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Correlation function inadequacy in random-sequence entropy measures
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Considering symbolic and numerical random sequences in the framework of the additive Markov chain
approach, we establish a relation between their correlation functions and conditional entropies. We express
the entropy by means of the two-point probability distribution functions and then evaluate the entropy for
the numerical random chain in terms of the correlation function. We show that such approximation gives
a satisfactory result only for special types of random sequences. In general case the conditional entropy of
numerical sequences obtained in the two-point distribution function approach is lower. We derive the conditional
entropy of the additive Markov chain as a sum of the Kullback–Leibler mutual information and give an example
of random sequence with the exactly zero correlation function and the nonzero correlations.

DOI: 10.1103/PhysRevE.102.022119

I. INTRODUCTION

Sequences with a finite-state space and nontrivial informa-
tion content have been the focus of a wide variety of research
in different fields of science for the past several decades.
These sequences exist as natural ones (e.g., DNA or natural
language texts) or arise as a result of coarse-grained mapping
of the evolution of the chaotic dynamical system into a string
of symbols [1,2]. The elements of sequence, depending on the
system of interest, can be phonemes, syllables, words, DNA’s
base pairs, numbers, etc.

The finite-state sequences, considered as random, are the
subject of study of the algorithmic (Kolmogorov-Solomonoff-
Chaitin) complexity, information theory, computability, statis-
tical inference problem and have many application aspects,
such as, for example, data compression [3] and the natural
language processing [4], which is an important branch of the
artificial intelligence.

In the arsenal of modern science there are a lot of instru-
ments for describing complex dynamical systems and random
sequences associated with them: correlation functions, fractal
dimensions, multipoint probability distribution functions, and
many others. The entropy is one of the important macroscopic
characteristics used for the numerical evaluation of the com-
plexity and information content of dynamical systems [5,6].
Being a measure of the information content and redundancy
in a sequence of data, it is a powerful and popular tool
in examination of complexity phenomena. It is extensively
used for the analysis of different dynamical systems. The
importance of the entropy lies also in its fundamental con-
nection with the compression of the random sequences of
data.

Most lossless information compression methods use data
about the discovered statistical properties of the sequence.
The more accurately these properties are identified, the more

*usatenkoleg@gmail.com

accurately the information on the preceding elements can
be used to predict the values of the subsequent ones, which
increases the compression ratio of the sequence.

One of the ways to gain insight into the nature of inter-
action between elements of sequences with nontrivial infor-
mation content consists in a possibility to construct a corre-
lated sequence of symbols which reproduces some statistical
characteristics of the initial system. Among the diversity of
algorithms for generating correlated sequences, the high-order
Markov chains take one of the most remarkable places. Such
random chains, the method of their generation, and all their
statistical properties are completely determined by the condi-
tional probability distribution function (CPDF), known also
as the transition probability function. One of the methods to
reconstruct the CPDF of random sequence is to approximate
the sequence by the high-order Markov chains with a finite
alphabet.

The CPDF of the Markov chain of high order has a
complex structure, as well as the statistics of the random
sequence itself and, in general, its description may require
a huge number of parameters. This effect is known as the
combinatorial explosion and engenders the so called curse of
dimensionality problem.

In Ref. [7] there was proposed a simplified high-order
Markov model. The model appears to be useful for many
practical tasks, including the CPDF numerical reconstruction.
Nevertheless, there exists its more simple version, the so-
called additive high-order Markov chain; see Eq. (17) and
explanation therein. This Markov chain allows one to reduce
the number of parameters in the CPDF of high-order Markov
chain.

A standard method of analyzing statistical properties of a
given random sequence of data is as follows. First, one has to
find the joint probabilities of words occurring of the lengths L
which exceed the correlation length, Rc, and are less than the
sequence length S,

Rc < L � S. (1)
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At the same time, the number ML of different words of the
length L composed of letters of alphabet containing M letters
has to be much less than the number S − L + 1 of words in
the sequence,

ML � S − L + 1. (2)

The next step is to express the correlation properties of
sequence in terms of a CPDF of the Markov chain, see below
Eq. (6). Note, the Markov chain should be of order N , which
is not less than the correlation length,

Rc < N. (3)

Here is the bottleneck because the correlation lengths of
natural sequences of interest (e.g., written or DNA texts)
are usually of the same order as the lengths of sequences.
None of inequalities Eqs. (1)–(3) can be fulfilled. Really, the
lengths of representative words that could estimate correctly
the probability of words occurring are 4–5 for a real natural
text of the length 106 (written in an alphabet of 27–30 letters
and symbols) or of order of 20 for a coarse-grained text
represented by means of a binary sequence.

