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Extreme matrices or how an exponential map links classical and free extreme laws
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Using our proposed approach to describe extreme matrices, we find an explicit exponentiation formula linking
the classical extreme laws of Fréchet, Gumbel, and Weibull given by the Fisher-Tippet-Gnedenko classification
and free extreme laws of free Fréchet, free Gumbel, and free Weibull of Ben Arous and Voiculescu. We
also develop an extreme random matrix formalism, in which refined questions about extreme matrices can be
answered. In particular, we demonstrate explicit calculations for several more or less known random matrix
ensembles, providing examples of all three free extreme laws. Finally, we present an exact mapping, showing
the equivalence of free extreme laws to the Peak-over-Threshold method in classical probability.
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I. INTRODUCTION

Extreme value theory in classical probability is the promi-
nent application of probability calculus for several problems
seeking extreme values for a large number of random events.
Its power comes from universality according to the Fisher-
Tippett-Gnedenko classification [1] which permits only three
statistical laws of extremes: the Gumbel distribution, the
Fréchet distribution, and the Weibull distribution. Beyond
applications of extreme value theory in physics in the theory
of disordered systems [2], seminal applications include in-
surance, finances, hydrology, neuroscience, biology, computer
science, and several others [3–7].

Since the seminal work of Ref. [8], random matrix theory
has become one of the most universal probabilistic tools
in physics and in several multidisciplinary applications [9].
In the limit when the size of the matrix tends to infinity,
random matrix theory bridges to free probability theory, which
can be viewed as an operator valued (i.e., noncommutative)
analog of the classical theory of probability [10,11]. Both
calculi exhibit striking similarities. Wigner’s semicircle law
can be viewed as an analog of normal distribution, Marçenko-
Pastur spectral distribution for Wishart matrices is an analog
of Poisson distribution in classical probability calculus, and
Bercovici-Pata bijection [12] is an analog of Lévy stable
processes classification for heavy-tailed distributions. It is
therefore tempting to ask the question: How far can we extend
the analogies between these two formalisms?

In particular, do we have an analog of extreme values
limiting distributions for the spectra of very large random
matrices, i.e., does the Fisher-Tippett-Gnedenko classification
exist in free probability? The positive answer to this crucial
question was provided more then a decade ago by Ben Arous
and Voiculescu [13]. Using operator techniques, they proved
that free probability theory also has three limiting extreme
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distributions: the free Gumbel, the free Fréchet, and the free
Weibull distribution. The functional form of these limiting
distributions differs from the classical probability case, but,
surprisingly, the domains of attraction are the same as in their
classical counterparts. The authors of Ref. [13] state several
properties of newly found free extreme laws like their repre-
sentation in terms of certain generalized Pareto distribution or
relation with a Balkema–de Haan–Pickands [14,15] classifi-
cation in the classical probability theory of exceedances.

Despite various connections between classical and free
calculi, an explicit link between extreme laws was lacking.
In this paper we establish an exponentiation formula between
laws by comparing and contrasting existing our proposed
approaches to free extreme laws.

A. Main results

First, we propose two approaches to study extremes: the
thinning method, having its root in classical extreme value
theory, and an extreme random matrices scheme based on
random matrix theory. With two previously studied frame-
works due to Ben-Arous and Voiculescu (new based on free
probability and old Peak-over-Threshold statistics), we care-
fully establish interrelations between them summarized in
Fig. 1. Whereas for the first three approaches equivalency is
straightforward, explaining the relation with the Peak-over-
Threshold method is both unique and nontrivial. In the end,
despite some specialization of each approach, all considered
frameworks are equivalent, i.e., respective cumulative distri-
bution functions (CDFs) agree.

Second, we describe in brief the merits of the two ap-
proaches. The thinning approach, in contrast the to free-
probabilistic method, both is intuitive and encompasses clas-
sical and free extreme events. On the other hand, extreme
random matrices present a framework to which the matrix
aspect of objects is accessible and presents its applicability in
Fig. 3 below when the number r � N of extremized matrices
is much larger than their sizes N .
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FIG. 1. Flow diagram of the discussed frameworks in relation to families of extreme laws.

The main result (5) in the thinning approach is the formula
for a CDF of a large maximum matrix (understood as dis-
tribution of its eigenvalues) obtained by extremizing r large
matrices:

Fr (x) = r[ f (x) − αr]θ [ f (x) − αr],

where f is the CDF of a single large matrix, parameter αr =
r−1

r , and θ is a Heaviside step function. The result is simply a
truncated single matrix CDF f ; see Fig. 2 for an example of
the semicircle law.

In the extreme random matrix framework, the CDF of
picking the largest out of r matrices is given by Eq. (10) where
now, however, the matrices are of finite size N :

FN,r (x) = 1

N

N−1∑
n=0

(N − n)
n∑

j1 · · · jr = 0
j1+ · · · + jr = n

r∏
l=1

EN ( jl ; x).

The gap functions EN ( j; x) are probability functions that the
jth largest eigenvalues are greater than x while N − j are

smaller than x. When x is far from critical points like edges
of the spectrum, two CDFs agree: limN→∞ FN,r (x) = Fr (x).

Third, based on the thinning method encompassing both
classical and free worlds, we find an exponential map (33)
relating CDFs of classical extreme laws F class(x) with free
extreme laws F free(x):

F class(x) = t (x) exp

[
F free(x)

T (x)
− 1

]
,

where t (x) = θ (x), 1, 1 and T (x) = θ (x − 1), θ (x), θ (x + 1)
are step functions for Fréchet, Gumbel, and Weibull classes,
respectively. The step function in the denominator is under-
stood formally so as to cancel out the corresponding term in
the free CDF F free. This proves the one-to-one correspondence
between extreme laws in both probability calculi [i.e., in
classical and in matricial (free) ones].

Last, due to the operational and calculational simplicity
of the thinning approach, we give several explicit examples
of free extreme laws for several random matrix ensembles.
As most spectral densities occurring in random matrix theory

FIG. 2. Analytical (lines) and numerical (points) density of eigenvalues ρ
(GUE)
bulk,r (x) = d

dx F (GUE)
bulk,r (x) given by Eqs. (23) and (24) where we

have plotted r matrices of size 500 × 500 each drawn from an GUE defined by jPDF (21). The change of r parameter from small [(a), r � N]
through medium [(b), r ∼ N] to plot (c) for large r > N shows a transition where tail-like spectral features leaks out beyond the bulk boundary
at x = 2.
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have finite supports, the free Weibull category is most numer-
ous. The free Fréchet class is represented by spectral densities
found through Bercovici-Pata construction being analogues of
Lévy heavy-tailed distributions. Finally, we report in detail
on one, quite exotic example (the so-called free Gaussian
distribution) found to lie within the free Gumbel class, and we
comment on the link of such a distribution to plasma physics.

