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Search processes with stochastic resetting provide a general theoretical framework for understanding a wide
range of naturally occurring phenomena. Most current models focus on the first-passage-time problem of finding
a single target in a given search domain. Here we use a renewal method to derive general expressions for the
splitting probabilities and conditional mean first passage times (MFPTs) in the case of multiple targets. Our
analysis also incorporates the effects of delays arising from finite return times and refractory periods. Carrying
out a small-r expansion, where r is the mean resetting rate, we obtain general conditions for when resetting
increases the splitting probability or reduces the conditional MFPT to a particular target. This also depends on
whether m = 1 or m < 1, where 7, is the probability that the particle is eventually absorbed by one of the
targets in the absence of resetting. We illustrate the theory by considering two distinct examples. The first consists
of an actin-rich cell filament (cytoneme) searching along a one-dimensional array of target cells, a problem for
which the splitting probabilities and MFPTs can be calculated explicitly. In particular, we highlight how the
resetting rate plays an important role in shaping the distribution of splitting probabilities along the array. The
second example involves a search process in a three-dimensional bounded domain containing a set of N small
interior targets. We use matched asymptotics and Green’s functions to determine the behavior of the splitting
probabilities and MFPTs in the small-r regime. In particular, we show that the splitting probabilities and MFPTs

depend on the “shape capacitance” of the targets.
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I. INTRODUCTION

A well-known property of a Brownian particle searching
for a hidden target in an unbounded domain is that the mean
first passage time (MFPT) for target detection is infinite.
However, the MFPT can be rendered finite by the introduction
of stochastic resetting, whereby the position of the particle is
reset to a fixed location at a random sequence of times. The
MEFPT is also found to be a unimodal function of the mean
resetting rate so that the latter can be adjusted to optimize
the search time [1-3]. Analogous results have subsequently
been obtained for a wide range of stochastic search processes
with resetting [4], including nondiffusive processes such as
Levy flights [5], velocity jump processes [6,7], and resetting
in a potential landscape [8] or in bounded domains [9]. Sev-
eral authors have focused on extracting universal features of
search processes with resetting, deriving general expressions
for MFPTs and other statistical quantities [10-14]. Another
recent extension has been the inclusion of finite return times
[15-17] and refractory periods [18,19].

A common thread through most analytical studies of search
processes with stochastic resetting is renewal theory, which
exploits the fact that once a particle has returned to its reset-
ting state, it has lost all memory of previous search phases.
Often the survival probability with resetting is expressed in
terms of the survival probability without resetting using an
integral renewal equation, which can then be solved using
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Laplace transforms [4]. An alternative approach is to decom-
pose the various contributions to the first passage time (FPT)
by conditioning on whether or not the searcher resets at least
once [11-13,16]. The latter approach does not require Laplace
transforms and is particularly useful when incorporating fea-
tures such as finite return times and search failures.

The renewal method based on conditional expectations
has also been applied to other types of FPT problems. For
example, consider a Brownian particle diffusing in a bounded
domain with one or more pores distributed on the boundary of
the domain. Furthermore, suppose that the pores are stochas-
tically gated so that they randomly and independently switch
between an open and a closed state. In order to determine the
MFPT to escape through an open pore, it is necessary to keep
track of all prior visits to each pore when it is in a closed state.
The latter can be achieved by conditioning on whether or not
the particle hits a closed gate at least once before escaping
[20,21], which is the analog of resetting. This is illustrated
in Fig. 1(a) for diffusion in an interval. A second example
is cytoneme-based morphogen transport [22]. Cytonemes are
thin, actin-rich filaments that can dynamically extend up to
several hundred microns to form direct cell-to-cell contacts.
There is increasing experimental evidence that these direct
contacts allow the active transport of morphogen to embryonic
cells during development [23—25]. One mechanism of contact-
mediated morphogenesis involves cytonemes nucleating from
a source cell and dynamically growing and shrinking until
connecting with one of a set of target cells [22]. Morphogen is
localized at the tip of a growing cytoneme, which is delivered
as a morphogen burst when the cytoneme makes temporary
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FIG. 1. Examples of conditioning on prior events. (a) Brownian
particle diffusing in the interval [0, L] with a stochastic gate atx = L
that randomly opens and closes. If the particle reaches the gate when
the latter is closed, the process restarts (possibly after a delay due to
sticking at the boundary). (b) A cytoneme nucleates from a source
cell and grows at a constant speed v.. Prior to finding a target cell
at x = L, the cytoneme may randomly switch to a retraction phase
(resetting) and return to the origin at a speed V. After a refractory
period (nucleation waiting time), a new cytoneme starts to grow and
the process repeats. In both examples the FPT can be decomposed as
T =8+ N + R, where S is the FPT to return to the start position,
N is a refractory period, and R is the FPT conditioned on at least
one restart. Both 7 and R have the same probability distributions.
(More precisely, in the first example, 7 and R are the first return
times.)

contact with the target cell before subsequently retracting. The
delivery of a single burst can be analyzed in terms of an FPT
problem with a sticky (nucleating) boundary at the source cell.
This requires conditioning on whether or not the cytoneme
returns to the nucleation site at least once before finding a
target [see Fig. 1(b)]. The nucleation time is analogous to the
refractory period of a resetting process, and the time to retract
is analogous to a finite return time.