To overcome these impediments we proposed another
method for examination of random sequences. We elabo-
rated [8,9] a method of constructing the conditional proba-
bility function presented by means of pair correlators which
makes it possible to calculate analytically the entropy of the
sequence; see Eq. (18).

It is pertinent to mention here that the model of ho-
mogeneous additive high-order Markov chain was success-
fully used for studying different random systems and se-
quences, such as, for example, literary texts in English and
other languages, Refs. [8,9,11–14], different DNA sequences,
Refs. [10,13–15], wind generation time series, Ref. [16].
The class of additive and additive linear sequences can be
considered as the first order approximation of the CPDF of
a complex real system and in this way can be used to analyze
a wide range of objects.

In a series of our papers we have studied possibilities
of presentation of entropy by means of various parameters
of additive Markov chain. In Ref. [13] we developed the
evaluation for the entropy of random symbolic sequences with
elements belonging to a finite alphabet. As a plausible model,
we used the high-order additive stationary ergodic Markov
chain with long-range memory. In Ref. [15], using the bilinear
Markov chain approach, we studied statistical properties of
natural random symbolic sequences with complex correlation
properties. We showed that our method gives a much lower
level of entropy as compared to the best archivers. In all these
papers we presented estimates for the entropy of the sequences
by means of the corresponding correlation functions.

There arises a natural question if it is possible to express
the entropy of numerical chain by the conventional numerical
correlation function [see its definition, e.g., below, Eq. (15)].
In one form or another the question—if the entropy is a good
measure of correlation—was repeatedly raised in the literature
(see, for example, Refs. [17–20]). Here we try to answer this
question but posed in a slightly different way.

In the present paper we consider two types of random
chains with two different state spaces. The first ones are

the numerical chains for which the random variables are
taken from a finite set of numbers. For the symbolic random
chains the random variables are taken from an alphabet or
from a formal set of elements. We establish a one-to-one
correspondence between the elements of the symbolic and
numerical sequences, calculate the conditional entropy of
these sequences and show the quite obvious coincidence
of the calculated entropies. After that we estimate the entropy
of numerical random chain in terms of the numerical correla-
tion function and show that this entropy gives a satisfactory
result only for some special types of random chains: The
correlation function can describe the conditional entropy cor-
rectly only in the case when the numerical random sequence
has a diagonal correlation matrix. In general, the sequence
entropy level obtained in the two-point distribution function
approach is lower. This is the main result of the paper.

The scope of the paper is as follows. In Sec. II we explain
the concept of the additive finite-state high-order Markov
chains and provide definitions of the CPDF and numerical
correlation functions. Section III presents the equations relat-
ing the correlation and memory functions of the symbolic and
numerical Markov chains. In Sec. IV we represent the condi-
tional entropy in terms of the conditional probability function
of the Markov chain and then express the entropy by means of
the two-point probability distribution functions (PDFs) as well
as with the use of the correlation functions. The numerical
illustrations of the obtained results are contained in Sec. V.
The applications of the proposed general algorithms to some
specific classes of chains are presented in the Appendix.

This work is a generalization of our previous pa-
pers [13,21] devoted to the studies of the entropy of the sym-
bolic ergodic stationary finite-state additive Markov chains.

II. FINITE-STATE HIGH-ORDER MARKOV CHAINS:
MAIN DEFINITIONS

Let us consider an infinite random discrete-valued se-
quence of elements Xn,

S = . . . , X−1, X0, X1, . . . (4)

Here we would like to note that though in theory we consider
infinite random sequences, the sequence length S is necessar-
ily finite in practice.

We suppose that the random sequence S is a high-order
Markov chain [7,22,23]. The sequence S is the N-order
Markov chain if it has the following property: The conditional
probability distribution function of random variable Xn to
have a certain value xn under the condition that all previous
symbols are given depends only on N previous symbols,

P (Xn = xn| . . . ; Xn−N = xn−N ; . . . ; Xn−1 = xn−1)

= P (Xn = xn|Xn−N = xn−N ; . . . ; Xn−1 = xn−1), (5)

∀n ∈ Z. Such sequences are also referred to as multi- or N-
step [8,11,22,24], and the number N is also called the memory
length. The subscript notation for the random variables xn is
used to indicate the position of the symbol in the chain S.

The CPDF of the sequence, providing that the
probabilities P (Xn−N = xn−N ; . . . ; Xn−1 = xn−1, Xn = xn)
and P (Xn−N = xn−N ; . . . ; Xn−1 = xn−1) of occurring
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(N + 1)- and N-subsequences are given, can be found in
a standard way,

P (Xn = xn|Xn−N = xn−N ; . . . ; Xn−1 = xn−1)

= P (Xn−N = xn−N ; . . . ; Xn−1 = xn−1, Xn = xn)

P (Xn−N = xn−N ; . . . ; Xn−1 = xn−1)
. (6)

This probability function defines all the characteristics of the
sequence, including its correlation functions and entropy.1

Hereafter, we will use the concise notation

xk
i

def= xi, xi+1, . . . , xk .

