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Bounding energy growth in frictionless stochastic oscillators
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This paper presents analytical and numerical results on the energetics of nonharmonic, undamped, single-well,
stochastic oscillators driven by additive Gaussian white noises. The absence of damping and the action of
noise are responsible for the lack of stationary states in such systems. We explore the properties of average
kinetic, potential, and total energies along with the generalized equipartition relations. It is demonstrated that
in frictionless dynamics, nonequilibrium stationary states can be produced by stochastic resetting. For an
appropriate resetting protocol, the average energies become bounded. If the resetting protocol is not characterized
by a finite variance of renewal intervals, stochastic resetting can only slow down the growth of the average
energies but it does not bound them. Under special conditions regarding the frequency of resets, the ratios of the
average energies follow the generalized equipartition relations.
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I. INTRODUCTION

The energetic properties of stochastic dynamical systems
[1] are determined by the interplay between random forces
(fluctuations) and damping (dissipation) [2,3]. For damped
motions in single-well potentials perturbed by Gaussian white
noise, stationary states always exist [4,5]. They are given
by the Boltzmann-Gibbs (BG) distribution, which is char-
acterized by finite average energies determined by the sys-
tem temperature. BG distribution is an example of elliptical
distribution because its isolines correspond to constant en-
ergy curves, which for the harmonic potential are given by
ellipses. In systems with BG stationary state, ratios of aver-
age energies follow generalized equipartition relations [6—8].
Here, we study frictionless dynamics in general single-well
potentials under the action of the Gaussian white noise using
stochastic [4,9,10] and analytical methods [11]. Due to the
absence of damping, pumping of the energy by noise is not
counterbalanced by dissipation. Therefore, average energies
continuously grow in an unbounded manner. Such unbounded
growth of average energies is also responsible for the absence
of stationary states in frictionless stochastic oscillators.

The most popular way to counterbalance the pumping of
energy is by damping. In the absence of damping, there is
usually no mechanism that can dissipate the harvested energy.
Nevertheless, models of frictionless dynamics [12-14,14] or
those that result in frictionless dynamics [15] are also studied.
It is worthwhile to underline that the presence of damping
might be insufficient to bound the system energy. For exam-
ple, in systems driven by Lévy noises [16,17], despite the
existence of the nonequilibrium stationary state [18,19], the
average energy can diverge [20,21].
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To exclude unlimited energy growth in frictionless dy-
namics, we suggest a mechanism of bounding the system
energy that is based on stochastic resetting [22,23]. Stochas-
tic resetting, mainly of position, is especially important in
diffusion processes [23-25], search processes [26-28], and
multiplicative processes [29]. In the context of current re-
search, important applications of stochastic resetting include
first-passage time problems [23,30] and diffusion in potential
landscapes [31]. According to the Sparre-Andersen theorem
[32-34] for a free stochastic process driven by symmetric,
Markovian noise, the first-passage time density from the real
half line follows universal ¢ ~3/? asymptotics. The heavy-tailed
asymptotics of first-passage time density explains why the
mean first-passage time of a free particle to a given target
(point) diverges. Stochastic resetting can, by excluding infinite
excursions, make the mean first-passage time finite [23,30].
Typically, in inverse single-well potentials there is no station-
ary state, because there is no mechanism that can suppress the
escape of particles to infinity. Here again, stochastic resetting,
which moves a particle back to a fixed point x,, can produce
nonequilibrium stationary states in unstable potentials [31].
Produced stationary states are of nonequilibrium type because
resetting moves particles from all points other than x, and
introduces a source of probability at the fixed point x,.

Following the lines of investigations utilized in [23,30,31],
we use the mechanism of stochastic resetting to bound unlim-
ited energy growth during frictionless dynamics in single-well
potentials. It is assumed that resets are performed at random
time instants, while the times between two consecutive resets
are independent, identically distributed random variables fol-
lowing a one-sided probability density. During each reset, we
set the system energy to zero by resetting its velocity and po-
sition. We show that for an appropriate resetting protocol, i.e.,
for fine-tuned renewal time distributions, the average energies
can saturate at any preselected level. Moreover, despite the
fact that nonequilibrium stationary states are not of BG type,
we study the conditions under which average energies satisfy
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generalized equipartition relations [8]. If renewal intervals
are characterized by diverging variance, stochastic resetting
is not sufficient to reintroduce stationary states. In such a
case, we observe a generic slow down of the growth rate
of the average energies. Here again we demonstrate that the
generalized equipartition relations can be recovered also in
situations when stationary states do not exist.