In this paper, we extend the theory of stochastic processes
with resetting and delays to the case of N targets. The major
difference from the single target case is that one now has to de-
termine the so-called splitting probabilities 7y, k =1, ..., N,
where m; is the probability that the particle first finds the kth
target. Since, this probability is less than unity due to target
competition, it follows that the MFPT to find the kth target
is infinite unless it is conditioned on successfully finding the
given target, which yields the conditional MFPT. As far as we
are aware, the case of multiple targets has not been extensively

analyzed in previous work, with the notable exception of
Ref. [14], where Laplace transforms are used to determine
splitting probabilities for one-dimensional (1D) search pro-
cesses with instantaneous resetting and the simpler case of
search processes with two possible outcomes [7,8,12,13,26].
In Sec. II we introduce the renewal method by considering a
single target and calculating the MFPT along identical lines
to Ref. [16]. This serves to set up the notation used in sub-
sequent sections. The derivation of the splitting probabilities
and conditional MFPTs is carried out in Sec. III using a
general resetting time density v (7). We then show that these
statistical quantities can be expressed in terms of Laplace
transforms in the case of exponential resetting. In Sec. IV
we explore the small-r behavior of the splitting probabilities
and conditional MFPTs, where r is the rate of exponential
resetting. This allows us to derive general conditions for when
resetting increases the splitting probability or decreases the
conditional MFPT to a specific target. Defining my to be the
probability that the particle is eventually captured by one of
the targets in the absence of resetting, we distinguish between
the two cases m = 1 and m < 1. Finally, in Sec. V we
illustrate the theory by considering two specific examples.
The first involves a cytoneme searching along a 1D array of
target cells, a problem for which the splitting probabilities and
MFPTs can be calculated explicitly. In particular, we highlight
how the resetting rate plays an important role in shaping the
distribution of splitting probabilities along the array, which
has consequences for the formation of morphogen concen-
tration gradients. The second example concerns a general
class of search processes in 3D bounded domains with a set
of N small interior targets. Although it is difficult to solve
the full problem, we indicate how to obtain approximations
in the small-r regime, since these involve moments of the
FPT density in the absence of resetting. The latter can be
calculated using matched asymptotic expansions and Green’s
function methods in the limit of small targets. In particular, we
show that the splitting probabilities and MFPTs depend on the
“shape capacitance” of the targets. (The connection between
FPT problems and electrostatics is elucidated in Ref. [27].)

II. SEARCH PROCESS WITH STOCHASTIC RESETTING
AND A SINGLE TARGET

Consider a particle (searcher) subject to stochastic motion
in U C RY. Suppose that there exists some target Uy C R?
whose boundary 90l is absorbing and x, ¢ Uy. The proba-
bility density p(X, ¢|Xo) for the particle to be at position x at
time ¢, having started at x¢, evolves according to the master
equation

Ip(X, 1]xo)

o 2.1

= Lp(x, t|xo),

where L is the infinitesimal generator of the stochastic pro-
cess. This is supplemented by the absorbing boundary condi-
tion p(x, t|xg) = O for all x € dU. Let T (xg) denote the first
passage time to be absorbed by the target, having started at x;:

T(xo) = inf{t > 0; X(¢t) € dlp, X(0) =xo}.  (22)
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The MFPT can be expressed in terms of a survival probability
without resetting, Qp, which is defined according to

T (%) = E[T (x0)] 2/0 Qo(xo, t)dt, (2.3)

where

Qo(xp, 1) = / p(X, t]Xg)dX. 24
U\Uy

Now suppose that prior to being absorbed by the target,
the particle can reset to a fixed location x, at a random
sequence of times generated by a probability density ¥ (7). It
follows that W(t) =1 — fof ¥ (s)ds is the probability that no
resetting has occurred up to time t. (In the following we also
take X9 = X,.) Rather than instantaneously returning to x,, we
assume that the particle switches to a ballistic state in which it
returns to X, at a constant speed V. (For simplicity, the particle
cannot be absorbed by the target when it is in the return
phase. One could also consider a more general dynamical
model for the return phase as in Refs. [16,17]) In addition,
whenever the particle returns to X,, it is subject to a refractory
period before the search begins again. The refractory period
is itself a random variable with a corresponding waiting-time
density ¢r.f, which is taken to have a finite mean. We would
like to determine the MFPT to be absorbed by the target in
the presence of resetting with delays. As recently shown in
Ref. [16], this can be achieved using renewal theory, which
exploits the fact that once the particle has returned to x, it has
lost all memory of previous search phases. The latter means
that one can condition on whether or not the particle resets at
least once, even though a reset event occurs at random times.
(In other words, the stochastic process satisfies the strong
Markov property.) Here we describe a version of the MFPT
derivation carried out in Ref. [16], which is then generalized
to the case of multiple targets in Sec. III.

Let Z(¢) denote the number of resetting events in the
interval [0, 7). Consider the following set of first passage
times, analogous to the decompositions shown in Fig. 1:

T = inf{t > 0;X(¢) € 0y},
S = inf{t > 0:X(1) = x,, Z(t) = 1},

R =inf{r > 0;X(t + S + N) € alhy}. (2.5)
Here 7 is the FPT for finding the target irrespective of the
number of resettings, S is the FPT for the first resetting and
return to the reset point X, given that the particle is still free,
N is the first refractory time, and R is the FPT for finding the
target given that at least one resetting has occurred. Next we
introduce the sets Q = {7 <ooland '={S < T < o} C
Q. Here 2 is the set of all events for which the particle is
eventually absorbed by the target (which has measure one),
and I is the subset of events in €2 for which the particle resets
at least once. It immediately follows that Q\I' = {7 < S =
oo}, that is, Q\I is the set of all events for which the particle
is captured by the target without any resetting. We now use
probabilistic arguments to calculate the MFPT 7,(x,) = E[T]
in the presence of resetting, finite return times, and refractory
periods.