II. APPROACHES TO EXTREMES

In this section we describe the status of all four approaches
to extreme events and compare existing one and those pro-
posed by us. The authors of Ref. [13] have defined free
extreme values using free probability and also noticed an
unexpected connection to Peak-over-Threshold statistics. In
this work we introduce two distinct but related frameworks
based on random matrix theory and classical extreme value
theory: the thinning method and extreme random matrices. All
four approaches with their distinctive features and the notation
we use are summarized below:

Thinning method (using statistics and extreme value
theory)

(1) Works for asymptotically large matrices
(2) Connects classical and free extreme laws
(3) Applicable not only to eigenvalues
The central object is the CDF Fm,n and its asymptotic form

Fr given by Eqs. (4) and (5), respectively.
Extreme random matrices (using random matrix theory)
(1) Works for finite matrices
(2) Can address questions beyond bulk
The central object is the CDF FN,r and its asymptotic form

Fr given by Eqs. (10) and (14), respectively.
Free extreme values (using free probability)
(1) Formulated in operator language
(2) Not limited to matrices
The central object is the CDF FH∨r given by Eq. (19).
Peak-over-Threshold method (using statistics and extreme

value theory)
The central object is the probability PPOT given by Eq. (20).
We will describe mostly the first two approaches and later

compare them with the third and fourth. For ease of presen-
tation we try to clearly delineate each approach as our goal
is to highlight connections (and to large extent equivalency)
between the arising extreme laws. To this end, in all three
descriptions we focus on a common quantity of the CDF.

First, we describe an approach based on statistics and
extreme value theory where we focus on order statistics. We
study the CDF of a fraction of the largest i.i.d. random vari-
ables, which we name the thinning procedure. This approach
is applicable to any random variables, not only related to
random matrices. In particular, it does degenerate to the usual
order statistics.

Second, we focus on a second approach based on the ran-
dom matrix perspective where we define en extreme CDF FN,r

as an average over the joint probability distribution function of
the underlying ensemble of r random matrices. In particular,
we obtain general asymptotic results (as the matrix size N
goes to infinity) valid both in the bulk of the spectrum and near
the (soft) spectral edge. We also investigate the limit where

the number of matrices r goes to infinity and a certain type of
double-extreme distribution emerges.

The third point of view is based on Refs. [13,16] and has
its source in free probability. We present a result of Ref. [17]
for the eigenvalue CDF of maximizing r Hermitian random
matrices. This framework can be generalized to a general
operator language.

Last, we describe a Peak-over-Threshold, method which
focuses on statistical study of random events only upon ex-
ceeding a certain threshold. It is somewhat unrelated to the
previous ones as it is not concerned with extreme matrices
per se. However, the excess distribution function PPOT is
related to the CDF studied in the first three approaches, and
we explain this connection.

A. Thinning method

Extremes of random numbers are described by order statis-
tics. Given a set of m random variables {x1, . . . , xm}, we
rearrange them in an descending order {x(1), . . . , x(m)}. As an
example, for a set of such variables the following inequalities
hold true:

x(1) � x(2) � · · · � x(m−1) � x(m),

x3 � xm−1 � · · · � x6 � x2.

Typically one is interested in the extreme events and studies
a particular element in the ordered set {x(1), . . . , x(m)}—either
the largest x(1) or the smallest one x(m). One can study also
the distributions of a subset of the ordered set: the n largest or
smallest values.

In all these cases, the cumulative distribution function (or
CDF) for the kth-order statistic x(k) of a sample of m variables
is given by [18]

P (m)(x(k) < x) =
k−1∑
i=0

∑
{σ }

∫ x

−∞
dxσ (1) · · ·

∫ x

−∞
dxσ (m−i)︸ ︷︷ ︸

m−i

×
∑
{δ}

∫ ∞

x
dxδ(1) · · ·

∫ ∞

x
dxδ(i)︸ ︷︷ ︸

i

P(x1, ..., xm ),

(1)

where
∑

{δ} is the summation over i combinations of rN in-
dices and

∑
{σ } is rN − i combinations of the remaining rN −

i elements. This formula is easy to understand by positioning
all particles on a line and considering only configurations
where the particle with kth largest position is on the left of the
barrier centered at x (the meaning of the condition x(k) < x).
There are k possible scenarios satisfying this condition—
when the number of particles on the right side of the barrier
varies from k − 1 to 0 which results in the summation

∑k−1
i=0 .

Each term in the sum describes one such eventuality; the i
integrals

∫ ∞
x place particles on the right side of the barrier,

whereas the rest rN − i integrals
∫ x
−∞ position the remaining

ones on the left side. The only additional thing we take into
account is labeling the particles, which results in summation
over all possible combinations σ, δ.

The joint probability density function (PDF) P describes
any set of correlated or uncorrelated random variables. In
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particular, for i.i.d. uncorrelated variables P(x1, . . . , xm) =∏m
i=1 p(xi ) we find

∫ y
−∞ p(t ) dt = f (x) and

∫ ∞
x p(t ) dt = 1 −

f (x) which produces a well-known CDF for the kth largest
order statistic:

P (m)(x(k) < x) =
k−1∑
i=0

(
m

i

)
[1 − f (x)]i[ f (x)]m−i. (2)

In the special case k = 1, the distribution function of the
largest value for k = 1 is just P (m)(x(1) < x) = [ f (x)]m. Now
we turn to describing a thinning procedure which takes a finite
fraction of largest variables.

