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Transport coefficients for hard-sphere relativistic gas
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Transport coefficients are of crucial importance in theoretical as well as experimental studies. Despite
substantial research on classical hard sphere or disk gases in low- and high-density regimes, a thorough
investigation of transport coefficients for massive relativistic systems is missing in the literature. In this work
a fully relativistic molecular dynamics simulation is employed to numerically obtain the transport coefficients
of a hard sphere relativistic gas based on Helfand-Einstein expressions. The numerical data are then used to
check the accuracy of Chapmann-Enskog (CE) predictions in a wide range of temperature. The results indicate
that while simulation data in low-temperature regime agrees very well with theoretical predictions, it begins to
show deviations as temperature rises, except for the thermal conductivity which fits very well to CE theory in the
whole range of temperature. Since our simulations are done in low density regimes, where CE approximation is
expected to be valid, the observed deviations can be attributed to the inaccuracy of linear CE theory in extremely
relativistic cases.
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I. INTRODUCTION

Transport coefficients characterize the dissipative mech-
anisms which bring a disturbed system to its equilibrium
state. In macroscopic description these coefficients appear in
phenomenological transport equations for transfer of mass
(Fick’s law of diffusion), energy (Fourier’s law of heat con-
duction) and momentum (Newton’s law of viscosity) as well
as in Navier-Stokes equations, to relate thermodynamic forces
(density, energy, momentum or pressure gradients) to their
corresponding fluxes.

On a more fundamental level, the hydrodynamic equations
of a fluid and explicit expressions for transport coefficients
are obtained by solving Boltzmann transport equation with an
appropriate expansion of density distribution function around
a local equilibrium state. A systematic method in this direction
was first introduced independently by Chapman and Enskog
in which the ratio of mean free path to a typical macroscopic
length is used as the expansion parameter. The subsequent
degrees of approximation would then lead to Euler equations,
Navier-Stokes equations, Burnett equations and so on [1].

Along with advances in description of classical systems,
Boltzmann kinetic theory was extended to the domain of
relativity in early 1900s [2]. High-temperature systems of
fast moving particles (e.g., quark-gluon plasmas) as well as
moderate-temperature flows moving at extremely high veloc-
ities (e.g., supernova explosions, the cosmic expansion, and
solar flares) are the two main classes where relativistic cor-
rections become nonnegligible. The adoption of CE approx-
imation in this context [3,4], made it possible to obtain the
corresponding transport coefficients for relativistic fluid [5,6].
Since then, the relativistic kinetic theory has been used in a
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wide range of phenomena from large scale scenarios studying
the evolution of the universe and formation of galaxies [7–9]
to subatomic scales in heavy-ion collision experiments at
CERN and BNL [10,11] to recent applications in graphene
studies [12–15].

A common feature shared by phenomenological macro-
scopic laws and the first CE approximation is that the re-
lation between stimuli (or forces) and the resulting fluxes
(responses) are linear, with the “transport coefficients” as their
proportionality constants. This assumption, which remains
unchanged in the relativistic CE theory, is basically inconsis-
tent with the fundamental assumptions of special relativity; in
the sense that it leads to first-order hydrodynamic theories in
which the superluminal propagation of fluctuations are pos-
sible due to the parabolic nature of the dynamical equations
[7]. The discrepancy still remains in higher order Burnett and
superBurnet theories, which are mostly used in the linearized
form, e.g., in theory of sound [5]. This fundamental prob-
lem has led to relativistic [16–18] (and even nonrelativistic
[19,20]) extended second order theories.

In addition to extended theories, attempts have been made
in the context of first-order theories to solve the problems
associated with relativistic fluids [21–25]. Recent numerical
studies have also shown that linear transport laws and first or-
der theories give a good description of equilibration processes
[26] and propagation of fluctuations [27] in hydrodynamic
limit. The question is to what extent one can rely on the
transport coefficients obtained from linear CE method?

To provide a possible answer, we refer to the fundamental
development in the theory of transport processes which made
it possible to calculate the transport coefficients in terms
of the microscopic properties. The method, best known as
Green-Kubo [28,29], derives expressions for transport coeffi-
cients based on equilibrium time-correlation functions. In the
pioneering works by Alder and co-workers [30], molecular
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dynamics simulations were conducted to calculate the viscos-
ity of a hard sphere gas. Their algorithm, in fact, uses Helfand
generalization [31] of Einstein relation for self-diffusion co-
efficient, the so called Helfand-Einstein relations, which are
derived from Green-Kubo formulas. Since then, the validity
of classical CE description for hard sphere or disk gasseous
systems and other fluids has been widely studied in low and
moderate density regimes [32,33].