The independence of the CPDF on the position n of random
variables in the sequence provides homogeneity. The homo-
geneity, in its turn, provides the stationarity of the sequence
under consideration; and finiteness of N together with the
strict inequalities,

0<P
(
Xn = x

∣∣X n−1
n−N = xn−1

n−N

)
<1, (7)

gives, according to the Markov theorem (see, e.g.,
Refs. [25,26]), ergodicity of the sequence.

The conditional probability being a probability measure
has the following property,

∑
x

P
(
Xn = x

∣∣X n−1
n−N = xn−1

n−N

) = 1, (8)

for any realization of the previous N elements of the chain;
summation is performed over the state space of random vari-
able.

The state space of the sequences, defined by all the values
that random elements Xn, n ∈ Z can take on, is supposed to
be a finite set N of real numbers,

N = {x1, . . . , xM}, (9)

or a finite set A of symbols,

A = {a1, . . . , aM}. (10)

Here the superscript notation for xn and an is used to
indicate the position of the symbols in the alphabets N or A.
In what follows we will consider the symbolic and numerical
sequences with elements satisfying the conditions of one-to-
one correspondence xm � am or, in other words, each symbol
from the state space of symbolic sequence has its assigned,
corresponding number in the state space of the numerical
alphabet and vice versa.

The (auto)correlation function of stationary symbolic
chain, the symbolic correlation matrix Cab(n), complying with
Ref. [13], we determine as

Cab(n) = 〈[δ(ai, a) − p (a)][δ(ai+n, b) − p(b)]〉
= Pab(n) − p (a)p (b), (11)

where δ(., .) is the Kronecker δ symbol, Pab(n) = P (Xi =
a, Xi+n = b) = 〈δ(Xi, a)δ(Xi+n, b)〉 is the two-point PDF. Let
us note that we use the same notation Xn for the random
variable taking its values on N or on A. The quantity p (b)

1For the continuous-state Markov chain this equation defines the
conditional probability density function [29,30].

is the relative number of symbols b in the chain, or their
probabilities of occurring,

p (b) = P (Xi = b) = 〈δ(Xi, b)〉. (12)

The sign 〈. . .〉 means a statistical average over an ensemble
of sequences. Due to the ergodicity, the ensemble average of
any function f (ar1 , ar2 , . . . , ars ) of s arguments defined on the
set As of symbols can be replaced by the arithmetic (Cesàro’s,
“temporal”) average over the chain, e.g.,

p (b) = lim
S→∞

1

S

S∑
i=1

δ(ai, b). (13)

This latter property is very useful in numerical calculations
since the averaging can be done over the sufficiently long
sequence and the ensemble averaging can be avoided. The
symbolic correlation matrix has the following properties:

Cab(r) = Cba(−r),
∑
a∈A

Cab(r) =
∑
b∈A

Cab(r) = 0. (14)

The first equality is a direct consequence of the stationarity,
whereas the second is a consequence of the marginalization
of a probability distribution. The correlation function C(n) of
the corresponding numerical chain can be expressed in terms
of the symbolic correlation matrix Cxix j (n):

C(n) =
∑

(xi,x j )∈N 2

xi x j Pxix j (n) − 〈X 〉2

=
∑

(xi,x j )∈N 2

xi x j [Pxix j (n) − p (xi )p (x j )]

≡
∑

(x, y)∈N 2

x y Cxy(n), (15)

where

〈X 〉 =
M∑

i=1

xi p (xi ) ≡
∑
x∈N

x p (x) (16)

is the average value of random variable X in the sequence.
The last identical equalities in Eqs. (15) and (16) introduce a
simplified notation for summations. The numerical correlation
function is an even function of the distance n, C(n) = C(−n).

To harness the high-order Markov chain to serve in the
context of correlations and entropy, we need some simplified
models.

III. ADDITIVE HIGH-ORDER MARKOV CHAINS

A. CPDF and memory functions of the symbolic chains

Earlier, in our papers [8,9], there were studied the two
simplest models for the additive symbolic high-order Markov
chain where the CPDF was assumed to be of a specific,
simplified, “linear form” with respect to the random variables
X :

P
(
a
∣∣aN

1

) ≡ P
(
XN+1 = a

∣∣X N
1 = aN

1

)

= p (a) +
N∑

n=1

∑
b∈A

Fab(n)[δ(aN+1−n, b) − p (b)].