A thinning procedure applied to order statistics is to
consider the following problem: draw m i.i.d. variables
{x1, . . . , xm} from the parent PDF p(x) and CDF f (x), pick out
the n largest ones {x(1) · · · x(n)}, and look at their distribution.
What will be the resulting PDF and CDF? We find the thinned
CDF Fm,n of the n largest values selected out of m values as a
normalized sum of the first n-order statistics given by Eq. (2):

Fm,n(x) = 1

n

n∑
k=1

P (m)(x(k) < x). (3)

In the i.i.d. case, we plug Eq. (2) into formula (3):

Fm,n(x) = 1

n

n−1∑
k=0

(n − k)

(
m

k

)
[1 − f (x)]k[ f (x)]m−k. (4)

Define the ratio r = m
n so we take the m, n → ∞ limit such

that r remains fixed. An asymptotic form of the thinned
CDF limm,n→∞ Fm,n(x) = Fr (x) is found in Sec. A of the the
Supplemental Material [19]:

Fr (x) = r[ f (x) − αr]θ [ f (x) − αr], (5)

where αr = r−1
r and θ is a step function. It gives a CDF

of a thinned population where from m random elements we
pick the n < m largest ones with ratio r = m/n. The above
definition should not be confused with the thinning in classical
extreme statistics where a subsample is picked out according
to a probabilistic criterion [20].

Interpretation of the asymptotic thinned CDF Fr is clear:
picking n largest values out of m does not modify the shape
of the parent distribution f (x) but truncates it up to a point x∗
such that f (x∗) = αr . The point x∗ is known in statistics as the
last of the r-quantile and gives the point where the fraction of
values smaller than x∗ is αr = r−1

r . Importantly, since the large
n, m limit was taken, the fraction αr takes all real numbers
between (0,1).

We stress that above discussion is purposely not restricted
to matrix eigenvalues because it is applicable to general
random variables. In particular, above we have addressed the
simplest case of the completely uncorrelated case where a
joint PDF (jPDF) factorizes, which still has applications to
matrices, as we will see later. Besides that, in the next section
we deal with another important class of jPDFs with matrix
eigenvalues as coupled or correlated random variables arising
within random matrix theory.

B. Extreme random matrices

Unlike real numbers, finding extremes in the space of
matrices cannot be done easily due to lack of natural ordering.
To circumvent that we instead define ordering in the space
of random matrices. This is due to an existing natural iden-
tification between the random matrix and its eigenvalues—
in almost all matrix PDFs the eigenvectors completely de-
couple. Thus, we can disregard them completely and define
extreme matrices based on eigenvalues alone. The procedure
is straightforward:

(1) Take r random matrices each of size N × N , collect all
Nr eigenvalues, and

(2) Pick out N largest ones; these form the largest or
extreme random matrix representation.

The main drawback of this definition is that the resulting
extreme random matrix will contain a mixture of eigenvalues
from several initial matrices.

We now introduce some useful notation and then continue
describing the above approach mathematically. First, denote
{λ(i)

1 · · · λ(i)
N } to be the set of eigenvalues of the ith matrix

drawn from the most general jPDF for the ith individual
matrix:

P(i)
N

(
λ

(i)
1 , . . . , λ

(i)
N

)
.

In general, these distribution functions could differ between
matrices; however, in what follows we consider an i.i.d. case.
All Nr eigenvalues are ordered in the following way:

λ
(1)
1 · · · λ

(1)
N λ

(2)
1 · · · λ

(r)
1 · · · λ

(r)
N↓ · · · ↓ ↓ · · · ↓ · · · ↓

x1 · · · xN xN+1 · · · x(r−1)N+1 · · · xrN

(6)

and so the total jPDF is a product of single-matrix distribu-
tions:

P(x1, . . . , xrN ) =
r∏

i=1

P(i)
N (x(i−1)N+1, . . . , xiN ). (7)

Last, we rearrange all variables {x(1), . . . , x(rN )} in descending
order x(1) > x(2) > · · · > x(rN ) so that we pick out only the N
largest ones, i.e., x(1), . . . , x(N ).

It is important to note how such rearrangements cast our
current matrix problem into a thinning framework introduced
before in Sec. II A with a special form of a correlated jPDF
given by Eq. (7) and substituting n → N, m → rN .

1. Extreme CDF FN,r

The CDF for the kth-order statistic Pr (x(k) < x) =
〈θ (x − x(k) )〉 is given by Eq. (1) with m → Nr:

PN,r (x(k) < x) =
k−1∑
i=0

∑
{σ }

∫ x

−∞
dxσ (1) · · ·

∫ x

−∞
dxσ (rN−i)︸ ︷︷ ︸

rN−i

×
∑
{δ}

∫ ∞

x
dxδ(1) · · ·

∫ ∞

x
dxδ(i)︸ ︷︷ ︸

i

P(x1, . . . , xrN ),

(8)
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where
∑

{δ} is the summation over i combinations of rN
indices and

∑
{σ } is rN − i combinations of the remaining

rN − i elements. Its validity was explained in Sec. II A.
Since we study the density of the N largest eigenvalues, we

define an extreme CDF as a normalized sum of terms (8) in
analogy with Eq. (3):

FN,r (x) = 1

N

N∑
k=1

PN,r (x(k) < x). (9)

Next we make use of symmetries in the eigenvalue jPDFs
and find the following form (see details in the Supplemental
Material [19]):

FN,r (x) = 1

N

N−1∑
n=0

(N − n)
n∑

j1 · · · jr = 0
j1 + · · · + jr = n

r∏
l=1

EN ( jl ; x), (10)

where the kth gap function EN (k; x) of finding exactly k (of
N) particles in an interval (x,+∞) is defined as

EN (k; x) =
(

N

k

)∫ ∞

x
dλ1 · · · dλk

∫ x

−∞
dλk+1 · · · dλN PN ,

(11)

with an eigenvalue jPDF PN (λ1 · · · λN ). The formula (10) is
already expressed entirely in terms of well-known objects in
random matrix theory. It is exact for any value of both N and
r, though explicit forms of gap functions are not known, and
we consider several important cases.

For r = 1, Eq. (10) reduces to FN,1(x) = 1
N

∑N−1
n=0 (N −

n)EN (n; x), and in Sec. B of the Supplemental Material [19]
we show how it is in turn given in terms of spectral density
ρ

(1)
N (or the one-point correlation function):

FN,1(x) = 1

N

∫ x

−∞
ρ

(1)
N (y) dy, (12)

which simply means that FN,1 is the spectral CDF. It is hardly
surprising since inspecting N out of the N largest eigenval-
ues should reduce exactly to quantities related with spectral
density itself.