The objective of this work is to study the accuracy of trans-
port coefficient predicted by relativistic Chapman-Enskog
approximation, comparing them to numerical transport coef-
ficients based on Einstein-Helfand method. It specifically fo-
cuses on low density systems, where linear first order theories
are expected to give reliable description of the fluid, so that the
impact of relativistic effects in high-temperature limit become
detectable.

To this end, the manuscript is organized as follows. In
Sec. II, the theoretical background is given focusing on the
derivation of transport coefficients based on two methods,
first the CE approximation and second the time correla-
tion functions and their equivalent Einstein-Helfand relations.
Section III devotes to the description of our model system,
computational methods to calculate transport coefficients, and
how to take into account the limitations caused by peri-
odic boundary conditions. In Sec. IV the numerical results
are compared to the CE predictions. We’ll finally conclude
in Sec. V.

II. THEORETICAL BACKGROUND

A. Relativistic Chapman-Enskog method

The generalization of statistical mechanics to the domain
of relativity was first established by Jüttner in 1911 when
he succeeded to derive the relativistic form of Maxwell-
Boltzmann distribution [2]. With the development of relativis-
tic kinetic (transport) equations and H-theorem, the conserva-
tion laws of mass and energy-momentum as well as the law of
entropy production were obtained. Finally, it was the adoption
of Chapman-Enskog [34] and Maxwell-Grad [35] methods for
solving the kinetic equation, that made it possible to determine
expressions for transport coefficients of relativistic fluids.

The relativistic CE method, which is our focus in this work,
is a straightforward generalization of the classical version
aiming to solve the transport equation in hydrodynamic limit,
where the system is in a local equilibrium and the nonunifor-
mities slowly relaxes to global equilibrium. In this method,
the density distribution is expanded around the equilibrium
distribution with the ratio of mean free path to a typical
macroscopic length scale ε as the expansion parameter [1,5],

f = f (0) + ε f (1) + ε2 f (2) + . . . (1)

CE method relies on the hydrodynamic limit where ε is small
enough to make the first approximation accurate. The crucial
assumption of the method is that the density distribution func-
tion, f , can be expressed as a function of only hydrodynamic
variables and their gradients. So,

f (x, p) = f (0)(x, p)[1 + φ(x, p)], (2)

with equilibrium density function

f (0)(x, p) = 1

2π h̄3

1

exp{−β[μ − pνUν (x)]} ± a
, (3)

in which eβμ is fugacity, and a = 0,−1,+1 gives classical,
Fermi-Dirac, and Bose-Einstein statistics, respectively. The
deviation function, φ(x, p), is given by

φ(x, p) = 1

cnσ (T )

(
AX − cBμX μ

q + Cμν X̊μν

)
, (4)

in which X = −∇μUμ, X μ
q = ∇μ log T − kBT

h ∇μ log P and

X̊μν = (�μ
σ �ν

τ − 1
3�μν�στ )∇σU τ are thermodynamics

forces, with h representing the enthalpy per particle. A, B,
and C are dimensionless quantities expressed in terms of
momentum vector pμ, metric tensor gμν , and thermodynamic
variables: density n, temperature T , and hydrodynamic
velocity U μ. We recall that �μν = gμν − c−2U μU ν is the
projection operator, σ (T ) is the characteristic cross section
and c denotes the speed of light.