Within the current paper, we study undamped (frictionless)
motion in a single-well potential of x** (n > 0) type under the
action of one or two Gaussian white noise sources. We build
upon the research initiated in [35] and continued in [36], with
special attention given to generalized equipartition relations
[8] and the mechanism of bounding energy growth based on
stochastic resetting [23,31]. The model under study, the basic
theory, and the main results are presented in Sec. II. The paper
is closed in Sec. III with a summary, and supplemented in
Appendix.

II. MODEL AND RESULTS

Noise perturbed motion in a symmetric single-well poten-
tial
2n

Vx)=k=— (k> 0,n>0) (1)
2n
is described by the Langevin [5] equation
d?x(t dx(t
m dtg L ’;(t ) k() 4 2k TmE (), ()

where x(¢) represents the position, m is the particle mass, T is
the system temperature, kp is the Boltzmann constant, and y is
a damping coefficient. In Eq. (2), £(¢) stands for the Gaussian
white noise (GWN) satisfying

() =0 and (§(1)§(s)) =48( — ). 3)

The special case of n = 1 corresponds to the harmonic oscil-
lator [37,38], while n > 1 corresponds to anharmonic setups.
In most general situations, n does not need to be an integer; in
such a case, it is necessary to replace x with |x|.

The system evolution is perturbed by the Gaussian white
noise, which describes interactions of the oscillator with the
thermal bath characterized by the temperature 7. The action
of noise makes the position and velocity random variables.
The probability density P(x, v;t), which is the probability
of finding the system in a state characterized by (x(¢), v(¢)),
evolves according to the diffusion (Kramers) equation [39,40]

V'(x) kgT

m m

0;P(x,v;t)= |:8v (yv—i— 83:|P(x, vyt).

“4)
Equation (4) has the stationary solution that exists for any

potential V (x), such that V (x) — 0o as x — *o00. It is of the
Boltzmann-Gibbs (BG) type,

) —Uax+}/

1 (mv?
P(x, v) cxexp I:_kB_T(T + V(x))]. (®)]

The exponent in Eq. (5) is the total energy &£, which is the
sum of kinetic & and potential £, energies. The total sys-

tem energy £ =&+ &, = %mv2 + k% depends on its state
(x(1), v(r)). Consequently, instantaneous energies, analogous

to state variables, are random variables. Nevertheless for large
t, stationary density is reached and average energies attain
constant values. In the stationary state, the position and the
velocity are statistically independent as Eq. (5) factorizes
into the product of space-dependent and velocity-dependent
parts. Moreover, Eq. (2) assures that the stochastic harmonic
oscillator, corresponding to n = 1, fulfills the equipartition
theorem [39,40]. Finally, from Eq. (5), for any n, one can
calculate

(&) = / / ImPG vdxdy = ST, (O
&) = kﬁP dxdv = Lk T 7
(,ﬁ—// o (x, v)dx v= kT, (7N
and
B 1, X _n+1
(&) _// |:§mv +kE:|P(x, v)ydxdv = o kgT. (8)
From Egs. (6), (7) and (8), one obtains
(&) n
E 1+4n ©
and
&) _ 1
€ 1+n (10)

The very same formulas [see Egs. (6) and (7)] have also been
derived in [41], where undamped, classical, fully determinis-
tic, anharmonic oscillators with V (x) given by Eq. (1) have
been studied. In other words, for undamped, classical, conser-
vative oscillators, time-averaged kinetic and potential energies
are also given by Egs. (6) and (7). An alternative derivation,
for the general nonlinear oscillator with the parametric noise,
is presented in Ref. [8]. Moreover, in accordance with the
virial theorem [42],

G (11)

(Ep)

