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Frustration and inhomogeneous environments in relaxation of open chains
with Ising-type interactions
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Frustration can contribute to very slow relaxation times in large open chains, as in spin glasses and in
biopolymers. However, frustration may not be sufficient to produce broken ergodicity in finite systems. Here
we employ a system-plus-reservoir approach to investigate how strongly inhomogeneous environments and
frustration compete in the relaxation of finite open chains. We find a sufficient condition for our inhomogeneous
environments to break ergodicity. We use the microscopic model to derive a Markovian quantum master equation
for a generic chain with ultrastrong intrachain couplings. We show that this microscopic model avoids a spurious
broken ergodicity we find in the phenomenological model. We work out an explicit example of broken ergodicity
due to the inhomogeneous environment of an unfrustrated spin chain as far as simulating a recent experiment
on protein denaturation (where environment inhomogeneity is especially relevant). We finally show that an
inhomogeneous environment can mitigate the effects of frustration-induced degeneracies.
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I. INTRODUCTION

In a frustrated system, no configuration exists that si-
multaneously minimizes all its energetic contributions [1].
Frustration can create multiple low-energy metastable states,
leading to very slow relaxation times. Such a slow relaxation
can effectively trap the system in a subset of all possible states,
breaking ergodicity on experimentally accessible timescales.
Magnetic frustration, when combined with intrinsic disorder,
can give rise to a spin glass, an emblematic example of broken
ergodicity [1–3]. Frustration can also affect the folding of
biopolymers in living organisms [4,5]. Proteins, for instance,
are large sequences of aminoacids that relax from an unfolded
to a final state. In biologically functional proteins, final states
are those folded in specific, compact geometries, called native
states. From the physics viewpoint, this protein relaxation
dynamics is understood as diffusion in a rugged funneled
energy landscape, and the native states occupy the lowest en-
ergy subspace, i.e., the bottom of the funnel [6,7]. Randomly
chosen aminoacid sequences are unable to fold to its most
compact, less energetic state. Frustration, in this case, blocks
the protein from finding a single well-isolated folded structure
of minimum energy [8].

However, frustration may not be sufficient to produce
broken ergodicity. Barriers between the multiple energy states
of the system may not be high enough [1]. The question
that interests us here is how specific system-environment
interactions contribute to the relaxation of open chains and
to break ergodicity [9–14], and what kind of interplay with
frustration [15,16] there can be found.

The system-plus-reservoir approach for open quantum sys-
tems [17,18] turns out to be well adapted to address this
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problem for finite chains. This approach sets a global Hamil-
tonian (allowing for quantization of both the system and
the environment) that reproduces the stochastic dynamics of
the quantum system of interest. Most importantly here, the
explicit Hamiltonian formulation allows us to consider both
frustration and environmental effects in a consistent manner.
Historically, the system-plus-reservoir approach has provided
us with microscopic quantum theories for paradigmatic irre-
versible processes, such as the spontaneous emission of a pho-
ton by a single atom [19], the decay of magnetic flux in a su-
perconducting artificial atom [20] and quantum decoherence
due to phonon baths in semiconducting artificial atoms [21].
More recently, derivation of quantum master equations for
weak system-bath couplings have allowed the investigation
not only of relaxation of quantum chains [13], but also of heat
transport between multiple reservoirs at different temperatures
[22–29]. The so-called microscopic model for the master
equation has been shown particularly useful for describing
heat transport in the ultrastrong intrachain couplings regime
[24–26].

Here we employ the system-plus-reservoir approach to
investigate how an inhomogeneous environment (i.e., an inho-
mogeneous distribution of system-reservoir couplings along
a finite quantum chain) competes with frustration in the
relaxation of the chain. Inhomogeneous environments are
expected to affect both naturally occurring and engineered
chains [30–33]. We derive a Markovian quantum master
equation within the microscopic model, valid for ultrastrong
intersite couplings. We first discuss a sufficient condition for
our inhomogeneous environments to break ergodicity. Then
we turn our attention to key examples in spin chains. We
devise a case to highlight why the microscopic model is neces-
sary to suitably describe relaxation in a frustrated spin chain,
avoiding spurious effects from the phenomenological model.
We then find an example where a completely unfrustrated
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FIG. 1. Model of the system-reservoir couplings. The system,
with Hamiltonian HS and state ρS (t ), consists of a chain of degrees
of freedom locally coupled, via operators S(n) and strengths g(n), to
independent reservoir modes b(n), all at the same temperature T .
We are interested in the interplay between an arbitrary distribution
of couplings g(n) (in HSR) and frustration (in HS) to the chain’s
relaxation.

spin chain cannot attain its lowest energy levels due to the
strong inhomogeneity of the environment. We explore this
as far as simulating a recent experiment on protein denatu-
ration [34]. Our motivation is that spatial inhomogeneity of a
protein’s environment strongly affects the difference between
thermal and chemical denaturation [35], as evidenced by the
so-called molecular transfer model [36–40]. We finally find
an example where inhomogeneity can induce relaxation to
a single state, among three nearly degenerate lowest-energy
levels of a frustrated chain. In this sense, the effect of frustra-
tion gets mitigated by the inhomogeneous environment. Our
results contribute to the understanding of out-of-equilibrium
dynamics of many-body open quantum systems by developing
a method that treats relaxation [11,12,14] consistently with
frustration [15,16].

