rather detailed study, both
within classical and quantum mechanics. Nevertheless, it is
representative for a whole class of nonlinear oscillators driven
by time-periodic signals that are frequently the subject of
theoretical and experimental investigations. Our focus was
on the possibilities to store or retrieve energy from the sys-
tem in the course of driving, a question linked to the work
statistics observed. This is of particular importance since the
appropriate definition of work in small quantum systems is
still controversial. Our analysis builds on numerical solutions
of Hamilton’s and Schrödinger’s equation of motion, respec-
tively, complemented by approximate analytical results that
establish ways to an intuitive understanding of the results.

Decoupling the system from its surroundings during the
driving, the central quantity of interest is the transition proba-
bility P(E f |Ei ) to end in a state with energy E f when started
in one with energy Ei. Both classically and quantum mechan-
ically this transition probability has a rather peculiar form.
Only within a definite energy window around the resonance
energy corresponding to the external periodic signal may a
transition occur with appreciable probability. For most initial
energies within this window, only transitions to one particular
final energy occur.

Classically, this can be related to the mechanism of sep-
aratrix crossing that is most conveniently analyzed by trans-
forming to action-angle variables of the undriven system. By
employing the so-called pendulum approximation, the results
for the classical transition probability obtained from the nu-
merical solution of the equations of motion can be reproduced
rather well, particularly for a small maximum amplitude of the
driving.

In the quantum setting most transitions can be traced
back to constructive or destructive interference of Floquet
states which the system follows adiabatically when the driving
amplitude changes sufficiently slowly. Additional possibilities
for transitions arise due to avoided crossing of quasienergy
levels with associated generalized Landau-Zener transitions.

We found a surprisingly close analogy between classical
and quantum results. The overall shape of the transition prob-
abilities is very similar, and a pronounced oscillatory variation
of the transition probability with the maximum value λmax of
the driving amplitude is found in both cases. For the quantum
system this is due to constructive or destructive interference
of Floquet states. The corresponding classical mechanism is
related to integer or half-integer numbers of circulation of the
phase space points on orbits originating from different energy
values.

There are, of course, also important differences. The en-
ergy window for off-diagonal transitions is smaller in the
quantum case. This is mostly due to the discrete energy
spectrum in the quantum case. Moreover, transitions that are
impossible classically may occur for the quantum system due
to avoided crossings of quasienergy levels at sufficiently large
values of λ.

Several interesting questions remain for further research.
It would be very interesting to underpin the close correspon-
dence between classical and quantum results by a semiclas-
sical analysis. Also, quantization of the pendulum approxi-
mation may contribute to a quantitative understanding of the
classical analog of Floquet interferences.
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