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Random Möbius maps: Distribution of reflection in non-Hermitian one-dimensional
disordered systems
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Using the properties of random Möbius transformations, we investigate the statistical properties of the
reflection coefficient in a random chain of lossy scatterers. We explicitly determine the support of the distribution
and the condition for coherent perfect absorption to be possible. We show that at its boundaries the distribution
has Lifshits-like tails, which we evaluate. We also obtain the extent of penetration of incoming waves into the
medium via the Lyapunov exponent. Our results agree well when compared to numerical simulations in a specific
random system.
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I. INTRODUCTION

Spatial inhomogeneity and absorption are ubiquitous in all
but very carefully manufactured transmission media, thereby
often complicating their scattering properties. The relevance
of disorder and coherent absorption in such systems has
been extensively studied using numerical [1,2] and analytic
methods. Such methods include mainly random matrix theory
when the number of propagating modes is large [3–5] and, in
the opposite limit, effectively one-dimensional models [6–12].
In these models the individual scatterers are assumed weak
and small compared to the wavelength, essentially forming a
continuum δ-correlated Gaussian potential.

The recently discovered phenomenon of coherent perfect
absorption (CPA) [13–16] whereby an incident wave, which
becomes localized in an absorbing region and is therefore
strongly attenuated, can thus be traced directly to the interplay
between inhomogeneity and absorption. While CPA is mostly
studied in systems with a few carefully positioned absorbing
scatterers, recent works have analyzed experimentally [17]
and numerically [18] the effects of randomness in the absorp-
tion characteristics of a larger system. It is therefore important
to obtain a better understanding of the interplay between
randomness and local absorption. Toward this direction, in
Ref. [4] the authors applied random matrix theory to a random
cavity with a few local absorbing elements to obtain the
statistics of the modulus of the reflection coefficient.

In this paper, we take a parallel approach and model a
waveguide with a large number of discrete absorbing scatter-
ers with properties from a specific experimental setup [16],
spaced at random distances from each other. We assume that
the waveguide is long compared to the localization length.
The one-dimensional geometry of the system we study can
be justified by the fact that many realistic waveguides are
often one dimensional and recent experiments with lossy scat-
tering elements are indeed one dimensional [13,15]. Hence
it is also experimentally relevant to analyze one-dimensional
waveguides with lossy scatterers. In contrast to the theoretical

models discussed above, the distance between scatterers can
be comparable to the wavelength. Nevertheless, an appro-
priate long-wavelength limit in our model can reduce to the
δ-correlated Gaussian models. In the infinite-size limit we
are considering, the total transmission probability through the
sample is strictly zero. Therefore, in the absence of absorp-
tion, the reflection from the sample has unit norm, as expected
in localized systems. When absorption is included, the result-
ing distribution of the reflection coefficient will display the
competition between destructive interference, which will tend
to coherently reflect the wave, and strong absorption in the
regions, where the wave is in near resonance and undergoes
many reflections. Unlike previous works, we deal with the
distribution of the reflection on the complex plane, rather than
just its modulus. We should point out that our approach here
can be generalized to amplified disordered chains, providing
information about the statistics of the amplification [9,10], as
well as to random waveguides with local parity-time-reversal
symmetry [19].

The focus of the paper is threefold. First, we fully deter-
mine the support of the distribution of reflection in the com-
plex unit disk. To be able to do this, we utilize the properties
of Möbius maps, which are conceptually simple but provide
strong constraints on the support in the complex plane. Sub-
sequently, we identify the Lifshits-like tails of the reflection
distribution at the boundaries of its previously discussed sup-
port and analytically obtain the asymptotic behavior of the
distribution. Finally, we establish the relationship connecting
the reflection distribution with the penetration length of the
system. Such a relationship is known to exist, since the
reflection distribution is known to contain all the information
regarding the localization properties of the system [20].