2. Bulk and edge limiting forms of FN,r

We turn to describe various limiting forms of the extreme
CDF FN,r (x) given by Eq. (10). We address mostly cases when
the argument x is far from the edge of the matrix spectrum (the
bulk regime), when x becomes close to the spectral edge (soft
edge regime), and last we comment on the double scaling limit
when r ∼ N .

a. In the bulk. We first evaluate FN,r in the bulk. To
this end, in Sec. A of the Supplemental Material [19], we
calculate the asymptotic form of the gap function Ebulk(k; x) =
e−N[1− f (x)] {N[1− f (x)]}k

k! and plug it into Eq. (10) so that
FN,r (x) ∼ Fbulk,r (x) reads

Fbulk,r = e−Nr(1− f )

N

N−1∑
n=0

(N − n)
n∑

j1 · · · jr = 0

[N (1 − f )]n

j1! · · · jr!
,

where for brevity we skipped the argument x, and the multiple
sum is over indices such that j1 + · · · + jr = n and f (x) is the

asymptotic spectral CDF related to the asymptotic spectral
density ρ

(1)
bulk. We take out the exponent and powers outside

of the sums, and compute the constrained multiple sum as∑n
j1··· jr=0

1
j1! · · · 1

jr ! = rn

n! , and so the extreme CDF in the bulk
reads

Fbulk,r (x) = e−N (1− f ) 1

N

N−1∑
n=0

(N − n)
1

n!
[Nr(1 − f )]n. (13)

In Sec. A of the Supplemental Material [19] we find an
asymptotic form of this sum:

Fbulk,r (x) = r[ f (x) − αr]θ [ f (x) − αr], (14)

where αr = r−1
r . We stress that the formula is valid in the bulk

and f is the matrix CDF f (x) = 1
N

∫ x
−∞ ρ

(1)
bulk(y) dy.

We emphasize that the current formula found within the
matrix setup is the same as Eq. (5) found in the thinning
approach. At first glance this is a very surprising result,
since in the current matrix case, we inspect CDFs of highly
correlated eigenvalues, while in Eq. (5) we restricted the
thinned approach to independent random variables! The key
is in understanding the bulk region properly as an effective
macroscopic picture of eigenvalues where all correlations are
absorbed into the spectral density alone. Hence the macro-
scopic and bulk point of view are indeed equivalent.

This relation also marks the limitations of the thinning
method, which holds only when the underlying eigenvalues
are typical, i.e., drawn from spectral PDFs. In the following
we comment on a case for which this assumption does not
hold.

b. Near the edge. Near the edge we lack an explicit formula
due to strong correlations rendering the formula for gap
functions intractable. Instead, we define limN→∞ FN,r (xedge +
σN−α ) = Fedge,r (σ ) (for example, α = 2/3 in the soft edge
regime) and present its implicit integral representation:

Fedge,r = lim
N→∞

∮
�(0)

dz

2π iNz

∞∑
k=1

k−1∑
n=0

⎡
⎣ n∑

j=0

Eedge( j; σ )

zn− j

⎤
⎦

r

, (15)

where �(0) is a contour encircling z = 0 counterclockwise
and Eedge is found in Sec. A of the Supplemental Material [19].
Equation (15) is found simply from Eq. (10) since the con-
tour integral is an alternative representation of the constraint
j1 + · · · + jr = n present in the multiple sum.

This equation is an implicit form of what we tentatively call
a free Airy CDF. The name stems from the r = 1 case where
d
dx FN,1(x)|x=xedge+σ/N−α in general describes the spectral edge
oscillations of the Airy type. Hence, for general r we expect a
similar oscillatory pattern to emerge.

c. Large sample limit r → ∞ in the bulk and the edge
regimes. Last, we consider the limit of large sample, i.e.,
when r → ∞ or when the number of matrices we maxi-
mize grows. In the bulk, behavior is simple since CDF is
localized inside an interval x ∈ ( f −1(α), x∗) where x∗ is the
rightmost edge point in the spectrum. As we increase r, since
f −1(α) → f −1(1) = x∗, the result is a step function placed at
the rightmost edge of the spectrum x∗:

lim
r→∞ Fbulk,r (x) = θ (x − x∗). (16)
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This agrees with the intuition that as we draw from an in-
creasing pool of matrices, the result becomes a degenerate
matrix with N eigenvalues equal to x∗ as these are the maximal
attainable eigenvalues of a matrix when studied in the bulk
regime. Typically x∗ is also the edge point xedge. In the
following we will consider such case.

Near the edge x∗ = xedge, we observe fluctuations of the
maximal eigenvalue position, and so it is no longer fixed.
Moreover, we expect a natural transition point to happen
around r = N as then the pool of rN ∼ N2 eigenvalues be-
comes large enough so that almost surely the N largest are
almost all extremes from the single-matrix point of view.
Detailed treatment of this transition could be done through
setting r = ρN in formula (15), it is intractable already for
fixed and finite r. Instead, we offer a less rigorous but both
intuitively and numerically backed approach.

We continue with the discussion about the nature of eigen-
values as they are sifted through the maximalization proce-
dure. For concreteness, we set r = ρN with integer ρ � 1.
Then each chosen eigenvalue has on average ρ single-matrix
extremes to maximize over—we look for extremes among
the (single-matrix) extremes. In other words, all nonextreme
eigenvalues are almost always disregarded when looking at
a pool numerous enough (large r). This situation describes
an emergent picture—for large enough r, instead of picking
N out of N2ρ eigenvalues, we pick N out of Nρ extreme
eigenvalues. Crucially, it is also tractable as the joint emergent
law for extreme eigenvalues P completely decouples, and we
go through all the steps in the derivation of CDF (10) with
FN,Nρ (xedge + σN−α ) ∼ F̄edge,ρ (σ ):

F̄edge,ρ (σ ) =
N−1∑
n=0

N − n

N

n∑
j1... jρ = 0

ρ∏
i=1

(
n

ji

)

× [1 − Eedge(0; σ )] ji Eedge(0; σ )n− ji ,

where the summand now consists only of Eedge(0; σ )
describing the CDF of the maximal eigenvalue Tracy-
Widom formula [21], while the multiple sum is sub-
ject to a constraint j1 + · · · + jρ = n. We simplify the
above formula similarly to Eq. (13) by using an identity∑n

j1 · · · jρ=0
j1+ · · · + jρ=n

= (Nρ

n ), and so multiple sums read F̄edge,ρ (σ ) =
∑N−1

n=0
N−n

N (Nρ

n )Eedge(0; σ )n(ρ−1)[1 − Eedge(0; σ )]n. In Sec. A
of the Supplemental Material [19] we compute its large N
asymptotics:

F̄edge,ρ (σ ) = ρ[Eedge(0; σ ) − αρ]θ [Eedge(0; σ ) − αρ], (17)

where αρ = ρ−1
ρ

. The formula admits a form identical to
the bulk extreme CDF Fbulk,r given by Eq. (14) and thinned
CDF (5) upon substituting f (x) → Eedge(0, σ ) and r → ρ.
Although it was derived for integer ρ, the above equation can
be computed for any value ρ. In Fig. 3 we present numeri-
cal experiments in the case of a Gaussian unitary ensemble
where we clearly observe regions of validity for formulas (14)
and (17).