Once the CE first approximation is used in relativistic
kinetic equation and the method is applied, the explicit ex-
pression for transport coefficients is given in terms of particle
interactions, which would reduce to the following expressions
(diffusion coefficient, shear and bulk viscosity, and thermal
conductivity, respectively) for the case of hard-sphere gas [5]:

D = 3

16π

c

nσ12

z2K2
2 (z)

(2z2 + 1)K2(2z) + 7zK3(2z)
, (5)

ηs = 15

32π

kBT

cσ

z2K2
2 (z)ĥ2

(15z2 + 2)K2(2z) + (3z2 + 49z)K3(2z)
, (6)

ηb = 1

32π

kBT

cσ

z2K2
2 (z)[(5 − 3γ )ĥ − 3γ ]2

2K2(2z) + zK3(2z)
, (7)

λ = 3

32π

ckB

σ

z2K2
2 (z)[γ /(γ − 1)]2

(z2 + 2)K2(2z) + 5zK3(2z)
, (8)

with z = mc2/kBT , ĥ = zh = zK3(z)/K2(z), and γ /(γ −
1) = z2 + 5ĥ − ĥ2. Kn is the modified Bessel function of order
n, σ = 2R2 and σ12 = R2 are the relevant cross sections,
R and m referring to the radius and mass of the particles.
Transport coefficients can also be derived based on relaxation
time models of Boltzmann equation. Description of the model
and a comparison to the above expressions are given in
Refs. [36,37].

B. Time correlation functions and transport coefficients

The dissipative phenomena that occur out of equilibrium
are the same mechanisms that govern the decay of fluctuations
about the equilibrium state (fluctuation-dissipation theorem
[38]). This makes it possible to measure the transport coef-
ficients either by conducting a suitable nonequilibrium exper-
iment [39] or making observation of the fluctuating quantities
associated with each transport coefficient using Green-Kubo
or Einstein-Helfand relations [31].

The so-called Green-Kubo formulas give each transport
coefficient, α, as the time integral of the autocorrelation of
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a specific microscopic flux, Ȧ,

α =
∫ ∞

0
dt〈Ȧ(t )Ȧ(0)〉, (9)

while their equivalent “Einstein-Helfand” relations,

2tα = 〈|A(t ) − A(0)|2〉 = 〈|δA(t )|2〉, (10)

are based on Einstein classical work on Brownian motion,
which relates the second moment of the displacement to
diffusion coefficient, and Helfand generalization of Einstein
formula for other coefficients.

Since Einstein-Helfand formulas do not involve the forces,
they are considered more appropriate to be used in the case
of hard sphere or disk interactions, where the instantaneous
forces between particles are ill-defined and would lead to
singular contributions especially at high densities [40]. How-
ever, the fluctuating quantity, A in Einstein-Helfand relation,
is calculated on the real trajectory of a particle that is not
accessible given the periodic boundary condition applied in
MD simulations. To overcome this problem, we have adopted
the method proposed in Ref. [32], where the increment in A is
measured in well-defined time intervals instead of calculating
its value at successive times. In this case, δA might be divided
into “kinetic” and “collision” parts,

δA = δA(K ) + δA(C). (11)

The idea is that in a time interval [t, t + δt] where no col-
lision occurs, the contribution in δA is purely due to the
displacement of the particle, while the discontinuous change
of the velocities in collisions gives an additional instantaneous
jump in δA, which has been taken into account in “collision”
term. More detail on this method is given in Sec. III, where
we further elaborate on the calculation techniques of each
transport coefficient.

III. MODEL AND SIMULATION TECHNIQUES

Our model simulates a three-dimensional hard-sphere rela-
tivistic gas using an event-driven molecular dynamics method.
In this model, N hard-sphere particles of radius R and rest
mass m are enclosed in a box of volume V with periodic
boundary conditions. The interparticle interactions are purely
repulsive, and only occur at center-to-center distance of 2R,
otherwise the particles move in straight lines. The collisions
are governed by relativistic energy-momentum conservation
laws, assuming that momentum is only transferred in the
direction of connecting line between the centers (i.e., elas-
tic head-on collisions) [26,41]. The interaction cross section
associated with the hard-sphere model is independent of the
energy and of the scattering angle. This makes it a suitable
choice to simulate massive hadrons whose total cross sections
are more or less constant in the energy range of interest in
relativistic kinetic theory [5]. The temperature of the system
is related to the total energy per particle by the expression [42]

e = 〈E〉/N = 3kBT + K1(z)

K2(z)
, (12)

We have adopted natural units (kB = c = 1) and set m = 1
in simulations, such that the inverse temperature parameter
z−1 = T . To have an estimate of the actual temperatures,

one might take hard spheres with neutron mass, which gives
a temperature of 1013K for z−1 = 1. This means that even
weakly relativistic regime (e.g., z−1 = 0.01) corresponds to
a fairly high temperature, a fact which puts serious limits on
our access to experimental data in relativistic regime and jus-
tifies the necessity of simulations and/or numerical studies in
this field.