II. MODEL

We label as HS the Hamiltonian of a generic isolated
quantum system. The only assumption we need to make at
this point is that we know its spectral decomposition,

HS =
d∑

j=1

Ej | j〉〈 j|, (1)

where d is the size of the Hilbert space. Once the Hamil-
tonian of the chain is diagonalized, our theory can de-
scribe both harmonic [23,29] and spin chains, comprising
the Ising model with tilted fields, the XY model, the XXZ
model, and the Heisenberg model [11,12,16,28,33]. Fol-
lowing the system-plus-reservoir approach, the Hamiltonian
of the system coupled to its environment is set to H =
HS + HSR + HR. We model the reservoir Hamiltonian HR =∑N

n=1

∑
k h̄ω

(n)
k b(n)†

k b(n)
k as a finite set of N independent baths,

each consisting of quantum harmonic modes bk of frequencies
ωk (which will be treated in the continuum limit,

∑
k →∫

dk). Let us consider that each independent bath is locally
coupled to a distinct degree of freedom S(n) of the system, as
described by (see Fig. 1)

HSR =
N∑

n=1

S(n) ⊗
∑

k

h̄g(n)
k

(
b(n)†

k + b(n)
k

)
. (2)

In the case where the system is a spin-1/2 chain, for instance,
S(n) may represent a Pauli operator, whereas in harmonic
chains, S(n) may represent the bosonic operator of the nth

oscillator. For N spins-1/2, we have that d = 2N . Our model
in Eq. (2) generalizes the system-environment Hamiltonians
considered in Refs. [9,10,13].

We describe the state of our general quantum system by its
density matrix, ρS (t ). Our goal is to establish the quantum
master equation governing the dynamics of ρS (t ). To that
end, we proceed by tracing out the environmental degrees
of freedom from the complete quantum state evolved unitar-
ily, ρS (t ) = TrR[Uρ(0)U †], where U = exp(−iHt/h̄), from
an initially uncorrelated global state ρ(0) = ρS (0) ⊗ ρR(0).
We choose a thermal equilibrium state for the reservoir at
temperature T , so that ρR(0) = exp(−βHR)/ZR, with β =
1/(kBT ), where kB is the Boltzmann’s constant and ZR =
Tr[exp(−βHR)] is the partition function. We assume pertur-
bative system-reservoir couplings up to second order. This
allows us to characterize the couplings between each degree
of freedom of the system to its local reservoir by the so-called
spectral function J (n)(ω) = 2π

∑
k |g(n)

k |2δ(ω − ω
(n)
k ), which

is well defined in the continuum limit,
∑

k → ∫
dk. These

steps lead to the derivation of a Markovian quantum master
equation for the system density operator in the so-called
Lindblad form [17],

∂tρS (t ) = −(i/h̄)[HS, ρS (t )] + L[ρS (t )], (3)

where L[ρS (t )] supports the relaxation effects we wish to
explore. It reads

L[ρS] =
N∑

n=1

∑
ω>0

J (n)(ω)(1 + n̄ω )

[
A(n)

ω ρSA(n)†
ω

− 1

2

{
ρS, A(n)†

ω A(n)
ω

}]

+ J (n)(ω) n̄ω

[
A(n)†

ω ρSA(n)
ω − 1

2

{
ρS, A(n)

ω A(n)†
ω

}]
, (4)

where ω = ωi j = (Ej − Ei )/h̄ > 0, the average number of
excitations is n̄ω = [exp(β h̄ω) − 1]−1, as given by the Bose-
Einstein distribution, and the jump operators are defined by

A(n)
ω =

∑
i, j|ω=ωi j

|i〉〈i|S(n)| j〉〈 j|. (5)

Operators A(n)
ω are valid for both nondegenerate and degener-

ate gaps. The generalization of Eq. (4) for degenerate spectra
(ω → 0) can be found by following Refs. [17,25].

The jump operators A(n)
ω evidence the fundamental aspect

retained by this microscopic approach, in that the bath acts
locally, via S(n), and affects globally, given that | j〉 is an
eigenstate of the entire system. In contrast with Eq. (5),
the phenomenological approach employs jump operators that
induce transitions between the eigenstates of each subsystem,
motivated by regimes of weak intersite couplings [17]. Let us
take, for instance, the case of a spin-1/2 chain and choose
S(k) = σ (k)

x for a given (k). In this case, the phenomenological
approach would typically employ jump operators in the form

A(k)
ph = |↓〉〈↓|σ (k)

x |↑〉〈↑| = σ−. (6)

In general, A(n)
ph �= A(n)

ω for composite systems (for instance,
〈↓↓|σ (1)

x |↑↑〉 = 0, whereas 〈↓|σ (1)
x |↑〉 = 1). As far as heat
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transport is concerned, microscopic and phenomenological
approaches generally imply distinct theoretical predictions,
which has been the subject of intense controversies [23,24,26–
29]. As far as relaxation is concerned (the central issue here),
the microscopic model, Eq. (4), appropriately guarantees that
the Gibbs state ρS (∞) = exp(−βHS )/ZS is one (not necessar-
ily unique) steady-state solution for the open system dynam-
ics. In the cases we have checked, the phenomenological ap-
proach has led instead to a state ∝ exp(−β

∑
α Hα ), where Hα

is the free Hamiltonian for the αth degree of freedom alone,
i.e.,

∑
α Hα �= HS . We will return to this discussion further in

this paper (see Sec. IV A). It is important to emphasize that
our approach here bridges the gap between recent discussions
on relaxation [11,12,14] and on frustration [15,16] of open
quantum spin chains, since we explicitly consider the system’s
Hamiltonian HS both to identify frustration and to compute
relaxation rates, as shown in Eq. (5).