Following Ref. [16], consider the decomposition

T.(x,) = E[T] = E[Tla\r] + E[T1Ir]. (2.6)

The first expectation on the right-hand side can be evaluated
by noting that it is the MFPT for capture by the target without
any resetting, and the probability density for such an event is
—W(t)d,Qo(x,, t). Hence,

Q. T)

E[T1a\r] = —/(; T(T) s

—/0 Y (1)t Qo(X,, T)dT

[o¢]
+ [ oo oan @)
0
We have integrated by parts using W'(t) = —y(¢) and
() — 0 as t — oo. The second expectation can be further
decomposed as

E[7T1r] = E[(S+ N + R)1r]

= E[SIr] + 1P+ E[RIr],  (2.8)

where T = fooo T¢res(t)dt. In order to calculate E[S1r],
we note that the first resetting occurs with probability
Y (7)Qo(X,, T)dt in the interval [t, T 4+ dt]. At time T the
particle is at position X(7) and thus takes an additional time
|X(t) — Xx,|/V to return to x,. We thus find that

(IX(r) — %)

IEJ[S]I-]:/O w(z)<r+ 7

)QO(Xra T)dr,

where (-) denotes expectation with respect to the probability
density p(x, t|x,) evolving according to Eq. (2.1) without
resetting and conditioned on survival up to time t. That is,

p(x, T|x,)
X(t) - x,]) = x| BT,
(1X(1) — %) /u\uo|x 0 PR

Hence, defining
Fx,,1)= / Ix — x| p(x, T|x,)dX, (2.9)
U\Uy

we have

F(x,, 1)
1%

E[Slp]:/ ¢(z)<rQO(x,,r)+ )dr. (2.10)
0

Finally, from the definitions of the first passage times and the
effect of resetting,

E[RIr] =T.(x)P[I'], P[I'l=P[S < oo]P[R < 0],

(2.11)
with
PI[R <oo]l =1, P[S <o0]= /oo Y (T)Qo(X,, T)dT.
’ (2.12)
Combining Egs. (2.6)—(2.12) yields the implicit equation
T(x) = (Qo(X,. D)y + VT F (X, 1))y
+ (Qo(Xr, 1))y (Trer + T(X1)),
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FIG. 2. Particle searching for multiple targets U; CU, i=
1, ..., N, and subject to resetting to position x, at a rate r.

where
(o)), = /0 PO,

Rearranging then yields the following general expression for
the MFPT in the presence of resetting and delays:

(Qo(Xr, Ty +Tret (Qo(Xr, Ty + V HF (X, 7))y,

T.(x,)= I —A(Qo(xr, 7))y

(2.13)

Assuming constant velocity returns, this result is equivalent to
Eq. (5) of Ref. [16]. [It also reduces to Eq. (95) of Ref. [17] in
the 1D case with t.f = 0.] For exponential resetting,

Y()=re’", W(r)=e",
we have

Oo(Xy, ) + rteetQo(Xr, 1) + rF (X, 1)V
1—rQo(x,, r)

where F (x,, r) is the Laplace transform of F(x,, 7).

T.(x,) =

, (2.14)

III. SPLITTING PROBABILITIES AND CONDITIONAL
MFPTs FOR MULTIPLE TARGETS

Now suppose that there are N targets U;, i = 1,..., N, as
shown in Fig. 2. First, consider the case without resetting (r =
0). Let J(x, ¢|x,) denote the probability flux of the stochastic
search process without resetting such that Eq. (2.1) becomes

ap(x, t|x,
% = Lp(x, t]x,) = =V - J(x, 1]x;), (3.1
supplemented by the absorbing boundary conditions
N
p(x.t1x,) =0, x e, =|Jou; (3.2)

j=1

and the initial condition p(x, 0]x,) = §(x — x,). Let T;(x,)
denote the FPT that the particle is captured by the kth target,
with 7;(x,) = oo indicating that it is not captured. Define
[ (x,, 1) to be the probability that the particle is captured by
the kth target after time 7, given that it started at x,,

Me(x,, 1) = Pt < Ti(x,) < 00] = /ka(x,, Hdt', (3.3)

where

Je (X, 1) = — J(y,f|Xr)'dY-

U

(34)

The negative sign indicates that the flux is into domain 4.
The splitting probability m;(x,) and conditional MFPT
Tk (x,) to be captured by the kth target are then

(X)) = i (x,, 0) = /oolk(xr, 1dt (3.5
0

and
1
Tk (Xr )

The total probability of being captured by one of the targets,
ot (Xy), is

Ti(x,) = E[Ti| T < o0] =

/oo Me(x,, £)dt. (3.6)
0

N
ot (Xp) 1= Z T (X,).

k=1

We allow for the possibility that m(x,) < 1, which holds in
the case of diffusion in an unbounded domain, for example.
This should be distinguished from the notion of failure to
find a particular target due to absorption by another target.
The former type of failure disappears when resetting is in-
cluded, whereas the latter persists. Finally, note that integrat-
ing Eq. (3.1) with respect to x and ¢ implies that the survival
probability up to time ¢ is

0o(x,.1) = / i
U\U,

N
= 1= ma(%,) + ) Te(x. 1),
k=1

(3.7)

We now extend the renewal method introduced in Sec. II
to calculate the splitting probability 7, ,(x,) and conditional
MFPT T, (X,) to be captured by the kth target in the presence
of resetting. Consider the following set of first passage times,
which are the multitarget analogs of equation (2.5):

Te = inf{r > 0:X(1) € Uy},
S =inf{t > 0;X(t) =x,, Z(t) = 1},
Ry = inf{r > 0;X(t + S+ N) € dUy}.

Here 7y is the FPT for finding the kth target irrespective of the
number of resettings, S is the FPT for the first resetting and
return to X, without being captured by any target, A is the first
refractory time, and Ry is the FPT for finding the kth target
given that at least one resetting has occurred. Next we define
the sets

Qk={77<<00}, FkI{S<7Z<OO}CQk,

where €2; is the set of all events for which the particle is
eventually absorbed by the kth target without being absorbed
by any other target, and I'y is the subset of events in €2 for
which the particle resets at least once. It immediately follows
that

QI = {Tk < S = o0},
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where ;\I'; is the set of all events for which the particle is
captured by the kth target without any resetting.