The model presented above, is a fully relativistic one
without adjustable parameters or probabilistic factors that
can be employed as a reliable numerical laboratory. So far,
it has been successfully used to investigate thermostatistical
[26,41] and hydrodynamic [27] properties of relativistic fluids
in low density regime. In this work we tend to obtain the
transport coefficients using Einstein-Helfand relations and
compare simulation results to theoretical predictions based on
Chapman-Enskog method. The systems under study are all
in low density regime (ρ ∼ 0.02), where linear CE theory is
believed to be a good approximation, while temperature pa-
rameter covers a wide range, from low-temperature classical
regime to extremely relativistic limit.

A. Self-diffusion coefficient

Under a steady-state condition the flux of mass is linearly
related to the gradient of concentration with diffusion coeffi-
cient, D, as proportionality constant,

Jn = −D∇n. (13)

Best known as Fick’s law, this equation forms the core of
our understanding of diffusion in solids, liquids, and gases.
Equivalently, one might obtain the diffusion coefficient (in d
dimensions) based on “Einstein-Helfand” relation,

D = 1

2d
lim

t→∞
d

dt
〈|r(t ) − r(0)|2〉, (14)

in which r(t ) is the position of tagged particle at time t , and
〈...〉 denote ensemble averaging in equilibrium.

To numerically calculate Eq. (14), we measure the dis-
placements of a tagged particle from its original position at
equal intervals of time, �t , which is typically a small multiple
of simulation time step (or average time step in case of event
driven MD) and less than the mean free time of the system.
This will give us a time series of length Nrun, that can be used
to obtain the second moment of displacement averaged over
Nmax time origins, tn,

〈|r(t ) − r(0)|2〉 = 1

NNmax

Nmax∑
i=1

N∑
n=1

|ri(t + tn) − ri(tn)|2.

(15)

The value of Nmax depends on t . For t = �t , one can
average over Nmax = Nrun time origins while the statistics
becomes poorer as t increases, such that for longest time,
t = Nrun�t , there would be only one term in the summation,
i.e., Nmax = 1.

This averaging method [40], which will also be used in
the following sections, gives the transport coefficients as a
function of time, t . Here, the boundaries and periodicity of the
system are not problematic issues, because we’re keeping the
sum of displacements which are measured at each time step.
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FIG. 1. Diffusion coefficients (D), thermal conductivity (λ), and
shear viscosity (ηs) are plotted versus time for a system of N = 1000,
ρ = 0.018, and T = 1, using Einstein-Helfand relations with time
series of length Nrun = 107. After a transient regime in lower time
scales, the coefficients saturate to a fixed value (highlighted by
dashed line) which we report as “numerical transport coefficients.”
The roughness in tails goes back to the insufficient averaging due to
the finite length of time series.

Additionally, diffusion coefficient is a single-particle property,
and since all particles are equal, one can also average over all
particles present in the system to gather larger statistics [see
Eq. (15)].

A typical measurement for a system of N = 1000 particles
is shown in Fig. 1. As is indicated, transport coefficients,
including diffusion coefficient (blue squares), saturate to a
constant values after a relatively short transient simulation
time (t ∼ 200–300). Although we have chosen a highly rel-
ativistic case in low density regime (T = 1, ρ = 0.018), it
should be noted that the observed trend is independent of these
parameters. The origin of roughnesses observed in tails (long
times) is insufficient averaging (low values of Nmax) due to the

finite length of time series. To obtain an accurate coefficient,
the value of Nrun is chosen such that a wide plateau forms
before the rough zone in the tails. The transport coefficient
is then given either by reading one point on the plateau or
by averaging on a set of points. Here, and in the following
sections, we consider one point on the plateau (dashed line)
and increase averaging times (Nmax) such that the finite size
effects are retrieved and reliable values for the transport
coefficients be obtained (see Fig. 2).