III. RESULTS FOR GENERAL N

A. Relaxation of general inhomogeneously open chains:
Breaking ergodicity

We now establish our most general result, namely, a suf-
ficient condition for an inhomogeneous reservoir to break
ergodicity, even in the complete absence of frustration in
the system’s Hamiltonian. As we try to make clear below,
these general conditions have all the same origin, that is, the
nonuniqueness of the steady state ρS (∞) under inhomoge-
neous reservoir couplings along an open chain. The relevant
properties of ρS (t ) emerge when we rewrite it as a column
vector �ρS . We recast the master equation (3) in the form

∂t �ρS = 
�ρS, (7)

where 
 is a time-independent square matrix representing
the transition rates between all the elements of ρS (t ). We
are interested, in this section, in the more typical case where
the system’s spectrum is nondegenerate. A nondegenerate
spectrum implies that the quantum coherences decouple from
the populations [17], allowing us to only focus on the latter,
(�ρS )i = 〈i|ρS|i〉. Now 
i j becomes the transition rate only
between the energy eigenstates | j〉 → |i〉. Equation (7) then
simply becomes the Pauli master equation. We arrive here
at a sufficient condition for ergodicity breaking: a block
diagonal 
 (in some order) implies a set of decoupled energy
subspaces. The stationary state is not unique and it depends on
the system’s initial state, when 
 is block diagonal. Our block
diagonal 
 (comprising the whole set {S(n)}) generalizes the
block-diagonal structure of the single-operator matrix 〈i|S| j〉
from Ref. [13], where constants of motion are discussed. If
the system has a finite probability of being initially excited
with a certain energy outside the lowest-energy subspace,
the relaxation pathway from the higher-energy to the lowest-
energy subspace will be forbidden. The excited portion of the
ensemble will be blocked from attaining the state of minimum
energy, no matter how low the temperature is set. It shows
how an inhomogeneous bath can replace the role played by
frustration in preventing open chains to achieve its minimum
energy states. The opposite pathway, that would lead to exci-
tation, is also forbidden. If the system starts trapped within a
given low-energy subspace, there it will remain no matter how

high the temperature is set. The only mechanism that allows
it to escape, as to achieve higher energy configurations, is by
turning on the coupling between a degree of freedom and its
local environment (breaking the block-diagonal structure of

, in our theory). This distinction between exciting the chain
by increasing the temperature T in contrast to increasing a
local coupling J (n)(ω) reminds us of the difference between
thermal and chemical denaturations in proteins, as further
explored in the following section.

In order to establish how the distribution of couplings along
the chain generates the desired decoupled subspaces [in other
words, how J (n)(ω) creates a block diagonal 
], we need an
explicit form for 
. We add another simplifying condition,
that the gaps ωi j are also nondegenerate [the expression for
A(n)

ω in Eq. (5) is readily suitable to treat degenerate gaps as
well]. We find that


ii = �
(0)
i , 
i< j = �

(D)
i j , and 
i> j = �

(G)
i j . (8)

Consistently with Fermi’s golden rule [17], the off-diagonal
elements here read

�
(D)
i j =

N∑
n=1

J (n)(ωi j )(1 + n̄ωi j )
∣∣S(n)

i j

∣∣2
(9)

for the damping rates and

�
(G)
i j =

N∑
n=1

J (n)(|ωi j |)n̄|ωi j |
∣∣S(n)

i j

∣∣2
(10)

for the gain rates. S(n)
i j = 〈i|S(n)| j〉 are the matrix elements of

the system’s degrees of freedom in the energy basis. Finally,
the diagonal elements are given by �

(0)
i = −∑i−1

j=1 �
(D)
ji −∑d

j=i+1 �
(G)
ji for 1 < i < d , �

(0)
1 = −∑d

j=2 �
(G)
j1 , and �

(0)
d =

−∑d−1
j=1 �

(D)
jd . Most importantly, rates �

(D)
i j and �

(G)
i j provide

analytical expressions that show how the N local and indepen-
dent system-reservoir couplings, as quantified by J (n)(ω), can
cause a block diagonal 
, inducing broken ergodicity.

B. Pathways suppression for N spins-1/2

Let us first consider the scaling of pathways suppression
for N spins-1/2 (where N � 1). We assume that HS has
nondegenerate gaps and that all its eigenstates are products
of local states in a given direction (for instance, products
of σ (n)

z eigenstates). Although this product-states assumption
excludes spin chains of arbitrary longitudinal and transverse
couplings, it includes Hamiltonians beyond Ising models, as
in the cases of long-range interactions in the spin model for
tertiary structures in protein folding [4] and of three-body
interaction Hamiltonians on a lattice [41]. If each spin is
coupled to an independent reservoir, we find that the minimum
number of zeros, Nzeros, in matrix 
 is given by

Nzeros = 2N [2N − (N + 1)]. (11)

This can be technically understood by noticing that each line
in 
 contains at most N + 1 nonzero elements (N off-diagonal
elements, since there are at most N spins to be flipped by a
one-body operator S(n), plus the diagonal element, finite as
long as there is at least one finite off-diagonal element in
the same line). Hence, we find at least 2N − (N + 1) zeros
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in each line of 
. The number of lines is 2N , explaining
the result in Nzeros. For large spin-1/2 chains, N � 1, the
minimum number of zeros approaches the number of matrix
elements, 22N . The almost linear growth of the number of
allowed relaxation pathways is, therefore, unable to ensue the
exponential growth of the system dimension. It suggests that
the kind of broken ergodicity we find in our model tends to be
exponentially more likely to appear in larger spin chains.

IV. SPIN CHAINS OF N = 2 AND N = 3

In this section, we focus on specific examples of the inter-
play between frustration and inhomogeneous environments in
the relaxation of spin chains. We choose the exactly solvable
Ising model, as typically employed in frustration scenarios
[2,3]. We restrict ourselves to case studies of small chains,
which are more tractable analytically and provide clear exam-
ples of the relevant effects here. Our results are of especial
interest to the context of quantum simulation [31,32,42,43],
where the quantum dynamics of small open Ising chains can
be tracked and controlled with high fidelity. Reference [31],
in particular, pioneered the engineering of reservoirs for finite
chains, going beyond the design of Hamiltonians in quantum
simulation.

A. Relaxation of N = 2 frustrated homogeneously open Ising
chain: A case for the microscopic model

Following through the discussion below Eq. (5), we bring
here an example highlighting why the microscopic model is
more appropriate to describe relaxation of a frustrated spin
chain. We consider an Ising chain homogeneously coupled
to the environment. We show that the microscopic model is
consistent with standard statistical mechanics, namely, the
steady state at T → 0 is the ground state of the entire system.
We also show that the phenomenological model contradicts
such expectation.