(17)
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Here Fab(n) is the so-called memory function. The Kro-
necker δ symbol δ(., .) in Eq. (17) plays the role of the
indicator function of the random variable ai and converts
symbols to numbers. The additivity of the chain means that
the “previous” symbols a1, . . . , aN exert an independent effect
on the probability of the “final,” generated symbol XN+1 = a
occurring. The first term in the right-hand side of Eq. (17)
is responsible for the correct reproduction of statistical prop-
erties of uncorrelated sequences, the second one takes into
account and correctly reproduces correlation properties of
the chain up to the second order. The high-order correlation
functions are not independent here. We cannot control them
and reproduce correctly by means of the memory function
Fab(n).

For any values of a, b ∈ A and n � 1 the relationship
between the correlation and memory functions was ob-
tained [8,9],

Cab(n) =
N∑

n′=1

∑
c∈A

Cac(n − n′)Fbc(n′), n � 1. (18)

This formula provides a tool for constructing weak cor-
related sequences with a given pair correlation matrix and
determines the value of the correlation function Cab(n) at
n � N by its N previous values Cac(n − n′), n′ = 1, . . . , N .

B. CPDF and memory functions of the numerical chains

By the discretization (this procedure is also called a quan-
tization or a box coarse-graining) we can convert any random
process (or numerical random sequence) into a numerical
chain (also called categorical) that has a finite number of
possible states at each discrete-time point.

In work [27] we considered such kind of numerical N-order
Markov chain SN with additive linear CPDF,

P
(
x
∣∣xN

1

) ≡ P
(
XN+1 = x

∣∣X N
1 = xN

1

)

= p(x) +
N∑

n=1

fn(x)(xN+1−n − 〈X 〉). (19)

The additivity of the chain, presented here in the linear
form, means that the “previous” values x1, x2, . . . , xN exert
an independent linear effects on the probability of the “final,”
generated value XN+1 = x occurring. The first term in the
right-hand side of Eq. (19), the function p (x), is responsi-
ble for the correct reproduction of statistical properties of
uncorrelated sequences, the second term containing weight
functions fn(x), n = 1, . . . , N takes into account and correctly
reproduces correlation properties of the chain up to the second
order.

Property Eq. (8) together with the equality
∑

x∈N
p(x) = 1

leads to
∑
x∈N

fn(x) = 0 (n = 1, . . . , N ). (20)

For simplicity of calculations and without loss of general-
ity, we suppose that 〈X 〉 = 0. The corresponding equality for

the symbolic chain is

〈Fa(n)〉 =
∑
b∈A

Fab p (b) = 0. (21)

The equation for the correlation function of the numerical
chain has the form similar to Eq. (18),

C(n) =
N∑

n′=1

�(n′)C(n − n′), n � 1, (22)

where the memory function �(n) is determined as

�(n) =
∑
x∈N

fn(x) x (n = 1, . . . , N ). (23)

IV. ENTROPY AND CORRELATION FUNCTIONS
OF THE HIGH-ORDER MARKOV CHAIN

A. Entropy and correlations in symbolic chains

To calculate the conditional entropy of stationary sequence
SA of symbols ai one could use the Shannon definition [5] for
the entropy per block of length L,

H (L) = −
∑

aL
1 ∈AL

P
(
aL

1

)
log2 P

(
aL

1

)
. (24)

Here P(aL
1 ) is the probability to find L-subsequence aL

1 in the
sequence SA of symbols ai. The conditional entropy, or the
entropy per one random element, with the use of the chain
rule, see Ref. [6], can be presented as follows:

h(L) = H (L + 1) − H (L). (25)

This quantity specifies the degree of uncertainty of the (L +
1)th random element occurring and measures the average
information per this element if the correlations of (L + 1)th
number with preceding L numbers are taken into account.

For weak correlations, when for all n �= 0 the components
of the normalized correlation function (known also as the
correlation coefficient),

Kab(n) = Cab(n)

Cab(0)
, (26)

are small compared to the Kab(0) = 1, and some additional
conditions are met, see Appendix A, it is possible to find (in
the lowest approximation) the simple interrelation between
the memory function Fab(n) and the correlators Cba(n),

Fab(n) ≈ Cba(n)/p (b), 1 � n � N. (27)

Recovering the memory functions from the correlator equa-
tion is the purpose of the so called inverse problem—the
problem of retrieving the CPDF of the sequence provided
the correlation functions are given—which is important for
modeling and simulation in different areas; see, for example,
Refs. [16,27]. Equation (27) allows us to express the CPDF,
Eq. (17), in terms of the correlation functions of the chain and
then present the conditional entropy of a stationary ergodic
weakly correlated random sequence via its correlators. As a
result we have, see Ref. [13],

hSymb(L) ≈ h0 − 1

2 ln 2

L∑
n=1

∑
(a,b)∈A2

C2
ab(n)

p(a)p(b)
, (28)