II. ITERATIVE RANDOM MÖBIUS MAPS

The purpose of this paper is to analyze the reflection prop-
erties of a one-dimensional half-infinite waveguide consisting
of absorbing scatterers located at random distances from each
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FIG. 1. The construction of the system is depicted. We place the
n + 1th scatterer at distance �n from the system, between the system
and the beam, changing its reflection from zn to zn+1. In later figures
we will provide data for an element characterised by its thickness hp.
The terminating element, depicted in red, will not matter at the large
system limit.

other. In order to simplify the following notation, we will work
with parity-symmetric scatterers; however, the generalization
to parity breaking scatterers is trivial. To obtain the total
reflection coefficient we start with a single scatterer with
scattering matrix

S =
[
ρ τ

τ ρ

]
, (1)

with ρ and τ being the reflection and transmission coeffi-
cients, respectively, at a given wave number k = 2π/λ cor-
responding to wavelength λ. We assume that the scatterer
is lossy (and hence nonunitary), with the absorbed power
fraction given by 1 − |τ |2 − |ρ|2 > 0. Then, we iteratively
place an additional scatterer at a random distance �n to the left
of the last one, see Fig. 1. We may then express zn+1, the total
reflection coefficient after placing the (n + 1)th scattering
element, in terms of the corresponding reflection coefficient
zn and the scattering data of the last scatterer as follows [21]:

zn+1 = ρ + τ 2zneiφn

1 − ρzneiφn
≡ M(zneiφn ), (2)

where we suppress the dependence of the scattering data from
k and φn = 2k�n, in which �n is the random distance between
scatterers n and n + 1. The above expression follows from
combining the scattering properties of two entities, namely
the nth scatterer and the one-dimensional waveguide segment
of length �n. We assume that the distances between scatterers
are identically and independently distributed. For simplicity,
we also assume that the phase distribution μ(φ) does not
vanish anywhere. Notably, the reflection coefficient at the
nth step, depends on the system to the right only through its
reflection coefficient zn−1, thereby making the above iterative
process a Markov chain. The initial condition z0 depends on
the termination process on the right. For an open system we
have z0 = 0, while for a fully reflecting termination we have
|z0| = 1. Our focus will be to understand the behavior of the
distribution of reflection coefficients in the limit n → ∞, for
which the initial condition will eventually no longer matter.
Indeed, this is the case here for two reasons. First, because
the wave will have been attenuated by the time it reaches
scatterers far from its incidence. In addition, due to the one-
dimensional geometry of the waveguide, randomness in the

position of the scatterers will eventually make sure that the
transmission coefficient will become negligible.

It is worth mentioning here that the above map can also
provide the behavior of a random laser by time-reversing
the parameters using the time-reversal operation of the scat-
tering matrix of the scatterer S → (S∗)−1, i.e., ρ → r̃/d∗,
r → ρ∗/d∗, and d → 1/d∗, where S is the total system scat-
tering matrix, while d is the determinant of the single-scatterer
scattering matrix, i.e., d = ρ2 − τ 2. Then since the transmis-
sion coefficients of the total system will remain zero due
to localization, time-reversal maps the zeros of the original
absorbing system to poles of the resulting time-reversed am-
plifying system in the sense that z → v = 1/z∗ in the sense
that

vn+1 =
ρ∗
d∗ − 1

d∗ vne−iφn

1 − r̃
d∗ vne−iφn

. (3)

The function M(z) is a general Möbius transformation
and is therefore conformal in C \ {ρ−1} and maps circles
onto circles [22]. This is a key property for our random
sequence. Observe in (2) that zn+1 is constructed from zn

after a random rotation about zero and then an action of M.
Hence, the possible values of zn+1 for a fixed zn lie on a circle.
Specifically, M(xeiθ ) for θ ∈ [0, 2π ) and 0 < x � 1 maps the
circle of radius x around the origin to a circle [21] centered at

c0(x) = ρ + τ 2ρ∗x2

1 − |ρ|2x2
(4)

with radius

r0(x) = x|τ |2
1 − |ρ|2x2

. (5)

The maximum and minimum distances from the origin are
then given by the functions F+ and |F−|, where F±(x) =
|c0(x)| ± r0(x).