The system Hamiltonian is described by

HS = h1σ
(1)
z + h2σ

(2)
z + �

(A)
12 σ (1)

z σ (2)
z , (12)

where σ (n)
z is the z-Pauli matrix of the nth spin-1/2. We choose

�
(A)
12 � h1 > h2 > 0. The energy spectrum here is given by

|1〉 = |↓↑〉, E1 = −�
(A)
12 − h1 + h2,

|2〉 = |↑↓〉, E2 = −�
(A)
12 + h1 − h2,

|3〉 = |↓↓〉, E3 = �
(A)
12 − h1 − h2,

|4〉 = |↑↑〉, E4 = �
(A)
12 + h1 + h2. (13)

The ground state frustrates the term h2σ
(2)
z in HS , in agreement

with the formalism in Ref. [15]. We also choose HS to be
nondegenerate and all transition frequencies ωi j to be unequal.

We are interested in energy-exchanging system-reservoir
couplings, that satisfy [HS, S(n)] �= 0. We assume that S(n) =
σ (n)

x . We also choose the ohmic spectral function, J (n)(ω) =
κ (n)ω, where κ (n) is a dimensionless parameter that we con-
sider as a free variable.

When we set κ (1) = κ (2) (homogeneous environment), the
system finds a unique steady state, namely, the Gibbs state

ρS (∞) = exp(−βHS )/ZS . At the zero-temperature limit,

ρS (∞)|T →0 → |1〉〈1| = |↓↑〉〈↓↑|. (14)

The phenomenological approach, as discussed above [see the
paragraph below Eq. (5)], leads to the local ground state of
each spin (as if they were uncoupled). The Lindbladian for
this case (i.e., locally coupled to the environment via σ (n)

x , at
the zero-temperature limit, T → 0) is

L(ph)[ρS] =
∑

n=1,2

γn(σ (n)
− ρSσ

(n)
+ − {ρS, σ

(n)
+ σ

(n)
− }/2), (15)

where the decay rates are γn = J (n)(hn) = κ (n)hn and the
rising and lowering operators are the usual σ

(n)
± = (σ (n)

x ±
iσ (n)

y )/2 (or, σ
(n)
− = |↓〉n〈↑|n and σ

(n)
+ = σ

(n)†
− ). Equation (15)

has been derived here from Eq. (4), by applying it first to
H (ph)

S1 = h1σ
(1)
z , then to H (ph)

S2 = h2σ
(2)
z , and finally adding the

two terms, as typically done in weak-coupling regimes [17].
This phenomenological Lindbladian, L(ph)[ρS], leads to

ρ
(ph)
S (∞)|T →0 → |↓↓〉〈↓↓| = |3〉〈3|. (16)

Equation (16) shows that the phenomenological model intro-
duces here a spurious broken ergodicity, which is properly
avoided by the microscopic description of this frustrated spin
chain relaxation, as shown in Eq. (14). This comparison
underlines that the microscopic model is more suitable for de-
scribing relaxation in spin chains, especially when frustration
is present.

B. Relaxation of N = 2 unfrustrated inhomogeneously open
Ising model

1. Blocked ground state

Our next step is to illustrate how a strongly inhomoge-
neously environment can break ergodicity in a unfrustrated
spin chain. The system Hamiltonian is described by [see
Fig. 2(a)]

HS = h1σ
(1)
z + h2σ

(2)
z − �

(B)
12 σ (1)

z σ (2)
z , (17)

where σ (n)
z is the z-Pauli matrix of the nth spin-1/2. We choose

h1 > h2 > �
(B)
12 > 0, that guarantees the absence of energy

frustration. We also choose HS to be nondegenerate and all
transition frequencies ωi j to be unequal. The energy spectrum
here reads

|1〉 = |↓↓〉, E1 = −h1 − h2 − �
(B)
12 ,

|2〉 = |↓↑〉, E2 = −h1 + h2 + �
(B)
12 ,

|3〉 = |↑↓〉, E3 = h1 − h2 + �
(B)
12 ,

|4〉 = |↑↑〉, E4 = h1 + h2 − �
(B)
12 . (18)

We still assume that S(n) = σ (n)
x and that the spectral function

is ohmic, J (n)(ω) = κ (n)ω.
In Fig. 2(b) dashed arrows indicate the relaxation pathways

induced by the two independent baths, characterized by κ (1)

and κ (2). Bath (1) induces, via σ (1)
x , transitions |1〉 ↔ |3〉 and

|2〉 ↔ |4〉. Bath (2) induces, via σ (2)
x , transitions |1〉 ↔ |2〉

and |3〉 ↔ |4〉. If we make κ (1) = 0 and κ (2) = 1 (strongly
inhomogeneous environment), subspace {|1〉, |2〉} becomes
decoupled from {|3〉, |4〉}. The system starting its dynamics

022114-4



FRUSTRATION AND INHOMOGENEOUS ENVIRONMENTS IN … PHYSICAL REVIEW E 102, 022114 (2020)

1 2 5 10 20 50 100

0 2 4 6 8 100 2 4 6 8 100.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0

T T
(a)

(c)

(e) (f)

(d)

(b)

FIG. 2. Inhomogeneously open Ising chain simulates a protein
denaturation experiment. (a) Ising chain of two spins (N = 2),
black arrows represent σ (n)

z . (b) Energy levels and relaxation path-
ways: vanishing κ (1) blocks low-energy subspace from high-energy
subspace. (c) Excitation probability Pexc(t ) = 1 − 〈1|ρS (t )|1〉 as a
function of time t (units of h̄/h1) at fixed κ (1) = 10−5, for temper-
atures T = 0.1h1/kB (dotted blue, lower curve), T = 1h1/kB (dashed
red, middle curve), and T = 10h1/kB (solid black, upper curve).
(d) Excitation probability Pexc(t ) = 1 − 〈1|ρS (t )|1〉 as a function
of time t (units of h̄/h1) at fixed temperature T = 10h1/kB, for
κ (1) = 10−3 (dotted blue, lower curve), κ (1) = 10−2 (dashed red,
middle curve), and κ (1) = 1 = κ (2) (solid black, upper curve). (e)
Pexc(t = 10) with respect to T (units of h1/kB) at fixed κ (1) = 10−5.
(f) Pexc(t = 10) with respect to κ (1) at fixed T = 10h1/kB. We set
h2 = h1/2, �

(B)
12 = h1/3 and κ (2) = 1. Panels (c)–(f) evidence that

chemical-like excitations (by varying the coupling κ (1)) exceed the
50% limit from thermal excitations at time t = 10h̄/h1. The higher
chemical-like excitation (f) as compared to the thermal excitation (e)
remarkably resembles the experimental results in Ref. [34] (see Fig. 4
in the Appendix).

at the highest energy subspace, {|3〉, |4〉}, gets blocked from
attaining the lowest energy subspace, {|1〉, |2〉}. The strongly
inhomogeneous environment induces broken ergodicity in the
relaxation of an unfrustrated spin chain, in this case.

2. A simulation of protein denaturation

Proteins are relevant to the present discussion because they
may be affected not only by frustration (as mentioned in
the introduction) but also by spatially inhomogeneous envi-
ronments. The spatial inhomogeneity of a protein’s environ-
ment can lead to measurable differences between thermal and
chemical denaturations [34,39,40]. We intend to simulate this
feature of the protein dynamics, as inspired by Refs. [4,35].
More precisely, we look for simulating the experimental
results reported in Ref. [34]. It should be emphasized that,
rather than using open spin chains to realistically map the

stochastic dynamics of aminoacid chains, our purpose here
is to search for universal features appearing in the relaxation
of inhomogeneously open chains. As a typical procedure, the
experiment in Ref. [34] follows the state of the protein as a
function of increasing temperature at a given chemical con-
centration, and compares it to the increase in the denaturant
concentration at a constant temperature (see the Appendix for
further discussion).

Here we follow a protocol analogous to that in Ref. [34].
We calculate the relaxation of our open Ising chain, Eq. (17).
First, we set different temperatures T for a constant strongly
inhomogeneous environment (κ (1) � κ (2)), to simulate ther-
mal denaturation. Then we vary κ (1) [the coupling with bath
(1)], at constant T and constant κ (2), to simulate the varia-
tion of solvent concentration in the protein environment. In
Figs. 2(c) and 2(d), we show the excitation probability in
time, defined here as Pexc(t ) = 1 − 〈1|ρS (t )|1〉. To recall a
protein-like denaturation dynamics, we start from our native-
like state |1〉, hence Pexc(0) = 0. Now we compare the two
types of excitation processes in time (h̄/h1 units), i.e., the
thermal versus the chemical-like. In the thermal excitation
process, we let κ (1) = 10−5, κ (2) = 1 and obtain Pexc(t ) at
temperatures T = 0.1 to 10 (h1/kB units). We set h2 = h1/2
and �

(B)
12 = h1/3. We see a saturation Pexc(t ) � 50% at high

temperatures. In the chemical-like excitation process, we keep
the high temperature T = 10 and vary the coupling κ (1) from
10−3 to 1. We see the system crossing the 50% barrier and
attaining higher excitations at higher couplings. Figure 2(e)
shows Pexc(t = 10) as a function of T at κ (1) = 10−5. Because
the system has effectively only two energy levels in the case
κ (1) = 10−5, the maximal of ∂T Pexc(t = 10) is around Tθ ∼ 1,
near the peak of the specific heat, another typical signature of
thermal denaturation of proteins. Figure 2(f) shows Pexc(t =
10) as a function of κ (1) at T = 10. The higher chemical-
like excitation in Fig. 2(f) as compared to the thermal one
in Fig. 2(e) remarkably resembles experimental results in
Ref. [34] (see the Appendix).

Our formalism may be regarded as a generalization of
the molecular transfer model, used for describing thermal
and chemical denaturation in proteins [36–40]. The molecular
transfer model combines coarse-grained molecular dynamics
simulations and Tanford’s transfer model [35] to accurately
predict the dependence of equilibrium properties of pro-
teins at finite concentration of osmolytes and denaturants.
Tanford’s model, the precursor, distinguishes those peptide
groups that are in contact with the surrounding environ-
ment (solvent-accessible surface area) from those that are,
by contrast, shielded from the solvent by other parts of the
protein molecule. This inhomogeneous coupling to the envi-
ronment consists in the working principle of Tanford’s model
to capture chemical denaturation. Despite acknowledging its
practical success, we propose here a solution to an issue we
find in the theoretical foundations of the molecular transfer
model, namely, the unequal footing for treating thermal and
chemical effects [39,40]. On the one hand, temperature enters
in the ad hoc relaxation and diffusion rates of the Langevin
equations describing the polymer stochastic dynamics. On
the other hand, chemical effects enter in the free energies
for the thermal equilibrium states of the protein transferred
(hence the name) from a solution without solvent to another
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T

T

T

FIG. 3. Frustrated Ising chain in triangular lattice: �
(C)
12 = � > 0

induces antiferromagnetism, whereas �
(C)
23 = � − δ > 0 and �

(C)
13 =

� − 2δ > 0 induce ferromagnetism. We choose a perturbative ex-
ternal field h1 = h2 = h3 = h > 0, where h = 3δ � �, to pertur-
batively break spectral degeneracies. The three reservoirs are in-
dependent, all set to temperature T . Again, each spin-reservoir
coupling κ (n) is a free parameter. We show that an inhomogeneous
environment (κ (i) �= κ ( j), for i �= j) can break ergodicity and select
relaxation to a single state from the three lowest nearly degenerated
eigenenergies (as induced by frustration).

with added solvent. We conjecture that our results provide
the missing connection between this stochastic Langevin ap-
proach for describing thermal effects and the thermodynamic
transfer model for describing chemical effects. Our hypothesis
could be tested, for instance, by deriving bead-dependent
and state-dependent friction coefficients [44,45] and random
forces from a system-plus-reservoir approach, consistently
with the time-dependent solvent-accessible surface area of
the protein. Our conjecture could also be explored by further
investigating polyelectrolyte conformations [46], where the
spatial distribution of surrounding ions matters as much as
their concentration to the polymer’s shape. The study of
inhomogeneous environments may also be relevant to the
context of adsorption of flexible polymer chains on a surface
[47], where the number of chain-surface contacts is variable.