022119-4



CORRELATION FUNCTION INADEQUACY IN … PHYSICAL REVIEW E 102, 022119 (2020)

where the first term in the right-hand side of the equation is
the entropy of the uncorrelated sequence

h0 = −
∑
a∈A

p(a) log2 p(a). (29)

The conditional entropy hSymb(L) can be expressed via the
mutual information I (n) which is another measure of the
dependence between two variables. The mutual information
is the Kullback-Leibler divergence of the product of the one
point distributions p(a) and p(b) from the joint distribution
Pab(n) and quantifies the information (measured in bit) ob-
tained about one symbol through observing the other one [6]:

I (n) =
∑

(a,b)∈A2

Pab(n) log2
Pab(n)

p(a)p(b)
. (30)

Expanding Eq. (30) in a Taylor series, see Ref. [28], in the case
of weak correlations we can represent the entropy of additive
Markov chain as a sum of mutual informations I (n),

hSymb(L) ≈ h0 −
L∑

n=1

I (n), (31)

which seems to be natural owing to the chain additivity.
Note the two important properties of Eq. (28): the condi-

tional entropy is a nonincreasing function of L and it remains
constant at L � N due to the property Eq. (27).

The result presented by Eq. (28) does not depend explicitly
on the memory function Fab(n) and probably may be applica-
ble wider than just to the considered model.

B. Entropy and correlations in numerical chains

For the numerical Markov chain, the normalized correla-
tion function is K (n) = C(n)/C(0), C(0) = 〈X 2〉. For small
correlations we should put the zero-order approximation for
C(n), C(n) 
 C(0)δ(n, 0), then in the first approximation
from Eq. (22) we have

K (n) ≈ �(n) =
∑
x∈N

x fn(x). (32)

Repeating the similar calculations as in Ref. [13], presented
in Appendix B for the numerical random sequence, we obtain
the following result:

hNum(L) ≈ h0 − 〈X 2〉
2 ln 2

L∑
n=1

∑
x∈N

f 2
n (x)

p (x)
. (33)

The source Shannon entropy, also known as the entropy
rate, is the conditional entropy at the asymptotic limit, h =
limL→∞ h(L). This quantity measures the average information
per symbol if all correlations, in the statistical sense, are taken
into account.

C. Equivalence of the symbolic and numerical high-order
Markov chains

To compare these two results, Eqs. (28) and (33), we should
introduce some additional properties of the memory functions.

Without loss of generality, as is mentioned above, in
Eq. (19) we can put 〈X 〉 = 0. Then the CPDF for the numeri-
cal chain takes the form

P
(
x
∣∣xi−1

i−N

) = p(x) +
N∑

n=1

fn(x)xi−n. (34)

In the same manner, if we choose the normalization of the
memory function in the form

∑
b∈A Fab(r)p(b) = 0, then the

CPDF of the additive symbolic Markov chain, Eq. (17), is
transformed into the following one:

P
(
a
∣∣ai−1

i−N

) = p(a) +
N∑

n=1

Fa, ai−n (n). (35)

The only possibility to relate the numerical chain with the
corresponding symbolic chain is to put

Fab(n) = fn(x)y, a ⇔ x, b = ai−n ⇔ yi−n = y. (36)

After such identification the CPDFs Eqs. (34) and (35)
become equivalent. Now, using Eqs. (27) and (36) and the
definition 〈X 2〉 = ∑

x∈N x2 p (x), we can immediately see
the equivalence of Eqs. (28) and (33). So, the entropy of
the numerical chain equals to the entropy of the corresponding
symbolic chain. Note that the obtained relation indicates the
equivalence of the linear and symbolic models only in the
case of weak correlations. Without this restriction, Eq. (27)
establishes a one-way relationship between their memory
functions. For any given fn(x), we can associate it with Fxy(n),
but not conversely: not every matrix-valued function Fxy(n)
depends on the argument y multiplicatively. In other words,
in general case, a linear numerical additive Markov chain,
defined on a discrete state space, is a special case of a random
symbolic sequence.

D. Entropy of the numerical chain and its diagonal
approximation

The result of previous section can hardly be considered as
unexpected, because the both entropies are based on the same
two-point PDF, Pab(n), and the equivalent CPDFs, Eqs. (34)
and (35).