In this work, we are interested in modifications of the gen-
eral model described by Eq. (2). More precisely, we are still
studying the system described by Eq. (2) with the V (x) given
by Eq. (1) assuming frictionless dynamics, i.e., dynamics cor-
responding to y = 0. Nevertheless, for clarity of presentation,
we start with a discussion of the full, damped dynamics. For
the purpose of deriving the quantities of interest, Eq. (2) can
be rewritten as a set of two first-order equations:

dx(t)
dt - U([),
dzy) = —yv(t) — XN+ VhE@),  (12)

where w? = k/m and h, = 2ykgT /m. In Eqgs. (12) the noise
term is present in the second equation only. Additionally, we
assume that also the first equation is subjected to the action
of noise [43]. Such an extension allows for larger generality
than typically studied situations described by Egs. (12). In
particular, two noise sources allow for a study of symmetries
of solutions of Egs. (13) especially for the harmonic potential.
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Finally, Egs. (12) take the following form:
dx(t)

o = v+ V@),
dﬁﬁ” = —yu() — 2O + Vg0, (13)

The evolution of the probability density P(x, v;t) for the
system described by Eqgs. (13) is provided by the diffusion
equation, which differs from Eq. (4) by the presence of the
additional 97 term; see Ref. [40]. Consequently, stationary
states for the model described by Egs. (13) cannot be of BG
type.

From Egs. (13) it is possible to derive equations describing
the time evolution of the average kinetic (&) and potential
(Ep) energies; see Appendix. The time derivatives of the
average energies are given by

d 1
—(&)) = k() + —hk(2n — DY) (14)
dt 2
and
d 2 2,.2n—1 1
(&) = —my (V) — mo? (o) + Smhy,  (15)
dt 2
while the evolution of the total energy is described by
d d
—(&) = — (&, + &
7 t( ) p t( » + &)

1 1
= —my(v?) + zhxk(Zn — D> + zmhv.
(16)

A. Unbounded energy growth in the frictionless case

For y > 0, energy growth saturates at a stationary value,
which is proportional to the system temperature. In the fric-
tionless case, i.e., for y = 0, a different situation takes place
and average energies grow in an unbounded manner [36]. For
n = 1, the system described by Eq. (2) or Egs. (13) can be
studied analytically [12,40,44,45]. For the parabolic potential,
these equations are linear, and thus standard methods of solv-
ing linear differential equations can be applied [40,44]. For
x(0) =0, v(0) = 0, the following formulas can be derived:

1
(&) = 5m<v2>

2kt — mw sin(2wt) h 2mwt + msin(2wt)

o 8 v 8w
1 1 . h,m
= —[hk + hym]t + = sin(Qwt) — hymw
4 8 w
(17)
and
(E)(0) = 2ma? (%) = Lk()
P 2 2
—h 2kt + mw sin(2wt) h, 2mwt — m sin(2wt)

8

8w

I 1 h
= ~[hok + hymlt + - sinQen)| hemo — 2|, (18)
4 8 w

FIG. 1. Time dependence of average energies for the fric-
tionless, uninterrupted motion in the parabolic potential (n = 1)
with (h,, h,) = (0,1) [top panel, (a)], (hy, h,) = (1,0) [middle
panel, (b)], and (A, h,) = (1, 1) [bottom panel, (c)]. Other param-
eters: k =1 and m = 1. Solid lines present theoretical formulas
[see Egs. (17)—(19)] while the dot-dashed line presents (£(¢))/2 [see
Egs. (21) and (22)].

giving rise to

EO) = (60 + 01 = |+ 2 a9)
where w = /k/m. The presence of the additional noise &,
in the first line of Egs. (13) increases the slope of the linear
growth of average energy. Alternatively, Eqgs. (17) and (18)
can also be derived using equations for moments; see Eq. (23).
Finally, Eq. (19) can be easily derived from Eq. (16), because
for the harmonic oscillator (x?"~2) = (1) = 1. Such an ap-
proach was used in [36], where the &, = 0 case was studied.
For the parabolic potential (n = 1) in the frictionless, un-
interrupted motion, the linear growth of the average energies
is clearly visible in Fig. 1, which depicts results for v = 1
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FIG. 2. The same as in Fig. 1(c) for k = 4 and m = 1. Solid lines
present theoretical formulas; see Egs. (17)—(19). The dot-dashed line
presents (£(t))/2; see Egs. (21) and (22).