C. Relaxation of N = 3 frustrated Ising model: Inhomogeneous
environment mitigates frustration

A typical model in frustration studies is the disordered
Ising model in a triangular lattice (see Sec. 2.5 of Ref. [1]),
that we illustrate in Fig. 3. If two couplings tend to align
spins to the same direction (ferromagnetic), but the other to
the opposite direction (antiferromagnetic), then each spin will
frustrate the minimization of at least one energetic contribu-
tion. Our goal here is to search, in this paradigmatic example,
whether an inhomogeneous environment can suppress the dy-
namical effects induced by frustration, providing the opposite
effect from the N = 2 case above (where an inhomogeneous
environment was able to introduce a frustration-like effect in
an unfrustrated spin chain).

The Hamiltonian in this case is set to HS = H0 + V , where

H0 = �
(C)
12 σ (1)

z σ (2)
z − �

(C)
23 σ (2)

z σ (3)
z − �

(C)
13 σ (1)

z σ (3)
z (19)

and V = h1σ
(1)
z + h2σ

(2)
z + h3σ

(3)
z . We select h1 = h2 = h3 ≡

h > 0, �
(C)
12 = �, �

(C)
23 = � − δ, and �

(C)
13 = � − 2δ. We

choose the external field to be perturbative, h � �, and fix
h = 3δ, so to perturbatively break degeneracies. The spectrum
of HS here is

|1〉 = |↓↓↓〉, E1 = −� − 6δ,

|2〉 = |↑↓↓〉, E2 = −� − 4δ,

|3〉 = |↓↑↓〉, E3 = −� − 2δ,

|4〉 = |↓↑↑〉, E4 = −� + 2δ,

|5〉 = |↑↓↑〉, E5 = −� + 4δ,

|6〉 = |↑↑↑〉, E6 = −� + 12δ,

|7〉 = |↓↓↑〉, E7 = 3� − 6δ,

|8〉 = |↑↑↓〉, E8 = 3�. (20)

Note that states |1〉, |2〉, and |3〉, respectively, frustrate the
terms ∝ �

(C)
12 , �

(C)
13 , and �

(C)
23 . In this example, we find many

degenerate gaps (e.g., E2 − E1 = E3 − E2 = E5 − E4). How-
ever, in the present example, no gap degeneracy affects any of
the results discussed in this section. That is because, at given
(n) and ω [see A(n)

ω in Eq. (5)], the matrix element 〈i|S(n)| j〉
is nonzero for at most one transition |i〉 → | j〉, where we use
S(n) = σ (n)

x . We also keep using an ohmic spectral function,
J (n)(ω) = κ (n)ω.

Let us compare four scenarios, all starting from the most
excited state, ρS (0) = |8〉〈8|. For the sake of having a clear
picture, we keep in mind, in all cases, the very low tempera-
ture limit, kBT ≈ δ � �.

Case 1. Homogeneous environment: κ (1) = κ (2) = κ (3) =
1. In the t → ∞ limit, we find that the system reaches thermal
equilibrium. The Gibbs state ρS (∞) = exp(−βHS )/ZS is the
unique solution here. At low temperatures, kBT ≈ δ � �, the
three most populated states are, of course, |1〉, |2〉, and |3〉.

Case 2. Inhomogeneous environment I: κ (1) = κ (2) = 1 and
κ (3) = 0. Here we find broken ergodicity, so the system gets
trapped in the subspace {|1〉, |2〉, |3〉, |8〉}. In the t → ∞ limit,
at low temperatures, kBT ≈ δ � �, the three most populated
states are also |1〉, |2〉, and |3〉. This inhomogeneous environ-
ment, at low temperatures, does not dramatically change the
results found in the homogeneous case.

Case 3. Inhomogeneous environment II: κ (1) = 1, κ (2) = 0,
and κ (3) = 1. Here we find broken ergodicity, so the system
gets trapped in the subspace {|3〉, |4〉, |6〉, |8〉}. In the t → ∞
limit, at low temperatures, kBT ≈ δ � �, the most populated
state is |3〉. Remarkably, the populations of states |1〉 and
|2〉 precisely vanish, 〈1|ρS (∞)|1〉 = 〈2|ρS (∞)|2〉 = 0, at any
temperature.

Case 4. Inhomogeneous environment III: κ (1) = 0 and
κ (2) = κ (3) = 1. Here we find broken ergodicity, so the sys-
tem gets trapped in the subspace {|2〉, |5〉, |6〉, |8〉}. In the
t → ∞ limit, at low temperatures, kBT ≈ δ � �, the most
populated state is |2〉. Remarkably, the populations of |1〉 and
|3〉 precisely vanish, 〈1|ρS (∞)|1〉 = 〈3|ρS (∞)|3〉 = 0, at any
temperature.

We find that, in cases 3 and 4 above, the inhomogeneous
environments have strongly inhibited the thermal-like distri-
bution of the three nearly degenerated lowest-energy states.
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Rather, they have isolated a single state to play the role of an
effective ground state (|3〉 in case 3 and |2〉 in case 4). This
shows how an inhomogeneous environment can suppress the
effect of frustration, here represented by the (approximate) de-
generacy of the low-energy levels. In the context of quantum
simulation [31,32,42,43], inhomogeneous environments may
serve in the preparation of specific target states.