A. Splitting probabilities
The splitting probability 7, (X,) can be decomposed as
Tk (%) = P[Q] = P\ k] + P[] (3.8)

We note that the probability that the particle is captured by the
kth target in the interval [7, T + dt] without any returns to X,
is W(t)Ji(x,, T)dt, with Ji(x,7) given by Eq. (3.4). Hence,

PIQAT,] = / W (xy, T)dT
0

*© dIl s
0 dt

[o.¢]
—mx) - [ VOMx i 69)
0
after integrating by parts. Next, from the definitions of the first
passage times, we have
P[T':] = P[S < oo]P[Ry < o0], (3.10)

and memoryless return to X, implies that P[R; < oo] =
7,1 (X,). In addition,

P[S < o0] = /oo Y (1)Qo(X,, T)dT
0

N 00
=1 - mu(x,) + Z/ Y ()Ii(x,, T)d7.
k=170
3.11)

We have used the fact that the probability of resetting in the
time interval [z, T 4+ dt] is equal to the product of the reset
probability ¥ (t)dt and the survival probability Qy(x,, 7) that
the particle has not been captured by a target up to time t.
Hence, Eq. (3.10) becomes

P[T] = 7 (X:){Qo(Xy, T))y -

Combining Eqs. (3.9) and (3.12) yields the implicit equa-
tion

(3.12)

n;‘,k(xr) = (Ak(Xr, T))l/f + (Q()(Xra f))l/fﬂr,k(xr)a
which, upon rearranging, leads to the following result:

(X)) — (i (X, T))y
(Qo(xr, T))y

Summing both sides of Eq. (3.13) implies that
ZLI 7.1 (X,) = 1. In other words, in the presence of reset,
the particle is captured by one of the targets with probability
1. Note that the splitting probability m, ;(x,) is independent
of the refractory periods and finite return times. However,
implicit in the calculation of m,;(x,) is the assumption that
the particle returns to X, and then escapes from the refractory
state in a finite time. In the particular case of exponential
resetting, Eq. (3.13) becomes

ﬂr,k(xr) = (313)

(%) — r(x,, 1)
1 — rQo(x,, r)

(%) = (3.14)

B. Conditional MFPTSs

The conditional MFPT E[7;lg 1= 7,47,k can be ana-
lyzed along similar lines to the splitting probability by intro-
ducing the decomposition

E[Tile,] = E[Tiloar,] + E[Telr,].

The first expectation can be evaluated by noting that it is the
MEFPT for capture by the kth target without any resetting, and
the probability density for such an event is W(7)Ji(X,, T)dT.
Hence,

E[Tiloor] :/ TW(T)(X,, T)dT
0

*© dTl(x,,
— _/ T‘I’(T)Md‘f
0 dt

(3.15)

=— /OO Ty ()i (X,, T)dT
0

oo
+ / W(T)I(x,, T)dT. (3.16)
0
The second expectation can be further decomposed as
E[Tklrk] = E[(S + N+ Rk)lrk]
= E[SIr,] 4 werP[Te] + E[Ri1r, |
= E[SIr,] + (et + T.0)P[T], (3.17)

with P[I";] given by Eq. (3.12). Again, A/ denotes the random
time spent in the refractory state at x, before switching back
to the search phase, with E[N] = 7., and we have used the
result E[Ry1r,] = T« P[I'x]. The latter follows from the fact
that return to X, restarts the stochastic process without any
memory.

In order to calculate E[S1r, ], it is necessary to incorporate
the time of return following the first resetting event along
the lines of Sec. II. The first return is initiated before being
captured by a target with probability ¥ (7)Qo(X,, T)dt in the
interval [7, T + dt]. At time 7 the particle is at position X(7)
and thus takes an additional time |X(7) — x,|/V to return to
X,. Using the fact that P[R; < oo] = m,x, we have

E[S1r,]
_ * (IX(®) — x])
= Trk (%) ; vl + ——— )Q& 1)t

where (-) denotes expectation with respect to the probability
density p(x, t|x,) evolving according to Eq. (3.1) without
resetting and conditioned on survival up to time t. Hence, we
have

E[S1r] = ﬂr,k(Xr)/ w(f)(fQo(x,., 0+ F(I;, r))dr
0
(3.18)

where F(x,, t) is given by Eq. (2.9) for p evolving according
to (3.1) and U replaced by U,.

Combining Egs. (3.15)—(3.18) yields an implicit equation
of the form

nr,k(xr)Tr,k(Xr):_<Tnk(xra t))x// + (Hk(xrs T))‘-I/
+ 7k (X)) (T Qo Xy, T))y +V T HF (X, 7)) )
+ (Tref + Tr,k(xr))nr,k(erQO(er ‘C)),/,.
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Rearranging then yields the conditional MFPT

— (I (%, 7))y + (T (X, D))y + T (X) ([T + Trer ] Qo (X, 7))y + V7

HF (X, T))y)

Ty k (Xr)Tr,k (Xr) -

, (3.19)

1 —{(Qo(X,, 7))y

with

N
(Qo(Xp, Ty =1 = Tiat(X,) + Y (X, 7))y

k=1
In the particular case of exponential resetting, Eq. (3.19) can
be expressed in terms of Laplace transforms according to
nrk(xr)Trk(Xr)
Hk(xra r) + rn/ (er r) + B(r)nrk(xr)
1 —rQo(r)

where a prime denotes differentiation with respect to r,

, (3.20)

L S
dar % ref 0

N o~
B(r) = l—rﬂ'tot _ rz dI(r)

k=1
(3.21)

and

N
rQo(r)=1—mo + 7Yy T(r).

k=1

(3.22)

IV. SMALL-r EXPANSION

Let us now focus on the case of exponential resetting
at a rate r. One of the major reasons that search processes
with stochastic resetting are of interest is that in cases where
the MFPT is infinite in the limit r — O (no resetting), one
typically finds that there exists an optimal resetting rate r* that
minimizes the MFPT [4]. This reflects the fact that the MFPT
is also infinite in the limit r — o0, since the searcher resets to
X, so often that it never has a chance to reach a target. Here
we explore the limit » — O further by carrying out small-r
expansions of the various Laplace transforms appearing in
Egs. (3.14) and (3.20). For notational simplicity, we drop the
explicit dependence on the reset position X,.