We restrict this study to reflectively dissipative systems,
for which F+(1) � 1. This condition is always satisfied by
parity-symmetric lossy scatterers as they have been described
above. Such iterative processes are commonly described [23]
by the evolution of the probability distribution Pn of the
reflection amplitude, as a result of the action of an operator
M corresponding to the Markov process described above, on
the initial distribution P0. M is defined as

MP(reiθ ) =
∫∫

dr′dθ ′P(r′eiθ )
∫

dφμ(φ)

× δ[r− |M(r′ei(θ ′+φ) )|]δ(θ− arg{M[r′ei(θ ′+φ)]}).

(6)

The sequence Pn = MnP0 is compactly supported within the
unit circle and since M is continuous in the weak topology,
the limit P = limn→∞ MnP0 is well defined and is a stationary
point of M.

III. SUPPORT OF STEADY-STATE DISTRIBUTION

To obtain the support of the limiting distribution, we first
note that when ρ �= 0, F+(r) = r has at least one root in
[0,1], the smallest of which can also be obtained as the limit
r̃ = limn F n

+(0). Correspondingly, there exist unique angles θ̃ ,
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φ̃, such that z̃ = r̃eiθ̃ and z̃ = M(z̃eiφ̃ ). Typically, this point is
different than the nonrandom fixed point z̄ = M(z̄).

We consider the disk enclosed within the circle M(r̃eiφ ),
with φ ∈ (0, 2π ], which we represent as M[D(r̃)]. If this
disk includes the origin, i.e., if F−(r̃) < 0, then we shall
show that the support of the steady-state distribution P(R, θ ),
is simply M[D(r̃)]. On the other hand, if the origin is not
included in this disk, i.e., F−(r̃) > 0, then the support of P(·)
is the M[D(r̃)] \ M{D[F−(r̃)]}, i.e., the disk M[D(r̃)] after
excluding the image, under M(·), of the disk around the origin
with radius F−(r̃).

To prove the above assertion for the support, we start by
noting that P(·) has no support for |z| > r̃, because in this
region we have F+(r) < r, and hence under iteration this
region is depleted. Within the disk D(r̃), the probability mass
also has to reside within the disk M[D(r̃)]. If not, i.e., if there
were a finite probability to be within D(r̃), but not in M[D(r̃)],
then this would mean that at a previous iteration this region
would have been outside D(r̃). Additionally, if F−(r̃) > 0,
then the disk D[F−(r̃)] is outside M[D(r̃)]. Hence its image
under M(·) cannot be in the support of P(·). As a result, in
this case, the support is included in M[D(r̃)] \ M{D[F−(r̃)]}.

Starting with the case F−(r̃) � 0, it suffices to show that
any point within M[D(r̃)] \ M{D[F−(r̃)]} is accessible from
any other point in the same domain. Starting with any point
z in M[D(r̃)], with radius 0 � |z| < r̃ and any small num-
ber ε > 0. Then, since limn→∞ F n

+(|z|) = r̃, there is finite
probability that after a finite number of steps m its image
zm will be |zm − z̃| < ε. Therefore, after the next random
Möbius transformation, with finite probability zm+1 will have
radius close to any radius in (F−(r̃), r̃). As a result, after
the final transformation, zm+2 can be close to any point in
M[D(r̃)] \ M{D[F−(r̃)]}.