B. Shear viscosity

Viscosity is a measure of fluid resistivity to deformation
that quantifies the strength of friction between layers of
fluid. From the viewpoint of transport theory, it characterizes
the momentum transport through Newton’s law of viscosity,
which is read as

τi j = ηs
∂ui

∂x j
. (16)

In 1960, Helfand generalized Einstein relation for self-
diffusion and expressed all transport coefficients, in terms
of proper fluctuating properties in equilibrium [31]. Shear
viscosity ηs, for example, is given by

ηs = 1

2kBTV
lim

t→∞
d

dt
〈|Dαβ (t ) − Dαβ (0)|2〉, (17)

where

Dαβ =
N∑

i=1

riα piβ. (18)

To numerically determine the shear viscosity, we obtain the
quantity

〈|Dαβ (t ) − Dαβ (0)|2〉

= 1

Nmax

Nmax∑
n=1

|Dαβ (tn + t ) − Dαβ (tn)|2 (19)

Nmax /106

D

0.0 0.5 1.0 1.5 2.0

6

6.4

6.8
N=216
N=512
N=1000
N=1728

(a)

Nmax / 106

η

0.0 0.5 1.0 1.5 2.0

0.34

0.36

0.38

0.4 N=216
N=512
N=1000
N=1728

(b)

Nmax / 106

λ

0.0 0.5 1.0 1.5 2.0
0.52

0.56

0.6

0.64 N=216
N=512
N=1000
N=1728

(c)

FIG. 2. Dependence of (a) diffusion coefficient, (b) shear viscosity, and (c) thermal conductivity on system size, N , and number of
averaging time origins, Nmax, is investigated for the same system as in Fig. 1 (ρ = 0.018, T = 1). For each system size, the value of transport
coefficient is calculated at a fixed time step and averaged over Nmax time origins. By increasing the length of time series (and consequently
averaging time origins) the coefficients saturate to a constant value after a transient fluctuating regime. Increasing the system size from N = 512
to N = 1728 has only improved the deviations from analytical values by less than one percent. See Sec. IV for more detail.
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by measuring Dαβ (t ) at equal time steps and average over
Nmax time origins as discussed in Sec. III A. In contrast to the
case of diffusion, Dαβ in this expression explicitly depends on
the position of particles, that would cause numerical difficul-
ties when a particle crosses the borders and periodic boundary
condition is applied. To overcome this problem, we measure
the increment of Dαβ in well-defined time intervals rather than
directly measure its value at fixed times. In an event driven
molecular dynamics, where the particles move with constant
velocity until they collide instantaneously, the increment of
Dαβ in the interval [tn, tn + t] can be divided into “kinetic”
and “collision” contributions. For time intervals in which no
collision occurs, the variation of Dαβ is purely due to the
displacement of the particles,

D(K )
αβ (tn + δτ ) =

N∑
i=1

ṙiα (tn)piβδτ, (20)

while the discontinuous change of momentum at collisions
(between particle i and j) gives rise to an instantaneous jump
in Dαβ ,

D(C)
αβ = riα�p jβ + r jα�piβ, (21)

with �p jβ being the change in momentum of particle j in
the direction β. Since �p jβ = −�piβ due to the momentum
conservation we can rewrite Eq. (21) as

D(C)
αβ = (riα − r jα )�piβ. (22)

With same method, one can measure the bulk viscosity ηb,
using the following expression [40]:

ηb + 4

3
ηs = 1

2kBTV
lim

t→∞
d

dt
〈|Dαα (t ) − Dαα (0) − PV t |2〉,

(23)

with Dαα = ∑N
i=1 riα piα , P denoting pressure, and V volume

of the system. The extra PV t term is the nonvanishing equilib-
rium average of Dαα which needs to be subtracted [40]. This
quantity is in fact the virial of the system that is evaluated
during the simulation. Since it changes as the simulation
proceeds, it introduces error to the final value. Another source
of error in calculation of bulk viscosity, is the subtraction of
shear term η, which itself has numerical uncertainties. For
these reasons, the results obtained for bulk viscosity is very
noisy and would not be reported here. Nevertheless, one can
follow the same process as discussed for shear viscosity to
calculate bulk viscosity.

C. Thermal conductivity

Thermal conductivity characterizes heat transport in a fluid
and is described by the Fourier’s law of heat conduction,

Jq = −λT ∇T . (24)

In the same line as other transport coefficients, thermal
conductivity can also be expressed in Einstein-Helfand form:

λT = 1

2kBT 2V
lim

t→∞
d

dt
〈|δεα (t ) − δεα (0)|2〉, (25)

with

δεα =
N∑

i=1

riα (εi − 〈hi〉).