It is important to note that Eq. (17) does not give a
free Tracy-Widom distribution despite consisting of a Tracy-
Widom formula. A correct way of finding such law is possible

FIG. 3. Numerical and analytic plots of eigenvalues comprising
solid lines for the edge density, dashed black lines for bulk density,
and points for the histograms. Density of the eigenvalues in bulk is
given by ρ

(GUE)
bulk,r (x) = d

dx F (GUE)
bulk,r (x) and Eqs. (23) and (24), whereas

the edge formula holds with CDF given by Eq. (25). Histograms are
plotted for matrices of size 100 × 100 each drawn from the GUE
defined by jPDF (21). We present only large r parameters r > N
where the spectrum deviates considerably from the bulk description
and is in turn described well by the edge formula.

however, one would need to go beyond order statistics (8) and
define global gap functions, which we find as both interesting
yet unsolved problem.

C. Free extreme values

Free extreme values were introduced in general operator
language in Refs. [13,16], and the special case of extreme
matrices was discussed in detail in Ref. [17]. In the following
we restrict ourselves to user-friendly operational definitions
applicable to random matrices.

We first define an operational definition of max operation
for random Hermitian matrices Ha ∨ Hb: given 2N eigenval-
ues of Ha, Hb, we pick out the N largest eigenvalues and form
the spectrum of Ha ∨ Hb. Since a random matrix is unitarily
invariant, eigenvalues alone fully specify the matrix. We state
the maximal law for asymptotically large matrices given in
Refs. [13,17]. The main result we need from these papers
is that of the asymptotic eigenvalue CDF of the maximum
Ha ∨ Hb of two random matrices Ha, Hb:

FHa∨Hb (x) = max
(
0, fHa (x) + fHb (x) − 1

)
, (18)

where fH (x) = ∫ x
−∞ dtρbulk,H (t ) is the spectral

CDF of the corresponding bulk PDF ρbulk,H (t ) =
limN→∞ 1

N 〈∑N
i=1 δ(λi − t )〉. Single-matrix definitions of

CDF and PDF are the same as to those found in Sec. II A
and II B with an additional subscript denoting the underlying
matrix H .

A special case of Eq. (18), for a maximum of r i.i.d.
matrices each with eigenvalue CDF fH (x) we have

FH∨r (x) = max(0, r fH (x) − (r − 1)), (19)

where H∨r = H ∨ · · · ∨ H︸ ︷︷ ︸
r terms

.
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D. Peak-over-Threshold method

The method is closely related to the notion of exceedances,
which arise conditioned on the event that the random variable
X is larger than some threshold u. For t � u, the exceedance
distribution function F[u](t ) is then

F[u](t ) = P (X < t |X > u) = P (X < t, X > u)

P (X > u)

= f (t ) − f (u)

1 − f (u)
,

where we used the usual definition of conditional prob-
ability P (A|B) = P (A, B)/P (B) and CDF f (x) := P (X <

x). The Peak-over-Threshold method (POT) developed in
Refs. [15,22] in turn looks at excess distribution functions of
events X above some threshold u:

PPOT(X < u + t |X > u) = f (u + t ) − f (u)

1 − f (u)
. (20)

An excess of t is therefore a variant of an exceedance shifted
by the threshold u, i.e., F[u](t + u).

E. Extreme GUE example

In order to highlight both similarities and differences of
first three frameworks we work out explicitly the case of a
Gaussian unitary ensemble (GUE). The model is properly
rescaled with jPDF given by

P(H )dH ∼ exp

(
−N

2
TrH2

)
dH, (21)

so that the bulk spectral density is contained within an
interval (−2, 2) and is given by the Wigner semicircle
law ρ

(GUE)
bulk (y) = 1

2π

√
4 − y2. Its CDF reads f (GUE)

bulk (x) =∫ x
−2 ρ

(GUE)
bulk (y) dy:

f (GUE)
bulk (x) = 1

2
+ 1

4π
x
√

4 − x2 + 1

π
arcsin

x

2
. (22)

a. GUE through a thinning method. First, we look at the
GUE example from the point of view of a thinning procedure;
i.e., we think of taking m i.i.d. random variables each drawn
from a CDF (22). Then we look at n largest variables and study
the resulting quantity in the m, n → ∞ limit such that m/n =
r remains fixed. This results in Eq. (5) adapted to our example:

F(GUE)
r = r

[
f (GUE)
bulk (y) − αr

]
θ
[

f (GUE)
bulk (y) − αr

]
, (23)

where αr = r−1
r .

To check the above formula we collect several numerical
experiments in Fig. 2 (left plot) and find perfect agreement
for N = 500, r = 5, 20, 80. For larger values of pool size r,
the center and right plots of Fig. 2 become more concentrated
around x = 2 (notice the scales on the x axis), i.e., in an
interval x ∈ [( f (GUE)

bulk )−1(αr ), 2]. For αr sufficiently close to 1,
bulk asymptotics becomes less relevant as ( f (GUE)

bulk )−1(αr ) →
2, and the thinning approach is no longer applicable.

b. GUE as an extreme random matrix. We look at r random
matrices each drawn from jPDF (21) and inspect their spectra.
Then we pick N largest eigenvalues and form an extreme CDF

given by Eq. (14):

F (GUE)
bulk,r = r

[
f (GUE)
bulk (x) − α

]
θ
[

f (GUE)
bulk (x) − α

]
, (24)

where x ∈ (−2, 2) and with the function f (GUE)
bulk given by

Eq. (22). As we discussed previously, thinning method and ex-
treme matrices in the bulk are equivalent and so are CDFs (23)
and (24). For large pool sizes r both lose their applicability,
and we enter the edge scaling regime.