In the case where F−(r̃) < 0, the above argument can
be directly applied to show that M[D(r̃)] \ M{D[|F−(r̃)|]}
is within the support. To show that M[D(|F−(r̃)|)] is also
included in the support, it is sufficient that any point within
D(|F−(r̃)|) can be reached. Starting from any point with radius
in (|M−1(0)|, r̃), since for points with such radii F−(r) < r,
there is a finite probability to move to lower radii. Since also
F+(r) > r, at some point the radius |M−1(0)| will be reached,
from where any range in [0, F+(|M−1(0)|)] can be reached
and hence any point in D(|F−(r̃)|) is in the support.

From the above analysis, it follows that the condition for
CPA to be possible is simply

F−(r̃) = |c0(r̃)| − r0(r̃) < 0, (7)

a condition, which can be shown to be equivalent to
|ρ| < r̃|d|. In Fig. 2 we plot the the contour |ρ| = r̃|d| for the
lossy, acoustically resonant plates of Ref. [16] by considering
their scattering properties to be functions of their thickness
and the incident frequency. In the same figure we also plot
some contours of the probability that the system is close to
CPA for Poisson-distanced scatterers.

One surprising result of the above analysis is that as long as
μ(φ) has full support, the condition for CPA to be possible in
(7) is independent of the details of μ(φ) but depends only on
the scatterers’ properties. We can see this from the iterative
expression of the reflection coefficient in (2). For the total
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FIG. 2. Probability over 2×105 realizations for the reflection
power to be close to zero [P(|r|2 < 0.04)] in the case of a large
array of Poisson-distributed spacings (mean �0 = 20 cm) between
lossy, acoustically resonant plates (see Ref. [16]). The y axis of the
plot is the thickness of the lossy plates, which is a measure of their
lossy behavior. The colored curves represent the contours of constant
probability, from p = 0.1 to p = 0.9. The dashed curve represents
the boundary, to the right of which the probability density vanishes
at r = 0. The probability is typically, but not always, a decreasing
function of absorption, parametrized by hp.

reflection after zN (where N is the total number of scatterers)
to be zero, one needs the modulus of the reflection coefficient
excluding the final scatterer to be |zN−1| = |ρ|/|ρ2 − τ 2|.
However, as we have argued above, for sufficiently large N
the scattering amplitude is within a circle of radius r̃, hence
|zN−1| < r̃. Therefore, only if |ρ| > |ρ2 − τ 2|r̃, in the case
that μ(φ) has full support, is there a finite probability that a
number of scatterers close to the end of the transmission line
are spaced appropriately, so that the the condition zN = 0 is
met. Thus, the form of μ(φ) will only determine how large
the probability for CPA will be. On the other hand, if the
support of μ(φ) has gaps, then there exist scatterers, for which
the above “perfect arrangement” has zero probability, thus
making CPA impossible. However, for this to happen the zero
support of μ(φ), which is k dependent, will have to match
that of the properties of the scatterer. As a result, this is a very
scatterer-dependent issue, which we will not discuss further.

IV. TAILS OF THE LIMITING DISTRIBUTION

The limiting distribution P(z) satisfies the integral equation
P = MP. Despite its complexity, we will use the properties
of Möbius transformations to explore its asymptotic behavior
close to the edges of its support. As we shall see, the distri-
bution has Lishits-like tails [23] at the edges, which cannot be
easily obtained by numerical calculations.

To obtain the tails of the distribution, we start with the be-
havior near the point z = z̃, which will determine the asymp-
totics close to the entire boundary of M[D(r̃)]. Accordingly
we denote p(ε, θ ) = P[(r̃ − ε)eiθ ] and p(ε) = ∫

dθ p(ε, θ ).
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Integrating P = MP over θ we get

p(ε) =
∫∫

dε′dθ ′ p(ε′, θ ′)
∫

dφμ(φ)
r̃ − ε′

r̃ − ε

× δ{r̃ − ε − |M[(r̃ − ε′)ei(φ+θ ′ )]|}. (8)