εi is the contribution of ith particle to the total Hamiltonian of
the system with the potential energy of interaction of pairs of
molecules (if any) being divided equally between partners,

εi = mic
2γ (vi) + 1

2

∑
j �=i

U (ri j ).

〈hi〉 = h = K3(z)/K2(z) is the average enthalpy per molecule.
In low energy classical limit, the average enthalpy is often
replaced by average energy per particle, 〈εi〉, without causing
any problem. However, it should be noted that such replace-
ment would lead to erroneous result in the relativistic regime.

The expression to be calculated in simulation is

〈|δεα (t ) − δεα (0)|2〉 = 1

Nmax

Nmax∑
n=1

|δεα (tn + t ) − δεα (tn)|2,

(26)

which involves the position of particles and becomes prob-
lematic as they cross the periodic borders. Here again, the
time intervals [tn, tn + t] are divided into multiple no-collision
intervals (δτ ) to separately measure the kinetic contribution
between collisions,

δε(K )
α (tn + δτ ) =

N∑
i=1

ṙiα (tn)(εi − 〈h〉)δτ, (27)

and the contribution of instantaneous collisions,

δε(C)
α = (riα − r jα )�εi. (28)

For isotropic systems the two contribution in the increment of
δε in a time interval δτ can be rewritten as

δε(K ) = 1

3

3∑
α=1

N∑
i=1

ṙiα (tn)(εi − 〈h〉)δτ (29)

and

δε(C) = 1

3

3∑
α=1

(riα − r jα )�εi. (30)

IV. RESULTS

In this section the results of various simulations are pre-
sented. Systems with different number of particles and various
temperatures are simulated with a fixed density. Measure-
ments are all done in equilibrium state which is reached
typically after 10–1000N collisions. To find reliable values
with acceptable statistical precision, each quantity is averaged
over more than 106 time origins, as discussed in Sec. III.

As mentioned before (Fig. 1), the time evolution of trans-
port coefficients saturate to constant values after a relatively
short transient simulation time (t ∼ 200–300). Figure 2 stud-
ies the dependence of transport coefficients on N and Nmax. In
each subplot, the value of the coefficient is measured at a fixed
time step on the plateau (dashed line in Fig. 1), and plotted
versus number of averaging time origins (Nmax) for different

022117-5



MALIHE GHODRAT PHYSICAL REVIEW E 102, 022117 (2020)

kBT / mc 2

D
iff

us
io

n
C

oe
ff

ic
ie

nt

10-2 10-1 100 101100

101

102

(Anal.)D
D0 (Anal.)
Classical (Sim.)
Relativistic (Sim.)

FIG. 3. Diffusion coefficient obtained from classical (circles)
and relativistic (diamond) molecular dynamics simulations are com-
pared to their corresponding analytical predictions (dashed and solid
lines, respectively). Very good agreement is observed in classical
MD (in the whole range of temperature parameters) as well as the
low-temperature limit of relativistic simulation. Up to 7% deviation
from CE theory is observed in highly relativistic limit. Also see
Table I.

system sizes (N = 216, 512, 1000, 1728). All the systems
have identical density ρ = 0.018 and temperature T = 1. By
increasing the averaging time origins, the coefficients saturate
to a constant value after a transient fluctuating regime. The
numerical values for N = 1728 [averaged over values from
Nmax = (1.5 − 2) × 106] give D = 6.534, ηs = 0.396, and
λ = 0.555, which, respectively, show 8.2%, 7.2%, and 1.5%
deviation from analytical predictions based on relativistic CE
method. Increasing the system size from N = 512 to N =
1728 only improves the deviations by less than one percent,
so the dependence on system size is relatively negligible for
N � 512. We therefore might safely use N = 512 and Nmax =
2 × 106 as optimum values from here on.

We now turn to study how transport coefficients vary as
a function of temperature. The numerical results would then
be used to check the validity of relativistic Chapman-Enskog
theory in different temperature regimes. In addition to that,
we have performed classical simulations based on Newto-
nian equations of motion for the particles and compared the
resulting transport coefficients with classical predictions [1].
This would provide a check point for testing our simulations,
and also illuminates how and at what temperature(s) the
relativistic transport coefficients deviate from their classical
counterparts.