First, note that from the definition of IT,(¢) we have

4.1)
Since the probability flux J; is the moment generator of

the FPT density into the kth target, it has the Taylor-series
expansion with respect to r

2
~ ~ ~ 7o o~
Ji(r) = Ji(0) + rJ;(0) + EJ,Q’(O) + o(r?)
r? ®) 2
=m — rm T + 37tka + o(r?),
where

o0
7? = / 21 (t)dt. 4.2)
0

[
Substituting into Eq. (4.1) implies that

= r @ 2
rIy(r) = rm T, — E”ﬂ;c + o(r°), 4.3)

and hence
lim T (r) = Mi(o0) = 0,
lim Te(r) = m i,

}1_1)1(1) rI(r) =

Using these limits we can obtain small-r approximations of
the splitting probabilities and conditional MFPTs. First, from
Egs. (3.14) and (3.22) we have

Tk —rﬁk(r)
TCot — ”25\;1 ﬁl(”)
wy — rm T + o(r)

= . (4.4)
Tt — F Z;V:l Ty + o(r)

Tk =

Thus,
Tk

lim ., = .
r—0 Tiot
In the case mo = 1,
N
Tk = T + ¥ (Z T — Tk) + o(r), 4.5)

=1

which implies that a low resetting rate will increase the
probability of finding the kth target provided that

N
Tk < ZT[[T}.
I=1

This is the multitarget extension of the result previously
obtained for Bernouilli trials in Ref. [13].

It immediately follows from Eq. (3.21) that if there is
a nonzero probability of failure in the absence of resetting
(ot < 1), then B(r) — oo as r — 0 and hence

(4.6)

llII(l) ”r,kTr,k = 00, (47)

implying that the MFPT is a nonmonotonic function of . Now
suppose that my = 1. Applying the series expansion, (4.3),
then gives

N
Tk Tk = mTi + r(mﬂk Z w1 — 7Tk7;((2) + Boﬂk)
=1

+o(r), (4.8)

where

N
1 , F(O)
By = 3 kE_l mT® + —= + Tref|: E 7T1T1:| 4.9)
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Hence,

lin(l)ﬂ',-’knqk = 7'[ka. (410)

Let us define

N
(T) =Y mT,
k=1

where (T') is the unconditional MFPT in the absence of
resetting, and o2(T) is the corresponding variance. Summing
both sides of Eq. (4.8), we see that

N
Z 7Tr,k T;’,k
k=1
2F(0)

=(T)+ —<<T>2 —o*(T) + 5+ 2rref<T>) + o(r).
4.12)

N
oX(T) = anTk@ —(T)?,  (.11)
k=1

This implies that adding a low rate of resetting reduces the
unconditional MFPT if and only if the coefficient of variation
(CV) satisfies

2F(0)

(TY? —oX(T) + —— *2mr(T) < 0. (4.13)

This is a generalization of the condition obtained in Ref. [12]
for instantaneous resetting, which is recovered by taking
Tef = 0and V — o0:

4.14)

If we only include the effects of refractory periods, then we
have a quadratic in (7') and the condition becomes

(T) < /12 + oX(T).

Finally, returning to Eq. (4.8) and ignoring any delays, we
have

(4.15)

T Tk = mTy + r(mT(T) — 7Tka(2))

r
+5 @ (T) = (D)) + o), (4.16)
Hence, the conditional MFPT of the kth target will be in-
creased by resetting if

T(T) — T? + Lo () +(T)*) < 0. 4.17)

V. EXAMPLES

We now illustrate the above theory by considering two
examples of search processes with stochastic resetting and
multiple targets. The first is a 1D application to cytoneme-
based morphogen transport, for which the splitting probabil-
ities and MFPTs can be calculated explicitly. The second is
a general class of search processes in 3D bounded domains
with a set of N small interior targets. Although it is difficult
to solve the full problem, one can explore the behavior in the
small-r regime along the lines of Sec. IV.

source cell

target

cytoneme = I k
ce

Y

é . (k-1)a l.(a (k+.1)a

FIG. 3. Semi-infinite array of partially absorbing target cells and
a source cell at the origin x = 0. Each target cell is of width a and
the cytoneme can be captured by the kth target cell at a rate « if
(k—1)a < X(t) < ka.

A. Directed search along an array of targets

As our first example, consider a simplified version of the
cytoneme-based morphogen transport model introduced in
Ref. [22], which we map onto a search process with stochastic
resetting. Consider a source cell with a single cytoneme nucle-
ation site and a semi-infinite array of target cells as shown in
Fig. 3. The kth target cell has width a and its distal end is
at a distance ka from the source cell. Whenever a cytoneme
nucleates from the source cell, it grows along the surface of
the array at a constant speed v; and can be captured by the
kth target at a rate k when X(¢) € ((k — 1)a, ka). (In this
example, the targets are only partial absorbers, but the general
analysis in Sec. III still applies.) The resetting dynamics of
the cytoneme is as shown in Fig. 1(b) for a single target. That
is, prior to finding one of the target cells, the cytoneme may
randomly switch to a retraction phase (resetting) and return to
the origin at a speed V. After a refractory period (nucleation
waiting time), a new cytoneme starts to grow and the process
repeats. We take

Pres(t) = Le_l/rmf-
Tref
(Some of the model parameters can be inferred from ex-
perimental studies of cytoneme-based transport in zebrafish
[24]. For example, a ~ 10 um, vy ~ 0.01-0.1 pm/s, and
Tref ~ 30-60 s.)

Let p,(x,t) be the probability density that at time ¢ the
particle (cytoneme tip) is at X (¢) = x and in either the search
state (n = +) or the return state (n = —). Similarly, let Py(¢)
denote the probability that the particle is in the refractory state
at time 7. The corresponding master equation with resetting
takes the form

0 d
P _ —v+ﬁ —rpy —kpt, x€(0,00), (5.1a)
at ax
ap_ ap_
P 2P ., x€(0,00), (5.1b)
ot ax
dPy
e v_p-(0,1) — nP(t), (5.1¢)
t
together with the boundary condition
vy p4(0,1) = nPy(2). (5.1d)

(Here we drop the explicit dependence on xy = x, = 0.)