The argument of the δ function vanishes when the angle
φ + θ ′ is such that the image of the circle with radius r̃ − ε′
intersects the circle with radius r̃ − ε. We define the inverse
function φ + θ ′ = �(ε, ε′). As a result we have

p(ε) = 2
∫∫

dε′dθ ′ p(ε′, θ ′)μ[�(ε′, ε) − θ ′]
∂�(ε, ε′)

∂ε
,

(9)

where the factor of 2 appears due to symmetry. Now for
small ε, the range of θ ′ is θ ′ = θ̃ ± (ε), where (ε) =√

2ε
r̃+|τ |2/(1−|ρ|2 r̃2 ) . For small ε, we may therefore approximate

the argument of the function μ(φ) in the integral with φ̃ and
simplify the above expression to

p(ε) ≈ 2μ(φ̃)
∫

dε′ p(ε′)
∂�(ε, ε′)

∂ε
. (10)

Additionally, for small ε, the integration range is ε′ ∈
(0, εmax), where εmax is the solution of the equation r̃ − ε =
F+(r̃ − εmax), which can be written to leading order as

εmax = 1

F ′+(r̃)
ε + F ′′

+ (r̃)

2[F ′+(r̃)]3
ε2. (11)

It is easy to see that F ′
+(r̃) � 1 and that if F ′

+(r̃) = 1, then
F ′′+(r̃) > 0. Indeed, since for x � r̃, we have F+(x) � x, we
take x = r̃ − ε with ε small. Then expanding around ε = 0 we
get r̃ > F+(r̃) − F ′

+(r̃)ε + F ′′
+ (r̃)ε2/2 > r̃ − ε, which gives

the required result.
Approximating the derivative in (10) close to ε = ε′ = 0

we obtain

p(ε) = C
∫ εmax

0
dε′ p(ε′)√

εmax − ε′ , (12)

where

C =
√

2μ(φ̃)
∣∣ρ − (ρ2 − τ 2)r∗∣∣

(1 − |ρ|2r̃2)
√

r∗3|c0(r̃)|r0(r̃)F ′+(r̃)
. (13)

Expressing the probability distribution as p(ε) =
e−I[− log(ε)], where I (t ) an unknown function, and inserting
this in (12) and integrating the right-hand side asymptotically
around ε′ = εmax we obtain the relation

I

[
log

(
1

εmax

)]
− I

[
log

(
1

ε

)]
= 1

2
log

C2πεmax

4I ′[ log
(

1
εmax

)] .

(14)

From this expression we may deduce the asymptotic behavior
of I (t ) as t → ∞. There are two cases we need to distinguish.

Specifically, when F ′
+(r̃) < 1 the solution the distribution

p(ε) is essentially lognormal with logarithmic corrections

− log p(ε) = (log ε)2 − 2 log ε log log 1
ε

+ 2q0 log ε

4 log 1
F ′+(r̃)

, (15)

with O(1) corrections and

eq0 =
C2πe log 1

F ′+(r̃)

2
√

F ′+(r̃)
. (16)

In contrast, when F ′
+(r̃) = 1, the distribution falls much

faster to zero close to r = r̃. In this case

− log p(ε) = 2

F ′′+ (r̃)ε

(
log

1

ε
+ 1

2
log log

1

ε
− q1

)
, (17)

with correction of order o(1)/ε and

eq1 = Ce

√
F ′′+ (r̃)π

2
. (18)

We will now obtain the behavior close to the outer borders
of the support i.e., at location R(δ, χ ) = c0(r̃) + [r0(r̃) − δ]eiχ .
We observe that any such point z originates, before a previous
application of the random Möbius map, from a point z′ in
the neighborhood of z̃, in the sense that z = M(z′eiφ ), where
φ ∈ (0, 2π ]. Therefore, we can use the results we got above to
obtain, to leading exponential order,

P[R(δ, χ )] ≈ p[ε′(δ, χ )]μ[g(|R(δ, χ )|, r̃) − θ̃ ]

× ∂g

∂r
(|R|, r̃)