Figure 3 indicates the results for self-diffusion transport
coefficients as a function of dimensionless parameter z−1 for
both relativistic and classical systems of N = 512 and ρ =
0.018. Dashed and solid lines are, respectively, the analytical
predictions from classical and relativistic theories. It is ob-
served that the numerical values of self-diffusion coefficient
are in good agreement with analytical predictions for clas-
sical systems (D0 = 3/(32ρR2)

√
kBT/mπ ) as well as low-

temperature limit of relativistic theory. In high-temperature

kBT / mc 2
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FIG. 4. Shear viscosity obtained from classical (circles) and
relativistic (diamond) molecular dynamics simulations are compared
to their corresponding analytical predictions (dashed and solid lines,
respectively). Very good agreement is observed in classical MD
(in the whole range of temperature parameters) as well as the
low-temperature limit of relativistic simulation. The deviation from
theoretical prediction increases from 0.2% at T = 0.05 to 10% at
T = 5. See Table I for more details.

limit, however, the results of relativistic MD show up to 7%
deviation from CE prediction [Eq. (5)]. Since the system
is in low density regime, the observed deviation might be
asserted to the inaccuracy of relativistic CE prediction in
high-temperature regime.

Same behavior is observed in Fig. 4, where shear vis-
cosity of the system is presented. As is evident, the clas-
sical simulation agrees very well with analytical prediction
(η0 = 5/(64R2)

√
mkBT/π ), while the deviation of numerical

results from CE prediction increases as temperature rises.
Increasing the system size from N = 512 to N = 1728 hardly
improves the results (about one percent). It can therefore be
concluded that the monotonic increase of deviations from
0.2% at T = 0.05 to 10% at T = 5 suggests the inaccuracy
of CE approximation in high-temperature regime rather than
system size effects.

In the case of thermal conductivity, shown in Fig. 5, not
only the classical theory (λ0 = 75/(256R2)

√
k3

BT/mπ ) agrees
with numerical results, but also a very good agreement is
found between relativistic CE prediction and simulation data,
in the whole range of temperature. This is in contrast to the
temperature dependent deviations observed for the other two
coefficient summarized in Table I.

Another interesting issue is the behavior of classical co-
efficients (dashed lines in Figs. 3–5) versus their relativistic
counterpart (solid lines), and the question of how and at what
temperature the relativistic effects would emerge.

Unlike the unbounded linear increase in classical theory,
the relativistic diffusion coefficient as well as thermal con-
ductivity lead to a saturating behavior for T � 1, which is due
to the existence of an upper limit for velocity of particles and
consequently for propagation of nonuniformities in diffusive
phenomena. The relativistic shear viscosity coefficient, on the
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FIG. 5. Thermal conductivity measured from classical (circles)
and relativistic (diamond) molecular dynamics simulations are com-
pared to their corresponding analytical predictions (dashed and solid
lines, respectively). Classical as well as relativistic MD show very
good agreement with theory in the whole range of temperature
parameters. Table I gives more detail.

other hand, is always larger than the classical one, indicating
that the relativistic fluid is more resistive to deformations and
shows larger interlayer friction.

Figure 6 studies the relative deviation of relativistic coeffi-
cients from their classical counterpart as a function of temper-
ature. Defining the beginning of a notable deviation (which is
set ∼15 percent here) as the emergence of relativistic effects
in transport coefficient, one observes that it occurs around
T 
 0.25 and T 
 0.1 for diffusion (dashed blue line) and
shear viscosity (long dashed green line), respectively. In the
case of thermal conductivity (solid red line), the classical
prediction is almost equal to its relativistic counterpart for
temperatures up to T 
 0.5, and relativistic effects are only
found for T � 1.

Since any macroscopic phenomenon is a manifestation of
the underlying microscopic properties, it is worth recalling the
behavior of equilibrium velocity distribution of a relativis-
tic gas (as a microscopic property) in comparison with the
emergence of relativistic effects in transport coefficients (as

TABLE I. Ratio of simulation data to analytical values at differ-
ent temperatures T , is given for a system of N = 512 and ρ = 0.018.
As temperature rises deviations in diffusion coefficient and shear
viscosity show an increase, while the errors in thermal conductivity
is independent of temperature.

T Dsim/Danal. ηsim/ηanal. λsim/λanal.