Note also that the description of the correlation properties
of random sequences by the two-point PDF is not the only
way. In physics the numerical correlation function,

C(n) = 〈(xi − 〈X 〉)(xi+n − 〈X 〉)〉, (37)

is used more often, than the two-point PDF, cf. Eq. (15).
Besides, the correlation function (or correlation coefficient)
is the most commonly used statistical characteristic in the
description of random phenomena. Keeping this in mind,
the question whether it is possible to express the condi-
tional entropy by means of the numerical correlation function,
Eq. (37), seems to be worth answering. In work [18] it is
demonstrated that the entropy of statistical mechanics and of
information theory may be viewed as a measure of correlation.
Nearly the same question is formulated in Ref. [20]: “Is
the entropy a good measure of correlation?” It is hardly possi-
ble to accept the positive answer to this question because the
entropy is a macroscopic quantity which cannot determine the
microscopic characteristics such as the correlation functions.
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It is better to ask and understand the question, how the entropy
can be described in terms of the correlation functions. If
we compare the number of parameters of the symbolic and
numerical correlation functions, then we can argue that for
the former is NM and for the latter does N only. It means that
the entropy evaluated via the numerical correlation function
cannot be lower than the symbolic entropy or the numerical
entropy obtained via the two-point PDF.

To show that, let us consider the Cauchy-Bunyakovski-
Schwarz inequalities

(A1B1 + · · · + ALBL )2 �
(
A2

1 + · · · + A2
L

)(
B2

1 + · · · + B2
L

)
,

(38)
for different values of L � 1, where we put Ai = √

p(xi )xi and
Bi = fn(xi )/

√
p(xi ), then we change the sign and add h0 in

both sides of the equation. Then the right-hand side of this
equation engenders the numerical entropy, Eq. (33), and the
left-hand side does the expression

hAppr(L) ≈ h0 − 1

2 ln 2

L∑
n=1

K2(n). (39)

This quantity can be associated with the entropy of the nu-
merical Markov chain as the entropy approximation obtained
with the use of the normalized correlation function K (n). The
similar to Eq. (39) expression was obtained earlier in Ref. [21]
for the binary (dichotomous, M = 2) additive Markov chain.
Note that this formula is exact (in the weak correlation regime)
for the binary chains, and it is an evaluation for the chains with
M � 3, where M is the state space dimension; see Eq. (9).
Thus, for all L � 1 we have

hSymb(L) = hNum(L) � hAppr(L). (40)

For the finite-state numerical chains, the approximation
Eq. (39), being in general case a function of the values
of random variable, is no longer the entropy. The quantity
hAppr(L) becomes the conditional entropy only when it equals
the numerical conditional entropy hNum(L), which in its turn
equals the symbolic entropy hSymb(L) due to the definition.
In Eq. (40) the equality takes place for the collinear vectors
Ai = √

p(xi )xi and Bi = fn(xi )/
√

p(xi ) if

Ai = λ(n)Bi ⇔
√

p(xi )xi = λ(n) fn(xi )/
√

p(xi ). (41)

It can be seen that quantity hAppr(L), Eq. (39), can take values
between h0 and its minimal value hNum(L), Eq. (33), when
the condition of vectors collinearity, p(xi )xi = λ(n) fn(xi ), is
fulfilled.

To clarify the meaning of the vectors collinearity condition
in terms of the correlation function, let us compare Eqs. (32)
and (37) (with 〈X 〉 = 0). We see that

∑
j∈N x jCxix j (n) =

C(0) fn(x j ) = C(0)λ(n)p(xi)xi. This equality can take place if
the symbolic correlation matrix is diagonal,

Cxix j (n) = C(0)λ(n)p(xi )δ(i, j). (42)

This diagonal correlation matrix Cxix j (n) describes a class
of random chains with the correlations only among equal
symbols-numbers when the correlation function depends on
the probabilities only.

Summarizing, we can formulate the results of our consid-
eration as following. The numerical correlation function can

.

.

.

.

.

.

.

.

.

FIG. 1. The numerical conditional entropy hNum(L)(line) and its
diagonal approximation hAppr(L) (points) for the additive linear
Markov chain with broken collinearity condition. The sequence size
is S = 106, the memory depth is N = 10.

describe correctly the conditional entropy only for some class
of random sequences with the diagonal correlation matrix
Cxix j (n) ∝ δ(i, j). For the rest of the numerical chains the
diagonal approximation hAppr(L), being a function of the
conventional correlators depending on the states of random
variable, is not the entropy. This quantity can be treated as
an alternative measure of the “information” (in a wide sense)
conveyed by the numerical Markov chain. Inequality Eq. (40)
is explained by the fact that hNum(L) is determined by the PDFs
which contain more information about the chain than the
numerical correlation function determining hAppr(L). Finally,
condition Eq. (42) can be interpreted as a way to compensate
for the dependence of the correlation function on the state, i.e.,
to make it a function of the probabilities only.

Given the redundancy of the information contained in
the two-point PDF compared to the numerical correlation
function, it is natural to assume that there is a whole range of
sequences having different symbolic correlators for the same
numerical chain. In Appendix C we demonstrate this assertion
considering a linear additive Markov chain with numerical
correlator strictly equal to zero while elements of the symbolic
correlation matrix have nonzero values for n �= 0.