022115-7



PAUL C. BRESSLOFF

PHYSICAL REVIEW E 102, 022115 (2020)

Following the general framework in Sec. III, we first
analyze the search process without resetting. In this case, the
probability flux into the kth target at time ¢ is

ka
Ji(t) =« /
(k—1)a

ka
=K [ S(x —vyt)e ™dx = iy (t)e ™,
(k—)a

p+(x, t)dx

(5.2)

where x;(t) = 1if (k — 1)a/vy <t < ka/v, and is O other-
wise. The splitting probability that the particle is captured by
the kth target is

o0 o0
T = / Je(y, thdt' = Kf Xi(t)e ™
0 0

—k(k—Dajvy _ efkka/vJr

(5.3)

=e

Here e~**=Da/v+ ig the probability of reaching the kth target

without being captured by any upstream targets, so my is the
probability that the particle is captured by the kth target before
passing to the (k + 1)th target. It immediately follows that
Y rey 7 = 1. The probability Ax(t) = 7y — Ix(¢) that the
particle is captured by the kth target before time ¢ is
t
A(r) = / Ji@di' = H(t — 1)l — e /"]
0
+ H(I _ Tk—l)[efk(kfl)a/lg _ 6‘7“], (54)
where H(t) is the Heaviside function. Laplace transforming
then gives
1

s+ K

Kk(s) = <% — >(e(s+/<)(k1)a/v+ _ ef(s+;<)ka/u+).

(5.5)

Substituting Egs. (5.3) and (5.5) into Eq. (3.14) then yields the
splitting probability . ; under resetting:

rxk(r)
TCr,k

_ _ o Ok a/v,
KT oo -
r Yoy M)

_ e—(r+K)ka/U+ )

(5.6)

Suppose that we write m,; = m,(ka). In Fig. 4 we show
sample plots of the splitting probability function 7,(L) as a
function of the distance L from the source cell with a = 1
and « = 1. It can be seen that the splitting probability is
an exponentially decreasing function of L. Moreover, the
steepness of the exponential gradient is an increasing function
of r and a decreasing function of v;. Consequently, 7, is a
unimodal function of r for targets close to the origin and a
monotonically decreasing function of r at more distal target
locations.

In order to calculate the conditional MFPTs using the
general formula, Eq. (3.20), we also need to determine the
function F of Eq. (2.9) and its Laplace transform. The proba-
bility density without resetting evolves according to the single
equation

0 0
a—f = —v+8—§ —«kp, xe€(0,00). 5.7
This has the solution
plx, 1) = 8(x — v 1)Qo(1), (5.8)

03¢ r=1,vy=5 1
r=1,ve=1
& — — —=r=01,v4=5
> r=01,ve=1
%O.Zi
o
o
o L
o
=
E£01|
o}
)
0

distance L

FIG. 4. Plot of splitting probability (L) as a function of dis-
tance from the source cell for various speeds v, and exponential
resetting rates r. Here 7, (ka) = 7, witha = 1.

where Qo () is the survival probability (starting at the origin),

Q) =1-Y At)=e"".

k=1

It follows that

F@)= /Ooxp(x, t)Ydx = vyt Qo(t). 5.9)
0

Laplace transforming then gives
dQo(r) vy
dr (r+x)?

Substituting Eqgs. (5.3), (5.5), and (5.10) into the general
expression, Eq. (3.20), for the MFPT reduces to

—Ax(r) = rAL(r) + B(r)m,s
k/(r+«)

F(r)=—v,

Tk Dok =

’

where
B(r) = v_+> et

,
— |1
(r+/c)2< +V r+«

Example plots of the MFPT as a function of the distance L
and resetting rate r are shown in Figs. 5 and 6, respectively.
We see that when my,, = 1, the MFPT is an increasing function
of r. This suggests that resetting is not necessary for the given
search process. However, as shown in Fig. 4, r has a strong
effect on the spatial variation of the splitting probability. This
has important implications for the role of cytoneme-based
morphogenesis in generating morphogen gradients, which we
explore further elsewhere.

The assumption that m = 1 may also fail to hold due
to the cytoneme nucleating in the wrong orientation, for
example. In this case, the inclusion of resetting results in
MFPTs that are unimodal functions of r. Another way to
include the possibility of failure is to discount any trajectories
that are captured beyond the Nth target cell. This means that
in the absence of resetting, the probability of failure is e *%/V+.

(5.10)
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S
]

9r I’=1,V+=5 1
8L r=1,ve=1 1
— — —r=01,v4s=5
7 r=01, ve=1
o0 1
=5 —
L
24’ /
/
3k ]
27 _______-—
1L _ === "7 ]
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ |

1 2 3 4 5 6 7 8 9 10
distance L

FIG. 5. Plot of conditional MFPT 7, (L) as a function of distance
from the source cell for various speeds v, and exponential resetting
rates r. Here T,.(ka) = T, witha = 1,V = 1, and 7.t = 1.

Repeating the above analysis and plotting the resulting condi-
tional MFPTs, it can be shown that the conditional MFPT's are
now unimodal functions of r. This is illustrated in Fig. 7.

B. Three-dimensional diffusion in a bounded domain with small
interior traps: Small-r expansion

As our second example, consider a Brownian particle
diffusing in a 3D bounded domain ¢/ with N small traps in
the interior of the domain. In the absence of resetting, the
probability density evolves according to the diffusion equation

Ip(x, 11xo)

oy 5.11)

= DV?p(x,t|xg) = =DV - J(x, t|Xo),

5, :

4.5¢

4!

0.51 L I I I 1 I I
01 02 03 04 05 06 07 08 09 1

resetting rate r

FIG. 6. Plot of conditional MFPT 7, as a function of resetting
rate r for various target cells. Other parameters are v, =5,V =1,
Teef = 1.

B
12| — k=10 ]
k=5

(ks k=1

10}
=
n 8
L
s 7t

6L

51 ]
41 J
3 . . . . . . . . .