0.05 0.97 1.00 1.03
0.1 0.95 0.96 0.99
0.2 0.95 0.97 1.00
0.5 0.93 0.92 1.00
1.0 0.93 0.92 1.01
2.0 0.93 0.91 1.03
5.0 0.93 0.90 1.00
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FIG. 6. Relative deviation of relativistic coefficients compared to
their classical counterpart is plotted versus dimensionless temper-
ature parameter. A deviation of 15% (dotted line), which we have
defined as the emergence of relativistic effects, is observed at T 

0.1, T 
 0.25, and T 
 1 for viscosity (long dashed green line),
diffusion coefficient (dashed blue line), and thermal conductivity
(solid red line), respectively.

macroscopic properties). It has been shown that, the single-
peaked Maxwell-Boltzmann distribution undergoes a phase
transition to a double-peaked Jüttner distribution at the critical
temperature Tc = 1/(d + 2) with d being the system dimen-
sion [43,44]. This is considered to be the transition from clas-
sical to relativistic regime. For a three-dimensional case, the
critical temperature (Tc = 0.2) is very close to the value where
notable deviation of relativistic diffusion from its classical
counterpart is observed. The deviations in viscosity (thermal
conductivity) is larger (smaller) compared to diffusion and
occurs earlier (later); i.e., in lower (higher) temperatures as
is seen in Fig. 6.

Comparing the results summarized in Table I and Fig. 6,
it is inferred that the earlier the relativistic effects emerge
in a coefficient, the more deviation of simulation data from
CE theory would be seen; such that the largest deviation and
best agreement are, respectively, observed in viscosity and
thermal conductivity. This completes our primitive conclusion
that the deviation of numerical data from theory is due to the
insufficiency of first order CE theory in high-temperature limit
where relativistic effects are most strongly expressed. The
current data, however, does not justify why relativistic effect
emerges earlier and/or later in one coefficient compared to
the other.

V. CONCLUSION

In this work the Einstein-Helfand relations has been suc-
cessfully employed to numerically obtain the relativistic trans-
port coefficients of a massive hard sphere gas is measured
based on an event driven molecular dynamics simulation.
Since, the model is a fully relativistic one, it would in principle
provide numerically exact results, which in the absence of
experimental data, is the only reliable tool for investigating
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the accuracy of relativistic theories for various temperature
and density regimes.

The systems under study in this manuscript are all in low
density regime, where the linear CE theory is believed to be a
good description, while temperature parameter covers a wide
range, from low-temperature classical regime to extremely
relativistic limit. According to the results summarized in
Table I, it can generally be concluded that the relativistic
CE theory (as a first-order theory) gives relatively reliable
values for transport coefficients of a low density hard sphere
gaseous system.

In a closer look, however, deviations are observed from CE
analytical predictions (up to 10% in some extremely relativis-
tic cases). Since the simulations are conducted in low-enough
density regimes, and the observed deviations (especially in
diffusion coefficient and shear viscosity) increase by rising
the temperature, the discrepancies could be well attributed
to “inaccuracy of CE approximation” in highly relativistic
regime rather than high density or system size impacts as
discussed in Fig. 2.

Another interesting result is that thermal conductivity, in
contrast to the other two coefficients, shows a very good
agreement with CE theory in the whole range of temperature
parameters (less than 3% deviation). Such a difference is also
observed between propagation of thermal and acoustic modes
(which are, respectively, controlled by thermal conductivity
and shear viscosity) in a relativistic fluid [27]. These evi-

dences in addition to the fact that relativistic effects in thermal
conductivity emerges at higher temperatures compared to D
and η (Fig. 6), suggest that there is a negative correlation be-
tween the emergence of relativistic effects in each coefficient
and accuracy of CE prediction in high-temperature limit; such
that earlier emergence of these effects corresponds to higher
deviation of data from CE theory. However, the reason why
relativistic effects emerge earlier in one coefficient compared
to the other remains unanswered based on the current numer-
ical measurements. More accurate simulations, specifically
around the transition points where relativistic effects begin
to emerge and extreme cases where they are fully expressed
might be helpful to shed light on the issue.

Finally, it should be noted that the reported findings are for
nondegenerate gases. The generalization to Fermi-Dirac and
Bose-Einstein statistics is straight forward and does not affect
the CE approximation or accuracy of transport coefficient
[5,6]. Therefore, it can be inferred that the main results remain
unchanged for degenerate systems.
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