V. CONCLUSIONS

We employed a system-plus-reservoir approach to inves-
tigate how strongly inhomogeneous environments compete
with frustration in the relaxation of finite open chains with
Ising-type interactions. The system-plus-reservoir approach
allowed us to address frustration and dissipation in a con-
sistent manner. We derived a Markovian quantum master
equation for a generic chain within the microscopic model,
valid in the ultrastrong intrachain couplings regime, going
beyond phenomenological models. In Sec. III we established
a sufficient condition for our inhomogeneous environments to
break ergodicity in a general chain, namely, to have a block
diagonal 
. We have explicitly derived 
i j in Eqs. (8)–(10)
and discussed its minimum number of zeros for the case of
N spins-1/2 in Eq. (11). In Sec. IV A we found an example
that highlights the relevance of the microscopic model to
properly describe relaxation in the presence of frustration,
showing how to avoid a spurious broken ergodicity from
the phenomenological model. In Sec. IV B we examined a
scenario where the strong inhomogeneity of the environment
caused broken ergodicity in an unfrustrated spin chain. This
example allowed us to simulate the results from a recent ex-
periment on the difference between thermal and chemical pro-
tein denaturation, where environment inhomogeneity is also
key. In Sec. IV C we found that inhomogeneous environments
can suppress the effect of frustration in the relaxation of the
paradigmatic frustrated spin chain in a triangular lattice. More
precisely, in two of the studied cases, the inhomogeneous
environment has strongly inhibited the thermal-like distribu-
tion of the three nearly-degenerated lowest-energy states, by
isolating a single state as an effective ground state.

Our fundamental study on relaxation of open chains with
Ising-type interactions, subjected to inhomogeneous environ-
ments and to frustration, suggests promising perspectives for
applying state-of-the-art quantum simulators [31,32,42,43] to
investigate the dissipative dynamics of proteins, especially
denaturation [34,37–40], of polyelectrolytes [46], as well as
of polymers adsorption [47]. This would mean going beyond
the already formidable task of using quantum annealers to
calculate the (equilibrium) folded state of a protein [48,49].
The role of the competition between frustration (Hamiltonian
contribution) and inhomogeneous environments (dissipative
contribution) could possibly find applications also in the
context of driven-dissipative phase transitions [32].
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FIG. 4. Reprint of Fig. 1 from A. Narayan, K. Bhattacharjee,
and A. N. Naganathan, Biochemistry 58, 2519 (2019), under CC-BY
License (Ref. [34]). Original caption: Thermal (filled circles, panels
A and C) and chemical unfolding (empty circles and at 298 K, panels
B and D) curves of Cnu at pH 5.0 (blue) and PurR at pH 7.0 (green)
monitored by far-UV CD at 222 nm and reported in MRE units
(degrees square centimeters per decimole). Dashed lines in panels
B and D represent the highest-temperature far-UV CD signal. Red
curves are fits to two-state models.

APPENDIX: PROTEIN DENATURATION EXPERIMENT
FROM REF. [34] REFERRED TO IN SEC. IV B 2

We reprint here part of the results published under CC-
BY License by A. Narayan, K. Bhattacharjee and A. N.
Naganathan in Biochemistry 58, 2519 (2019), our Ref. [34].
The paper, “Thermally versus chemically denatured protein
states,” is crucial to our results in Sec. IV B 2.

Figure 4 describes an experiment on the differences in
conformational preferences of thermally and chemically dena-
tured protein states [34]. The authors employ a spectroscopic
technique known as far-ultraviolet (far-UV) circular dichro-
ism (CD), that reveals the local conformational (angular) pref-
erence of peptide bonds. They use thermal denaturation data
of Cnu, a bacterial nanosensor of environmental conditions, as
well as of PurR, a member of the LacI DNA-binding domain
family, with which they compare their chemical denaturation
results. CD signals are reported in degrees square centimeters
per decimole (MRE units). The results are independent of
protein concentration, protein length, and slight differences in
sample path length, as tested with the purpose of eliminating
ambiguities on the origins of the observed effect.

Key to the present paper, Fig. 4 shows that the increase of
urea concentration in the protein’s environment opens exci-
tation pathways that are otherwise unavailable. Urea allows
the protein to achieve denatured states that cannot be accessed
solely by thermal means. By increasing the temperature with-
out urea (panels A and C, the system’s response abruptly
changes (around 320–330 K) from a native (folded) state to
a denatured (unfolded) state, approximately saturating at a
certain high-temperature plateau dashed lines in panels B and
D. The addition of urea at constant temperature (panels B and
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D breaks this thermal saturation and causes the data to clearly
exceed the plateau, even at a relatively low temperature with
respect to thermal denaturation (298 K).

Remarkably similar behavior has been shown in our
Sec. IV B 2, with a two-spin-1/2 chain inhomogeneously open
to the environment. A strongly inhomogeneous environment
(κ (1) � κ (2) = 1) induced a plateau in the thermal excitation
of the chain [see Fig. 2(e)]. This plateau was broken by
the increase in κ (1), which played the role in our model

of a chemical concentration in the system’s environment.
The idea was that the larger the chemical concentration, the
more homogeneous we expect the system’s environment to
be, hence the closest κ (1) ≈ κ (2) [see Fig. 2(f)]. Our results
suggest that the differences between thermal and chemical
denaturation in proteins can be regarded as a more general
problem of how ergodicity depends on the inhomogeneity
of system-environment couplings, generalizing the molecular
transfer model [39] as explained in Sec. IV B 2.
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[21] D. Valente, J. Suffczyński, T. Jakubczyk, A. Dousse, A.

Lemaître, I. Sagnes, L. Lanco, P. Voisin, A. Auffèves, and P.
Senellart, Phys. Rev. B 89, 041302(R) (2014).

[22] M. Michel, J. Gemmer, and G. Mahler, Eur. Phys. J. B 42, 555
(2004).

[23] A. Levy and R. Kosloff, Europhys. Lett. 107, 20004 (2014).
[24] T. Werlang, M. A. Marchiori, M. F. Cornelio, and D. Valente,

Phys. Rev. E 89, 062109 (2014).