0 05 1 15 2 25 3 35 4 45 5

resetting rate r

FIG. 7. Plot of conditional MFPT 7, as a function of resetting
rate r for various targets k and V = 1. In contrast to Fig. 6, capture by
any target k > 10 is treated as a failure so 7, < 1. Other parameters
are vy = 5Sand s = 1.

with a reflecting boundary condition on the exterior of the
domain

hp(x,t|x9) =0, xedl, (5.12)

where 0,, denotes the outward normal derivative, and absorb-
ing boundary conditions on the trap boundaries,

N
p(x.1]%0) =0 x ety =|_Jou;.
j=1

(5.13)

Each trap is assumed to have a size |Uf;| = e3|U| with U —
X; € U uniformly ase — 0, j = 1,..., N. The traps are also
taken to be well separated in the sense that |x; — x;| = O(1),
J # i, and dist(x;, 0U) = O(1).

In the absence of resetting, the FPT problem in the case
of small targets can be analyzed using matched asymptotic
expansions and Green’s function methods [28-31]. That is,
the splitting probabilities m;, conditional MFPTs 7;, and
higher-order moments such as Tk(z) satisfy time-independent
boundary value problems that can be solved by constructing
an inner or local solution valid in an O(e) neighborhood of
each target and then matching to an outer or global solution
that is valid away from each neighborhood. A more chal-
lenging problem is to solve the full time-dependent prob-
lem, which is necessary in order to determine the splitting
probabilities ., and MFPTs T, ; in the presence of resetting
[see Egs. (3.14) and (3.20)]. However, it is possible to use
the results of asymptotic analysis in the small-r limit, since
the resulting expansions involve moments of the FPT density
without resetting [see Egs. (4.4) and (4.8)]. We illustrate the
basic idea by showing how to calculate 7, along the lines of
Ref. [(229)] and then simply quote the analogous results for 7
and 7,
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First, it is well known that m;(x) satisfies the boundary
value problem

Vim(x) =0, xelU\U; 8,m(x)=0, xeil,
(5.14a)
with
mx)=1, xedd; mx)=0 x¢€ Uauj.

J#k
(5.14b)

In the outer region, which is outside an O(¢) neighborhood
of each trap, my is expanded as

T = n,fm + en,il) + 627{,52) +....

0)

Here 7, is an unknown constant, and
2™ (x) =0, x € U\{x
k — Y, | EECIIE) XN};
O, (x) =0, x € oU (5.15)

for n = 1, 2, together with certain singularity conditions as
X — Xj, j = 1,..., N. The latter are determined by matching
to the inner solution. In the inner region around the jth trap,
we introduce the stretched coordinates y = ¢! (x — x ;) and
set ux(y) = mx(X; + €y). Expanding the inner solution as

Uy —u,(co)—i—eu(l)—i-.. s

we find that
() =0,y ¢ U,
s (y) =0,y ¢ U,

Finally, the matching condition is that the near-field behavior
of the outer solution as x — X; should agree with the far-field
behavior of the inner solution as |y| — oo, which is expressed
as

uP(y) = 84,y € U3

uD(y) =0,y e dU;.  (5.16)

O +enV + P+~ u” + eV + .

The details of the matching process can be found in [29].
Here we Just indicate the steps. First, n,f ) ) 5o that we

can set u; )(y) = n(o) + Gk — n,ﬁo))w(y), with w(y) satisfy-
ing the boundary value problem

y ¢ Us;

w(y) — 0 as

Vow(y) =0 y € oU;;

(5.17)

w(y) =1,
ly| = oo.

This is a well-known problem in electrostatics and has the far-
field behavior

wiy) ~ 24 2y
y ~ —

Iyl IyP
where C; is the capacitance and P; the dipole vector of an
equlvalent charged conductor with the shape U;. (Here C; has
the units of length.) It now follows that nk ) satisfies Eq. (5.15)
together with the singularity condition

G

(1) ©0)
X T as
( ) ( / k )|X—Xj|

+... as |y| — oo, (5.18)

X—)Xj.

D

In other words, 71,5 satisfies the inhomogeneous equation

N

V2 V(x) = —4n Z (8ju — m; )C S(x—x;), xel;
j=1

9.7V (x) =0, xed. (5.19)

This can be solved in terms of the Neumann Green’s function

V2G(x; x)_i—a(x—x)

||
xeld; 9,6G=0, xeil; (5.20a)
1
G Y= ———+R !
(x,x) pr— + R(x, X"),
/ G(x,x)dx = 0, (5.20b)
u

with R(x, x") corresponding to the regular part of the Green’s
function. Given G, the solution can be written as

aV(x) = 4n § : ik — 1 0)CGX, X)) + xi,  (5.21)
with unknown constant
(€Y
d 5.22
6= / (X)dx. (5.22)

In order to fully specify the O(1) and O(e) contributions to
the splitting probability w3 we have to determine the constants
n,f()) and . The first follows immediately from integrating
Eq. (5.19) over the domain U and imposing the reflecting
boundary condition. This yields the solvability conditions
364 — m")C; =0, s0 that

N
C — 1
7O _ &k
c=-Yc
= Ty

The calculation of x; is more involved, since it is obtained
by imposing a solvability condition on the O(e?) contribution
,52 This requires matching n,ﬁz) with the far-field behavior of

u,({l) , which is itself found by matching u,({l) with the near-field

D The final result is [29]

(5.23)

behavior of rr,i

C
T (X) ~ N—% +4weCe| Gox 30 —

1 N
— Y CiG(x. x;)
C 5

+ exx + ole), (5.24)
where
N N
47TCk 1
= — — g iCi — — C,g,- iC; s 5.25a
Xk NC ;:1: kjC NC ?:1: Y ( )

with G;; = G(x;, x;) for i # j, and G; = R(x;, X;). Note that

N
Z xk =0.
k=1
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An analogous asymptotic analysis can be used to determine
the conditional MFPTs T7; and second moments T(z) [31].
First, T} satisfies a boundary value problem of the form