V. NUMERICAL SIMULATIONS

Figure 1 illustrates the main result of the previous sec-
tion. The solid line shows the calculation for the entropy of
the numerical, Eq. (33), and symbolic, Eq. (28), hSymb(L) =
hNum(L), additive linear Markov chains numerically generated
by means of the same CPDF. The points demonstrate the
calculated diagonal approximation hAppr(L), Eq. (39). The
symbolic and numerical correlators were estimated from the
data by averaging over the generated chain. The alphabet
consists of four characters with equal unconditional prob-
abilities p(ai ) = p(ai ) = p = 1/4. To each character of the
symbolic chain, the corresponding numerical value xi from the
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FIG. 2. The numerical conditional entropies hNum(L) (lines) and
their diagonal approximations hAppr(L) (markers) for the three dif-
ferent additive linear Markov chains with collinearity condition,
Eq. (41). The blue line and square symbols correspond to the
coefficient λ = 0.9; λ = 1 corresponds to the black points and line;
the red triangles with line present λ = 1.1.

numerical state space N = {−0.2; −0.1; 0.1; 0.2} is assigned.
The sequence size is S = 106, the memory depth is N = 10.
The weight functions fn are chosen such that the collinearity
condition, Eq. (41), is violated:

fn(−0.1) = fn(−0.2) = −0.125,

fn(0.1) = fn(0.2) = 0.125. (43)

As expected, the conditional entropy of the numerical chain
is lower than its diagonal approximation obtained with the
use of the correlation function Eq. (37). This confirms the
fact that the symbolic consideration of the numerical sequence
contains more information than numerical.

Figure 2 shows the calculation of the numerical entropy
and its diagonal approximation for sequences with fulfilled
collinearity condition but different proportionality coefficients
λ, Eq. (41). The blue line and square symbols correspond to
the coefficient λ = 0.9; the black line and points are for λ = 1;
the red line and triangles depict the calculation for λ = 1.1.
For these sequences their numerical entropies and diagonal
approximations are equal, hNum(L) = hAppr(L). Recall, the nu-
merical and symbolic entropies coincide.

It should be noted, that in both Figs. 1 and 2 the calculated
conditional entropies are not constant beyond the order of the
Markov chain N = 10, despite expectations. This effect is due
to the two clear facts. First, the figures do not express the
precise values of entropy, but their approximate ones Eqs. (28)
and (39) via the correlator. Second, the correlation function
in general case has more long tail, than the order of the
chain: they coincide only in the case of weak correlations. The
weaker the correlations, the closer to N are the values n where
the conditional entropy becomes a constant. This is illustrated
in Fig. 2: the lower red line and triangles correspond to the
chain with the correlations larger and the upper blue line and
squares correspond to the chain with the correlations smaller

than those of the chain represented with the black line and
points.

VI. CONCLUSION

Considering symbolic and numerical random sequences
in the framework of the additive Markov chain approach,
we have expressed their conditional entropies by means of
the two-point probability distribution functions. Then, in the
assumption of weak correlations, we have evaluated the en-
tropy of the numerical chain with the use of the numerical
correlation function and have shown that this evaluation is
correct only for the degenerated sequences with a diagonal
correlation matrix, when the numerical correlation function
is actually a function of probability. In a general case, this
evaluation, due to the dependency of correlation function on
the state, is no longer the proper entropy but its diagonal
approximation only, which nevertheless can be considered as
an alternative measure of information transmitted by the ad-
ditive high-order Markov chain. The diagonal approximation
exceeds the conditional entropy of the chain. Both results
match in the case of the dichotomous Markov chain, when
the Cauchy-Bunyakovski-Schwarz inequality turns into exact
equality.

We have expressed the conditional entropy of the additive
Markov chain of high order in terms of the nonlinear counter-
part of the correlation function C(n)—the mutual information
I (n)–which is an alternative measure of dependency of the
elements in random sequences. We have presented a simple
example of correlated random sequence with the numerical
correlation function exactly equal to zero; see Appendix C.

The obtained results can be used for studies of the random
sequences, in particular, the DNA and RNA sequences, texts
and time-series of different nature.
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APPENDIX A

Using the property of the symbolic correlation matrix
Eq. (11),

Cab(0) = p(a)δ(a, b) − p(a)p(b), (A1)

it is convenient to separate the term with n′ = n in Eq. (18).
For 1 � n � N,

Cab(n) =
∑
c∈A

Cac(0)Fbc(n) +
N∑

n′=1,n′ �=n

∑
c∈A

Cac(n − n′)Fbc(n′).