For larger values of r, the center and right plots of
Fig. 2 become more concentrated around x = 2, and the
soft-edge asymptotics become dominant when αr is such
that 2 − ( f (GUE)

bulk )−1(αr ) ∼ N−2/3 or when r ∼ N . In Fig. 2
we notice this transition through the appearance of tail-like
features missed altogether by the bulk formula and cap-
tured by the implicit formula (15). We pass to values r =
500, 600, 700, 900 with N = 500 and enter into region of
increasing tails reaching beyond the bulk boundary at x = 2
where we have at our disposal an explicit formula for the
extreme CDF given by Eq. (17). In our GUE example it reads

F̄ (GUE)
edge,ρ (σ ) = ρ[E (0; σ ) − αρ]θ [E (0; σ ) − αρ], (25)

where E (0; σ ) is the CDF of the β = 2 Tracy-Widom law and
αρ = ρ−1

ρ
. We tentatively name it a double extreme law as it

sieves out extremes among extremes. In Fig. 3 we show how
well the large r formula (25) fits the simulations and juxtapose
it with the bulk formula (24).

c. GUE as a free extreme value. We move on to describe the
GUE example from the point of view of free extreme values.
The CDF for the maximum is given by (19) for a GUE:

FH∨r (x) = max
[
0, r f (GUE)

bulk (x) − (r − 1)
]
. (26)

We use a formula max(0, x) = xθ (x), which results in a
formula equal to Eq. (23) or (24) obtained in the previous
sections within the thinning and extreme random matrix
framework.

Similarly as in the thinning method, the bulk level is the
only level of detail we can access through free probability.
The large matrix size limit is taken implicitly so that no results
related to edge-like phenomena have natural counterparts
within this framework.

III. CONNECTIONS BETWEEN EXTREME LAWS

In this section, we start from recapitulating already ob-
served links as well the the new ones, between two known
and two alternative approaches to free (or matrix) extremes
given in Sec. II. Then we establish notation for the classical
extreme laws of Fréchet, Weibull, and Gumbel and recall its
free analogs introduced in Ref. [13] to prepare the ground for
one of the main results of present work: the exponentiation
formula relating both worlds. The last part is devoted to
explicit calculations of free extreme laws in models related
with random matrices.

A. Relating CDFs between frameworks

Although the first three frameworks of the thinning
method, extreme random matrices, and free extreme val-
ues discussed in Sec. II start off from slightly different
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initial considerations, they arrive at the same CDFs given
by Eqs. (5), (14), and (19). Extreme random matrices are
equivalent only in the bulk, while CDFs for the free extreme
values require only minor reformulation using the identities
θ (a f ) = θ ( f ) for a > 0 and max(0, f ) = f θ ( f ).

The Peak-over-Threshold approach requires some work.
We present how the POT excess distribution function given
by Eq. (20),

PPOT(X < u + t |X > u) = f (u + t ) − f (u)

1 − f (u)
,

is related to the thinned CDF (5) Fr (x) = r[ f (x) −
αr]θ [ f (x) − αr].

It is evident that both methods study extremes: the POT
method looks at values above some threshold, whereas the
thinning approach focuses on a fraction r of largest values
drawn from the sample of m observations. Thus, we relate the
POT threshold u to the thinning parameter r:

f (u) = 1 − 1

r(u)
, (27)

via the known CDF f (x). This one-to-one relation dictates
where one should position the threshold u in order to capture
a fraction r of values in the sample. This relation is strict in
the limit of large samples as only then do the intersample
fluctuations vanish. By the same reason, this relation makes
sense for any real value of r. In the statistics literature, the
threshold value u is set to be an r quantile of the CDF f .

Now we show how with a quantile relation (27) between
threshold u and thinning size r, the thinned CDF given by
Eq. (5) has a form of the POT excess distribution function
PPOT given by Eq. (20). Therefore, in Eq. (5) we plug
r → r(u) and evaluate the function at an exceedance level
x = u + t :

Fr(u)(u + t ) = r(u)

[
f (u + t ) − 1 + 1

r(u)

]

× θ

[
f (u + t ) − 1 + 1

r(u)

]
.

We next plug in (27) and find f (u + t ) − 1 + 1
r(u) = f (u +

t ) − f (u) along with θ [ f (u + t ) − f (u)] = θ (t ) as f is a
monotonic function. Finally, we obtain

Fr(u)(u + t ) = f (t + u) − f (u)

1 − f (u)
θ (t ),

which re-creates the POT excess distribution function given
by Eq. (20) with an implicit assumption that t > 0. This

expression is also exactly that of Definition 7.2 given in
Ref. [13]. So the POT is equal to the remaining three ap-
proaches,

PPOT(X < u + t |X > u) = Fr(u)(u + t ), (28)

through a change of variables; instead of sample size r and
spectral parameter x used in thinning, free extreme values, or
extreme random matrices, we inspect the threshold u with an
excess parameter t . Parameters r and u are nonlinearly related
through the CDF and Eq. (27).

B. Classic and free extreme laws

a. Classic extreme laws. We first revise the classical ex-
treme laws arising when inspecting the distribution of the
largest value y(1) in the sample of m i.i.d. variables. The
thinning approach encompasses this case upon setting n = 1
in the CDF (4) and studying the m → ∞ limit:

lim
m→∞ Fm,1(am + bmx) = F class(x), (29)

with m dependent constants am and bm representing centering
and scaling, respectively. By the Fisher-Typpett-Gnedenko
theorem, there exist three limiting forms of F max(x) depend-
ing on the properties of the CDF f (x) as summarized in
Table I (see Ref. [23] for a pedagogical review).

b. Free extreme laws. Highly similar free extreme laws exist
for the CDF of noncommutative (or free) random variables
defined as the limit of the formula given by Eq. (19):

lim
r→∞ FH∨r (ar + brx) = F free(x), (30)

with some scaling and centering constants ar, br . The classical
and free extreme laws are highly similar—they admit the same
domains of attraction, constants ar, br , and properties of the
parent distributions. The functional forms for extreme CDF’s
are, however, different and summarized in Table II.

Since the free CDF (19) coincides exactly with both the
thinning CDF (5) and bulk extreme CDF (14), the same
limiting extreme laws follow. The POT method, however, is
slightly more contrived due to a change of variables (27)
used in deriving relation (28). In Sec. B of the Supplemental
Material [19] we work out how this variable change results in
new scaling constants and the same extreme laws.

C. Exponentiation explains relation between classical and free
extreme laws

Although classical and free (as well as POT) extreme CDFs
have different functional forms, they seem to be related by a

TABLE I. Summary of the three classical extreme laws of Gumbel, Fréchet, and Weibull. Functional inverse of the CDF f is denoted by
f −1 and αn = n−1

n .