∂R̄

∂θ
(|R|, arg R), (19)

where

ε′(δ, χ ) = (1 − |ρ|2r̃2)2

|1 + |ρ|r̃ei(χ−φ̃)|2
δ

|τ |2 (20)

and we have defined R̄(r, θ ) and g(r, r′) through R̄ =
|M−1(reiθ )| and r = |M(r′eig)|. The product of their partial
derivatives appearing in (19) can be expressed as

∂g(|R(δ, χ )|, r̃)

∂r

∂R̄(|R(δ, χ )|, arg R(δ, χ ))

∂θ

= |r − r̃eiχ |2(r2|d − ρ r̃eiθ |2 − d2|r − r̃eiθ |2)
r̃|τ |4(d2 − ρ2r̃2)

. (21)

Similarly, we can calculate the vanishing behavior of the
probability distribution at the boundaries of M[D(|F−(r̃)|)], if
it exists.

In Fig. 3 we plot the tails of the cumulative distribution
function Pr(1 − |r| > ε) for a large array of lossy, acoustically
resonant plates discussed in Refs. [16,24] and separated at
uniformly random distances from each other, with maximum
distance π/k. We have chosen two different values of plate
thickness, which quantifies lossiness, for which the distribu-
tion has and has not, respectively, finite probability of co-
herent perfect absorption. The tails agree with the theoretical
curve to a significant degree with the theoretical prediction of
the tails in (17). The insets depict the color-shaded distribution
of r over its support, in which the white dashed lines represent
the boundaries of the support of the distribution, while the
solid lines depict level contours. These can be seen to follow
the color variations and hence are relatively close to the actual
level sets.
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FIG. 3. Cumulative distribution function (CDF) Pr(1 − |r| > ε)
for the tails of the distribution p(ε) in the case of a large array of
randomly spaced lossy, acoustically resonant plates, at frequency
f = 1 kHz and plate thickness hp, as in Fig. 2. The CDF is plotted
versus the exponent Xε appearing in the right-hand side of (17). The
insets depict the color-shaded distribution of r over its support, in
which the white dashed lines represent the boundaries of the support
of the distribution, while the solid lines depict level contours.

V. PENETRATION LENGTH

The distribution of reflection coefficients P(z) can be used
to obtain the penetration length of a wave with wave number
k incoming to the disordered medium. This is the so-called
Lyapunov exponent of the system [23], expressed as

γ = − lim
x→∞ log |�(x)|/x, (22)

where �(x) the corresponding wave function. For simplicity,
in the next equations, we count the scatterers starting from the
far left of the structure, rather than the far right, following
the convention m = N − n, thus indexing the furthest left
scatterer with m = 0 (n = N), the one to its right m = 1,
etc. Thus zm is now the reflection of the system if we re-
move the leftmost m scatterers, xm is the location of the mth
scatterer �m = xm+1 − xm = xN−n+1 − xN−n, etc. Now, for x ∈
(xm, xm+1) we may express the wave as a sum of left-moving
and right-moving parts

�(x) = Ameik(x−xm ) + Bme−ik(x−xm ), (23)

where the second coefficient Bm can be related to the first,
Am, through the reflection coefficient to the left of the m + 1th
scatterer as Bm = zme2ik�m Am. We may now relate Am with
Am−1 by using the input-output relation of the scattering
matrix at the position of the mth scatterer