(A2)
Simplifying the first term of this equation,

Cab(n) = p(a)Fba(n) +
∑
n′ �=n

∑
c∈A

Cac(n − n′)Fbc(n′), (A3)
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we obtain the recurrent relation for the memory function,

Fab(n) = Cba(n)

p(b)
− 1

p(b)

∑
n′ �=n

∑
c∈A

Cbc(n − n′)Fac(n′). (A4)

In the case of weak correlations the second term in the right
side of the equation is much smaller then the first one, then the
first approximation for memory function is

Fab(n) ≈ Cba(n)

p(b)
. (A5)

Substituting this result into the recurrent Eq. (A4) we obtain
the second approximation for the Fab(n),

Fab(n) ≈ Cba(n)

p(b)
− 1

p(b)

∑
n′ �=n

∑
c∈A

1

pc
Cbc(n − n′)Cca(n′).

(A6)
Now the conditions of small correlations can be formulated
as the smallness of the second term in RHS of the equation
compared to the first one.

APPENDIX B

The conditional entropy h(L) can be represented (e.g.,
using the chain rule, Ref. [23]) in terms of the conditional
probability distribution function, P(xL+1|xL

1 ),

h(L) =
∑

xL
1 ∈N L

P
(
xL

1

)
h
(
xL+1

∣∣xL
1

) = 〈
h
(
xL+1

∣∣xL
1

)〉
, (B1)

where h(xL+1|xL
1 ) is the amount of information contained in

the (L + 1)th random element of the sequence conditioned on
L previous ones,

h
(
xL+1

∣∣xL
1

) = −
∑

xL+1∈N
P
(
xL+1

∣∣xL
1

)
log2 P

(
xL+1

∣∣xL
1

)
. (B2)

The conditional probability P(xL+1|xL
1 ) for a subsequence of

length L < N can be obtained in the second approximation
in the weak correlation parameter �(L, xL+1

1 ) from Eqs. (19)
and (23) by means of a routine probabilistic reasoning, see
some additional details in Ref. [13],

P
(
xL+1

∣∣xL
1

) = p(xL+1) + �
(
L, xL+1

1

)
,

�
(
L, xL+1

1

) ≈
L∑

n=1

fn(xL+1)xL+1−n. (B3)

Taking into account the weakness of correlations,

∣∣�(
L, xL+1

1

)∣∣ � p(xL+1), (B4)

in definition Eq. (19), expanding Eq. (B2) in Taylor series
up to the second order in �(L, xL+1

1 ), using the evident
property 〈�(L, xL+1

1 )〉 = 0, we get the conditional entropy of

the numerical sequence in the form

h(L) ≈ h0 − 1

2 ln 2

∑
x∈N

L∑
n=1

L∑
n′=1

1

p(x)
fn(x) fn′ (x)C(n − n′).

(B5)
To obtain Eq. (33) we should replace the term C(n − n′) with
C(0)δ(n, n′), C(0) = 〈X 2〉 when calculating the summation in
Eq. (B5).

APPENDIX C

For simplicity, we give an analytical description for the
case of the first order Markov chain. A high-order example
is built on the same principle, but its analytical description
would be cumbersome. By analogy with the DNA nucleotide
sequences, consider four-symbols chain, M = 4. Let all four
characters A,C, G, T be equally probable and the set N is
the numbers {−2; −1; 1; 2}. In this case 〈X 〉 = 0, and expres-
sion for the conditional probability function Eq. (19) takes
the form

P(x|x1) = 1/4 + f (x)x1. (C1)

To complete formulating the model, it remains to determine
four values f (−2), f (−1), f (1), f (2) that are limited by two
conditions. The first one follows from the additive linear
model:

∑
x f (x) = 0, see Eq. (20). The second condition is in-

troduced in such a way that numerical correlator Eq. (22) and
the memory function which generates it, �(1), see Eq. (23),
are zero:

∑
x

x f (x) = 0. (C2)

It is easy to see that the both conditions can be satis-
fied by fixing arbitrary values of two weight functions, for
example f (−1) and f (1), and expressing the other two
through them:

f (−2) = −3 f (−1)

4
− f (1)

4
, f (2) = − f (−1)

4
− 3 f (1)

4
.

(C3)

So, the numerical correlator Eq. (37) of this chain is zero.
The symbolic memory function of the corresponding se-

quence of (A,C, G, T ) is defined by Eq. (36),

Fxix j = −

⎡
⎢⎢⎢⎣

−2 f (−2) − f (−2) f (−2) 2 f (−2)

−2 f (−1) − f (−1) f (−1) 2 f (−1)

−2 f (1) − f (1) f (1) 2 f (1)

−2 f (2) − f (2) f (2) 2 f (2)

⎤
⎥⎥⎥⎦.

(C4)

The symbolic correlator in our first order case, from Eq. (18),
turns out to be proportional to the memory function and, thus,
it is also nonzero:

Cyx = 1
4 Fxy. (C5)
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