Name Gumbel Fréchet Weibull

Properties of Tails falls off faster p(x) falls off as ∼x−(γ+1) p(x) is finite, p(x) = 0 for x > x+
PDF p(x) = f ′(x) than any power of x and is infinite p(x) ∼ (x − x+)−γ−1

Maximal CDF F class
I (x) = exp (−e−x ), x ∈ R F class

II (x) = {0, x < 0
exp(−x−γ ), x > 0

F class
III (x) = {exp(−(−x)γ ), x < 0

1, x > 0
an f −1(αn) 0 x+
bn f −1(αne) − an f −1(αn) x+ − f −1(αn)

022109-8



EXTREME MATRICES OR HOW AN EXPONENTIAL MAP … PHYSICAL REVIEW E 102, 022109 (2020)

TABLE II. Summary of free extreme laws along with concrete examples computed in Sec. III C 1. Functions t (x), T (x) are step functions
used in the exponentiation map (33).

Name Free Gumbel Free Fréchet Free Weibull

CDF F free
I (x) = {0, x < 0

1 − e−x, x > 0
F free

II (x) = {0, x < 1
1 − x−γ , x > 1

F free
III (x) = {0, x < −1

1 − (−x)γ , x ∈ (−1, 0)
1, x > 0

t (x) 1 θ (x) 1
T (x) θ (x) θ (x − 1) θ (x + 1)
Examples Free Gauss (Ex. 3) Free Cauchy γ = 1 (Ex. 2) Wigner’s semicircle γ = 3/2 (Ex. 1)

Free Lévy-Smirnov γ = 1/2 (Ex. 6) Marçenko-Pastur γ = 3/2 (Ex. 4)
Free arcsine γ = 1/2 (Ex. 5)

striking expression:

F free(x) ≈ 1 + ln F class(x) or

F class(x) ≈ exp[F free(x) − 1], (31)

Such a relation between POT and classical extreme laws
has been observed in classical probability; see, e.g., Ref. [3].
Unfortunately, it is valid only for the functional forms (see
Tables I and II) and not for whole functions because their
domains do not simply match up. Using the thinning method
we now derive a slightly modified formula (31) which corrects
these domain inconsistencies. We stress that the thinning
approach exemplified in formula (3) for the CDF Fm,n is
indispensable and encompasses both classical and free worlds.
The former is attained when n = 1, m → ∞, while the latter
as n, m → ∞ with m/n = r fixed and then taking r → ∞.

The classical extreme laws F class are found as limits of
CDF (3) for n = 1 and in the m → ∞ limit:

Fm,1(x) = [ f (x)]mθ [ f (x)], (32)

with the CDF f (x) and where we added a step function as f
is a positive function.

The free extreme laws F free on the other side arise from the
asymptotic thinned CDF given by Eq. (5) where we rename
r → m and write explicitly αm = m−1

m :

Fm(x) = m

[
f (x) − 1 + 1

m

]
θ

[
f (x) − 1 + 1

m

]
.

To find the correct formula relating extreme laws, we first
combine both formulas and afterwards compute the m → ∞
limit. The exponential map (31) relating free and classical
extreme laws reads

F class(x) = t (x) exp

[
F free(x)

T (x)
− 1

]
, (33)

where step functions t and T are given in Table II. Details
of this derivation are given in Sec. C of the Supplemental
Material [19].

The presence of step functions in the denominator is a
formal notation which becomes evident by rewriting free
CDFs of Table II with the use of step functions:

The Gumbel domain gives F free
I (x) = θ (x)(1 − e−x )

The Fréchet domain gives F free
II (x) = θ (x − 1)(1 − x−γ )

The Weibull domain gives F free
III (x) = θ

(x + 1)[1 − θ (−x)(−x)γ ]

and realizing how their pure functional forms can be ex-
pressed as a ratio.

a. POT extreme laws. Finally, the POT formalism is in the
same region as free extreme laws, and so formally all formulas
shown in this section hold also for the POT approach. Details
about different scaling constants are given in Sec. B of the
Supplemental Material [19].

1. Examples

Finally, due to the operational simplicity of the thinning
theorem, we are able to give several explicit examples of
free extreme laws following from spectral densities of large
random matrix models. The majority of well-known models
are defined on a finite spectral support, like Wigner’s semi-
circle or the Marçenko-Pastur distribution. Via the exponen-
tiation argument, they belong therefore to the free Weibull
class, which we show with an explicit calculation. The free
Fréchet class is more subtle, since the spectral density has
to vanish as a power law and the support is not limited. The
so-called Bercovici-Pata construction [12], being the analog
of Lévy heavy-tailed distributions in classical probability,
provides explicit examples. We consider two exotic random
matrix models, corresponding to the free Cauchy and free
Lévy-Smirnov distribution, and by explicit calculation we
show that they realize extreme statistics of the free Fréchet
class. The last class, the free Gumbel distribution, turned out
to be the most demanding to find, despite being relatively
common in classical probability, as realized, e.g., by Gaussian
or Poisson distributions. Here as an example we used recent
work [24,25]. This last example shows that the standard
practice of calling the Wigner semicircle a “free Gaussian”
has to be used with care.

In what follows we use the extreme CDF found in all the
discussed frameworks, and we denote it jointly as

Fr (x) = r[ f (x) − αr]θ [ f (x) − αr],

while the corresponding PDF is defined as

pr (x) = d

dx
Fr (x) = rρ(x)θ [ f (x) − αr],

with density ρ(x) = f ′(x).
a. Example 1: Wigner’s semicircle law (free Weibull do-

main). An example of the GUE discussed in Sec. II E belongs
to the free Weibull domain. To show this, we choose the
scaling parameters ar = 2, br = ar − f −1(α) with the CDF
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given by Eq. (22), set x = ar + brx̃, and find θ [ f (x) − αr] =
θ [x − f −1(αr )] = θ{[2 − f −1(αr )](x̃ + 1)} = θ (x̃ + 1). With

the approximation f −1(αr ) ∼ 2 − ( 3π
2r )

2
3 we find the extreme

PDF:

lim
r→∞ pr (ar + brx̃)br dx̃ = 3

2 (−x̃)
1
2 θ (x̃ + 1)θ (−x̃) dx̃,

where the second Heaviside θ function arises by truncating
the semicircle law as θ (2 − x) = θ (−x̃). The extreme CDF
therefore reads

F GUE
III (x) =

⎧⎨
⎩

0, x < −1
1 − (−x)3/2, x ∈ (−1, 0)
1, x > 0

and is an example of the free Weibull distribution of Table II
with parameter γ = 3/2.

b. Example 2: Free Cauchy (free Fréchet domain). In free
probability, there exists the whole class of spectral distribu-
tions, which are stable under the free convolution, modulo
the affine transformation. They form exactly the analog of
Lévy heavy (fat) tail distributions in classical probability
theory. This one-to-one analogy is called the Bercovici-Pata
bijection [12]. As the simplest example in the free probability
context, the following PDF and CDF are considered:

ρC (x) = 1

π

1

1 + x2
,

fC (x) = 1

2
+ 1

π
arctan(x), f −1

C (x) = − cot(xπ ).