Am = eik�m−1τAm−1 + e2ik�mρzmAm, (24)

which expresses the fact that the wave traveling further inside
in the system after the mth scatterer must be the sum of the
wave transmitted through that scatterer from the outer system
toward the inside and what was reflected from the scatterer
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FIG. 4. The normalized Lyapunov exponent γ �̄ as a function of
frequency, in case of lossy acoustic resonant plates that are Poisson
distributed with average distance �̄ (a) �̄ = 50 cm, (b) �̄ = 10 cm,
(c) �̄ = 5 cm, and (d) �̄ = 2.5 cm. The solid lines correspond to the
values obtained from (26) by numerically generating the distribution
of reflection and integrating over μ(φ). The colored dashed lines
were generated from (25), by calculating |An−1|/|An| from (24) with
values of zn for a single instantiation of distances �n between 105

scatterers. We see that the two sets of curves are practically identical.
The bottom subplot shows the convergence of −γ �̄/ log |τ | → 1 at
high frequencies. On the top left subgraph we plot γ �̄ vs. �̄ for two
frequencies, demonstrating the convergence to − log |τ |.

back inside the system. We may then express the Lyapunov
exponent as

γ = − lim
N→∞

1

N �̄

N∑
m=1

log

∣∣∣∣ Am

Am−1

∣∣∣∣. (25)

Since �m is independent from zm, we may express (25) as a
disorder average [23], resulting in

γ �̄ =
∫∫

rdrdθP(reiθ )
∫

dφμ(φ) log

∣∣∣∣1 − ei(φ+θ )ρr

τ

∣∣∣∣,
(26)

where the phase φ = 2k� and � is the interscatterer distance.
When the distribution μ(φ) is uniform over φ ∈ [0, 2π ), then
the Lyapunov exponent becomes simply γ �̄ = − log |τ |. This
is the case when, for example, the interscatterer distance is
uniform over an integer multiple of π/k or if it is Poisson
distributed with k�̄ � 1. In the opposite limit of the latter
case, i.e., when k�̄ � 1, the distribution μ(φ) will be localized
around 0, and thus P(·) will be localized around the fixed
point of M, where z̄ = M(z̄). As a result, γ �̄ ≈ − log |τ/(1 −
ρ z̄)| + O(k�̄).

In Fig. 4 we compare the penetration length for resonant
plates as a function of frequency for various incident frequen-
cies as the integral in (26) calculated by Monte Carlo methods
and as the limit (25) calculated for a fixed instantiation of
the random configuration. The agreement demonstrates the
ergodicity of the process.
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VI. DISCUSSION

We have studied the distribution of reflection in a one-
dimensional half-infinite line of randomly spaced lossy scat-
terers, taking advantage of the properties of random Moebius
transformations. We have found that the support of the distri-
bution, and have shown that the scatterer (and not the spacing)
properties solely determine the possibility of the occurrence
of CPA, determining the analytic condition for this to happen,
when the scatterer-spacing distribution is such that the angle
φ = 2k� mod (2π ) has full support.

We have only focused on the case where the distribution
μ(φ) has full support, i.e., when there are no regions of
forbidden distances between the scatterers. If such regions
are allowed to exist, then the Möbius map will map arcs to
arcs instead of circles to circles. As a result, the condition
for CPA to be possible will decrease and different asymptotic
behaviors near the edges of the spectrum may appear.

In a similar fashion, when the scatterer properties them-
selves are random, the criterion for CPA appearance discussed
above is generalized to

Prob(|ρ| < |ρ2 − τ 2|r̃) > 0, (27)

where the probability is over the distribution of scatterers. In
this context, it is not surprising that in random δ-correlated
models discussed in the introduction, for which the scat-
terers are random, CPA is typically possible [7,9]. Beyond
δ-correlated potentials, in numerical studies such as [2] it can
be seen also be seen that the possibility of CPA is dependant
on the properties of the allowed scatterers.

We have also calculated the probability of CPA as functions
of frequency and absorption, for a specific waveguide real-
ization with lossy acoustic resonant plates [16]. In addition,
we have found that special points on the circle of the outer
boundary of support of the reflection determine the Lifshitz-
like tails at all of its boundaries, which we have determined
analytically. Finally, we have evaluated the Lyapunov expo-
nent, which characterizes the extent of penetration of incom-
ing waves into the system and discussed its properties. The
above analysis can be extended to randomly placed scattering
elements with amplification using the mapping (3).
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