[25] T. Werlang and D. Valente, Phys. Rev. E 91, 012143 (2015).
[26] K. Joulain, J. Drevillon, Y. Ezzahri, and J. Ordonez-Miranda,

Phys. Rev. Lett. 116, 200601 (2016).
[27] F. Barra, Sci. Rep. 5, 14873 (2015).
[28] E. Pereira, Phys. Rev. E 97, 022115 (2018).
[29] G. De Chiara, G. Landi, A. Hewgill, B. Reid, A. Ferraro,

A. J. Roncaglia, and M. Antezza, New J. Phys. 20, 113024
(2018).

[30] E. Pereira, Phys. Rev. E 83, 031106 (2011).
[31] J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz, M.

Chwalla, M. Hennrich, C. F. Roos, P. Zoller, and R. Blatt,
Nature (London) 470, 486 (2011).

[32] M. Müller, S. Diehl, G. Pupillo, and P. Zoller, Adv. At. Mol.
Opt. Phys. 61, 1 (2012).

[33] V. Balachandran, G. Benenti, E. Pereira, G. Casati, and D.
Poletti, Phys. Rev. Lett. 120, 200603 (2018).

[34] A. Narayan, K. Bhattacharjee, and A. N. Naganathan,
Biochemistry 58, 2519 (2019).

[35] C. Tanford, J. Am. Chem. Soc. 86, 2050 (1964).
[36] E. P. O’Brien, G. Ziv, G. Haran, B. R. Brooks, and D.

Thirumalai, Proc. Natl. Acad. Sci. USA 105, 13403 (2008).
[37] D. Thirumalai, E. P. O’Brien, G. Morrison, and C. Hyeon,

Annu. Rev. Biophys. 39, 159 (2010).
[38] J. L. England and G. Haran, Annu. Rev. Phys. Chem. 62, 257

(2011).
[39] C. Hyeon and D. Thirumalai, Nat. Commun. 2, 487 (2011).
[40] Z. Liu, G. Reddy, and D. Thirumalai, J. Phys. Chem. B 120,

8090 (2016).
[41] B. Subramanian and J. Lebowitz, J. Phys. A: Math. Gen. 32,

6239 (1999).
[42] J. Simon, W. S. Bakr, R. Ma, M. E. Tai, P. M. Preiss, and M.

Greiner, Nature (London) 472, 307 (2011).
[43] H. Schwager, J. I. Cirac, and G. Giedke, Phys. Rev. A 87,

022110 (2013).
[44] G. Hummer, New J. Phys. 7, 34 (2005).
[45] H. Yang, P. Bandarkar, R. Horne, V. B. P. Leite, J. Chahine, and

P. C. Whitford, J. Chem. Phys. 151, 085102 (2019).
[46] S. N. Innes-Gold, P. A. Pincus, M. J. Stevens, and O. A. Saleh,

Phys. Rev. Lett. 123, 187801 (2019).
[47] P. H. L. Martins, J. A. Plascak, and M. Bachmann, J. Chem.

Phys. 148, 204901 (2018).
[48] A. Perdomo, C. Truncik, I. Tubert-Brohman, G. Rose, and A.

Aspuru-Guzik, Phys. Rev. A 78, 012320 (2008).
[49] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, and

A. Aspuru-Guzik, Sci. Rep. 2, 571 (2012).

022114-8

https://doi.org/10.1088/0305-4608/5/5/017
https://doi.org/10.1103/PhysRevLett.35.1792
https://doi.org/10.1073/pnas.84.21.7524
https://doi.org/10.1073/pnas.1613892114
https://doi.org/10.1038/nsb0197-10
https://doi.org/10.1103/PhysRevLett.122.018103
https://doi.org/10.1103/PhysRevLett.91.096401
https://doi.org/10.1103/PhysRevB.72.014417
https://doi.org/10.1103/PhysRevE.81.051135
https://doi.org/10.1103/PhysRevE.92.042143
https://doi.org/10.1103/PhysRevE.98.022132
https://doi.org/10.1103/PhysRevLett.124.100604
https://doi.org/10.1103/PhysRevLett.107.260602
https://doi.org/10.1103/PhysRevE.99.012134
https://doi.org/10.1007/BF01492012
https://doi.org/10.1016/0003-4916(83)90202-6
https://doi.org/10.1103/PhysRevB.89.041302
https://doi.org/10.1140/epjb/e2005-00014-x
https://doi.org/10.1209/0295-5075/107/20004
https://doi.org/10.1103/PhysRevE.89.062109
https://doi.org/10.1103/PhysRevE.91.012143
https://doi.org/10.1103/PhysRevLett.116.200601
https://doi.org/10.1038/srep14873
https://doi.org/10.1103/PhysRevE.97.022115
https://doi.org/10.1088/1367-2630/aaecee
https://doi.org/10.1103/PhysRevE.83.031106
https://doi.org/10.1038/nature09801
https://doi.org/10.1016/B978-0-12-396482-3.00001-6
https://doi.org/10.1103/PhysRevLett.120.200603
https://doi.org/10.1021/acs.biochem.9b00089
https://doi.org/10.1021/ja01064a028
https://doi.org/10.1073/pnas.0802113105
https://doi.org/10.1146/annurev-biophys-051309-103835
https://doi.org/10.1146/annurev-physchem-032210-103531
https://doi.org/10.1038/ncomms1481
https://doi.org/10.1021/acs.jpcb.6b00327
https://doi.org/10.1088/0305-4470/32/35/302
https://doi.org/10.1038/nature09994
https://doi.org/10.1103/PhysRevA.87.022110
https://doi.org/10.1088/1367-2630/7/1/034
https://doi.org/10.1063/1.5113814
https://doi.org/10.1103/PhysRevLett.123.187801
https://doi.org/10.1063/1.5027270
https://doi.org/10.1103/PhysRevA.78.012320
https://doi.org/10.1038/srep00571