V2 (0 Ti(x)) = —”kl()"), x e U\Uy.  (5.263)
o, (m(xX)Tr(x)) = 0, x € dl, (5.26b)
T (xX) T (x) = 0, x e, (5.26¢)
(X)) (x) - 0, xedld;, j#k (526d)

Matching the asymptotic expansions of the inner and outer
solutions of Egs. (5.26) one finds that [31]
G U]

T XT X))~ ———F—7——
KT ~ N e DNT

x [ 1— 47TEZC G(x, X,)—i— chu

j=1 ljl

xld]
— + 5.27
47 DNC otL). (5:27)
In addition,
U] U]
T (x) ~ ——mm — — —G X, X
K(x) 47eDNC D (%)
U &
— CiG:i:Ci + o(1). 5.28
BNCT > GiGiiCi + o(1) (5.28)

ij=1

Second, Tk(z) satisfies the boundary value problem

V()T (%)) = —w, x € U\Uy, (5.292)
h(mOTP () =0, xedl, (5.29b)
mXTP(x) =0, x e, (5.29¢)
mXTP(x) = 0, xedl;, j#k (5.29d)

Again matching the asymptotic expansions of the inner and
outer solutions one finds that [31]

T ()T (x)

G 2UP?
NC (4mreDNC)?

X 1—4JTGZCG(X x,)—i— ZCQU

j=1 ljl

willd|
T 4 o1 /e), 5.30
2reDNC (1/€) ( )
where
a U L xelU|
_ kM GiiCi + - 531
# = Ne by ; Gt ove OV

Note that the leading-order contributions to . (x), 7 (x) ;. (X),
and I}((z)(x) are independent of the initial position x and the
locations x; of the targets.

We can now analyze how resetting affects the search pro-
cess in the small-r regime using the results in Sec. IV and

setting X = X,. First, from Eqgs. (5.24), (5.27), and (5.30), we
have the leading-order approximations
||
(T) ~ ———
47eNDC

x 1—47162CG(X,,X])+ chu ;
j=1 1]1

U l

(4meNDC)?

P ch.c.
2meD2(NC)? by R

o*(T) ~

Recall from Eq. (4.6) that resetting will increase the split-
ting probability to the kth target provided that 7; < (T) =
Zlk\’:l m;T;. We thus obtain the leading-order condition

_ 1 &
CG(x:, %) > > CiG(x,. x)). (5.32)

j=1

This condition will clearly be satisfied if x, & x;. Next, recall
from Eq. (4.14) that resetting will decrease the unconditional
MFPT provided that 62(T) > (T)?. In the limit € — 0, this
reduces to the condition

N

u2
il ZCG(X,,X)>O

2
oA = (TY ~ 2ne(DNC)? £
Note that these results can only be established if one includes
next-to-leading-order contributions to (7") and o(T). They
depend on the capacitances C;, the positions x; of the targets,
and the Green’s function of the diffusion equation without
resetting.

VI. DISCUSSION

In this paper we have derived general expressions for the
splitting probabilities and conditional MFPTs for a search
process with stochastic resetting, delays, and multiple targets.
We obtained these results using a renewal method that in-
volves conditioning the search process on whether or not at
least one resetting occurs. Such an approach has previously
been applied to a range of FPT problems with or without
resetting [11-13,16,20-22]. Indeed, we showed how various
results from these previous studies can be recovered in par-
ticular limits. One focus of our analysis was to determine
the behavior of the search process in the small-r regime,
which provides insights into whether or not the introduction of
resetting can be beneficial [11-13]. We derived conditions for
when resetting increases (decreases) the splitting probability
(conditional MFPT) based on the splitting probabilities and
first and second moments of the conditional FPT densities
without resetting. This was subsequently applied to the gen-
eral problem of search in a 3D bounded domain with a set of
small targets in the interior of the domain. In particular, we
showed how asymptotic analysis can be used to calculate the
effects of resetting in the small-r regime. A natural extension
would be to consider the search for small targets in a 2D
domain, where one would need to take into account the
fact that the 2D Neumann Green’s function has logarithmic
singularities [32]. Another extension would be to consider
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absorbing targets located on the boundary rather than the
interior of the search domain.

We also explored a practical application of the theory
to a problem in developmental cell biology, namely, the
search-and-capture of cytonemes during morphogenesis. In
this case, resetting plays an important role in determining
the distribution of splitting probabilities across a set of target
cells. This suggests that multiple rounds of search-and-capture
events could generate a morphogen concentration gradient
that depends on r. Indeed, suppose that each time a cytoneme
finds a target, it delivers a packet of morphogen to the target
and then retracts back to its nucleation site, after which
another round of search-and-capture occurs. Assuming that
packets degrade at a constant rate y, the mean number of
packets present within the kth target in the long-time limit will
be My = m;/(y(T)). That is, the mean time between capture
events is the unconditional MFPT (T) and the fraction of
these that deliver a packet to the kth target over many trials
is given by the splitting probability m;. Thus 7 /(T) is the
mean rate of delivery of resources to the kth target, which is

balanced by the degradation rate at steady state. This result,
as well as higher-order moments of the resource distribution,
can be obtained more rigorously by extending our recent
work on queuing theory and search processes with stochastic
resetting [33] to the case of multiple targets [34]. Another
natural extension would be to consider cytonemes growing
and retracting in higher-dimensional spaces in order to deliver
morphogen to target cells arranged in 2D or 3D arrays.

Finally, the example of cytoneme-based morphogenesis
suggests a more general class of search-and-capture problems,
in which the interior of the search domain is partitioned into
a set of partially absorbing targets. Such a scenario has a
number of other applications in cell biology, including the
active motor-driven transport of vesicles to synaptic targets in
the axons of neurons. Analogous to cytoneme-based transport,
the splitting probabilities would determine the steady-state
distribution of synaptic resources along the axon. There are
also higher-dimensional versions of active vesicular transport,
involving molecular motors moving along cytoskeletal net-
works within the cell body.
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