This is the symmetric, spectral Cauchy distribution. The re-
alization of such free heavy-tailed ensembles is nontrivial;
e.g., the potential, which by the entropic argument yields the
Cauchy spectrum, reads explicitly [26]

V (λ) = 1
2 ln(λ2 + 1),

so it is nonpolynomial [note that for the Gaussian ensembles
V (λ) ∼ λ2]. However, to get the extreme law we do not
need at any time the form of the potential. According to
Table I, we choose ar = 0, br = f −1

C (αr ), compute θ [ar +
brx̃ − f −1

C (αr )] = θ (x̃ − 1), and find the PDF:

lim
r→∞ pr (ar + brx̃)br dx̃ = 1

x̃2
θ (x̃ − 1) dx̃.

Upon integration the extreme CDF in turn reads

F C
II (x) =

{
0, x < 1
1 − x−1, x > 1

and belongs to the free Fréchet class of Table II with γ = 1.
c. Example 3: Free Gaussian (free Gumbel domain). To

apply our procedure for this case, we have to choose the
spectral distribution whose tails fall faster than any power of
x. We can use the powerful result [24,27], noticing that the
normal distribution is freely infinitely divisible. This implies
that there exists a random N × N matrix ensemble, whose
spectrum in the large N limit approaches the normal distri-
bution. An entropic argument can even help to find the shape
of the confining potential yielding such a distribution [25],

V (λ) = c + λ2

2
2F2

(
1, 1;

3

2
, 2; −λ2

2

)
, (34)

FIG. 4. Plot showing the weak confinement property of free
Gaussian potential (34) in comparison with the GUE parabolic
shape V parabolic = λ2/2. The former results in a bell-shaped spectral
density with infinite support, while the latter is a prime example of
semicircular spectral density with finite support.

where c = − γ+log 2
2 and the potential is a solution to V (λ) =

1√
2π

∫ ∞
−∞ e−x2/2 ln |x − λ| dx. In Fig. 4 we plot potential V (λ)

against a parabolic function showing its weakly confining
property. It is interesting to note that the Green’s function
corresponding to the free Gaussian is equal, modulo the sign,
to the famous and well-studied plasma dispersion function
Z [28], which allows us, e.g., to study the subtle asymptotics
of the resolvent. Luckily, in our thinning model we do not
need the shape of the potential to find the free extreme laws.
The resulting PDF, CDF, and inverse CDF (quantile) for the
spectral normal distribution read, respectively,

ρG(x) = 1√
2π

e−x2/2,

fG(x) = 1

2
[1 + erf(x/

√
2)], f −1

G (x) =
√

2erf−1(2x − 1).

According to Table I, we set ar = f −1
G (1 − 1/r), br =

f −1
G [1 − 1/(er)] − f −1

G (1 − 1/r), and so with x = ar + brx̃
we have to perform the limit

lim
r→∞ pr (ar + brx̃)br dx̃ = lim

r→∞
r√
2π

bre−[ar+br x̃]2/2 dx̃.

The limit is subtle, since the inverse error function develops
the singularity when its argument approaches unity:

erf−1(z)|z→1 ∼ 1√
2

√
ln[g(z)] − ln{ln[g(z)]}

with g(z) = 2
π (z−1)2 . We set r = √

2πeu/2 and find an asymp-

totic series for both scaling parameters ar ∼ √
u − ln u and

br ∼ √
2 + u − ln(2 + u) − √

u − ln u. These asymptotic ex-
pansions result in a2

r ∼ u − ln u, arbr ∼ 1, b2
r ∼ 1

u and ln br ∼
− 1

2 ln u, which makes all the divergent terms cancel out and
only the arbr ∼ 1 survives, yielding

lim
r→∞

r√
2π

bre−[ar+br x̃]2/2 dx̃ = e−x̃θ (x̃) dx̃,

which in turn gives the CDF:

F G
I (x) =

{
0, x < 0
1 − e−x, x > 0 ,

an instance of the free Gumbel domain of Table II.
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Other examples include, e.g., several free infinite divisible
γ distributions [29], with the simplest ρ(x) = e−x for non-
negative x. Since f (x) = 1 − e−x, the application of scaling
and centering formulas from Table I yields, ar = ln r and br =
1, which trivially reproduces the free Gumbel CDF.

We stress that the same functional form of the PDF may
lead to either a classical or free extreme law, depending if the
PDF represents the one-dimensional, classical probability or
represents the spectral PDF of the ensemble of asymptotically
large matrices. Examples 1, 2, and 3 show it explicitly, for
each domain: Weibull, Fréchet and Gumbel, respectively. Ad-
ditional examples 4, 5, and 6 listed in Table II are calculated
explicitly in Sec. D of the Supplemental Material [19].

IV. CONCLUSIONS AND OUTLOOK

In this study of extreme matrices we have devised a thin-
ning method, which, in contrast with previous approaches,
is able to bridge the gap between classical extreme values
and free (or matrix) extreme values. Through this link we
establish an explicit exponentiation map between classical ex-
treme laws of Weibull, Fréchet, and Gumbel and free Weibull,
free Fréchet, and free Gumbel. Moreover, we show that also
Peak-over-Threshold method is related to a thinning approach

through a simple change of variables. Finally, we provide an
approach of extreme random matrices, which in turn enables
refined questions about the spectra of extreme matrices. The
thinning method provides an operational language which we
elucidate by showing several explicit examples of extreme
laws of random-matrix-inspired models.

Studies of extreme matrices started relatively recently, and
so many questions remain unanswered. Among the most
promising is a free analog of the Tracy-Widom law or free
Airy-type behavior near the spectral edge of the extreme
matrix.
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