and various values of A, and h,. The purely linear growth
of the average kinetic and potential energies (see the bottom
panel of Fig. 1) is recorded due to a very special choice of
. The special choice of k and m assures that the change
in (hy, hy) from (0,1) to (1,0) results in a simple exchange
of the average kinetic energy with the average potential en-
ergy. This symmetry results in the absence of oscillations
(equal average energies) at all times, i.e., (& (t)) = (£,(¢)) for
(hy, hy) = (1, 1). In more general situations, this does not
occur and hence (& (¢)) and (£,(¢)) follow oscillatory growth
along the linear trend; see Eqs. (17) and (18) and Fig. 2. Nev-
ertheless, playing with the system’s parameters, it is possible
to control which type of energy dominates at short times.
For example, for A, = 0, initially (&(z)) is always larger
than (£,(¢)), while for h, = 0 the average potential energy
dominates; compare the top and middle panels of Fig. 1.
Moreover, for n = 1, the average total energy grows linearly
regardless of w; see Eq. (19) and Figs. 1 and 2.

Contrary to the harmonic potential, for nonharmonic po-
tentials the average total energy grows linearly for 4, =0
only. This follows directly from Eq. (16), which gives

(E@) = hzm x 1+ &. (20)

Moreover, in [46] the weak convergence of the scaled energy
process £(t)/t was proven, and the scaled stationary probabil-
ity density Py (x/t'/?", v/t'/?) was derived; see also [13,36].

As an exemplary nonharmonic setup, we show results for
the quartic (n = 2) potential. In the top panel of Fig. 3, the
predicted linear growth of (£(¢)) is observed as i, = 0. In the
remaining panels, the average energies grow superlinearly due
to the presence of the (x*"~2) = (x?) term; see Eq. (16). From
fits, we see that the growth is quadratic. In all the above cases,
after the disappearance of the transient (usually oscillatory)
behavior, generalized equipartition relations hold [see Eqgs. (9)
and (10) and Refs. [8,41]], i.e.,

n
(&) = 1+n<5) @2n
and
1
(&p) = 1_I_n(5)~ (22)

n

QIR I~

0 2 4 6 8 10

FIG. 3. Time dependence of average energies for the frictionless,
uninterrupted motion in the quartic potential (n = 2) with (hy, h,) =
(0,1) [top panel, (a)], (hy, h,) = (1,0) [middle panel, (b)], and
(hy, hy) = (1, 1) [bottom panel, (c)]. Other parameters: k = 1 and
m = 1. The solid line in the top panel depicts the theoretical linear
scaling of the average total energy (£(¢)); see Eq. (19). Dashed and
dot-dashed lines present %(S(t)) and %(5(1‘)) scalings; see Egs. (21)
and (22).

In Fig. 3, scalings predicted by Egs. (21) and (22) with
n = 2 are depicted with dashed and dot-dashed lines. These
scalings hold not only for the typical noise-driven dynam-
ics, i.e., (hy, hy) = (0, 1), but also for (A, h,) = (1,1) and
(hy, hy) = (1, 0).

For the parabolic (n = 1) potential, from Eqgs. (17)-(19)
one can calculate the asymptotic (f — oo) ratio of the av-
erage energies: (£,(00))/(£(00)) = (£,(00))/(E(00)) = 1/2,
which, for large but finite #, agrees with predictions of
Egs. (21) and (22). Deviations from Egs. (21) and (22) are
visible for small ¢ because of the periodic addition to the
linear trend; see Eqgs. (17)—(19) and Figs. 1 and 2. The very
same situation takes place for the quartic (n = 2) potential;
see Fig. 3. Dashed and dot-dashed lines in Fig. 3 present
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numerically calculated (£(¢)) multiplied by factors obtained
from Egs. (21) and (22), i.e., (£(t)) x n/(1 + n) and (E(t)) x
1/(1 4+ n) with n = 2. Expected values of the average kinetic
and potential energies agree very well with these predictions.

B. Bounding unlimited energy growth

For y > 0, the total energy for the model described by
Egs. (13) is limited. For A, = 0, the model is equivalent to
the standard underdamped Langevin equation (2), and the
stationary density is given by the BG distribution (5). For A, >
0, the stationary density still exists, which is clearly visible
from computer simulations (results not shown). Alternatively,

one can use the equation for moments (x*"), (v?), ... . For
instance, for n = 1 one has

d

., =2 hxa

7 (x%) (xv) +

d , 2 2

E(U ) = =2y (v7) — 207 (xv) + hy,

d 2 2,2

E(XU) = (v7) — Y {xv) — 0" (x7) (23)

from which Egs. (17) and (18) can also be derived. Moreover,
from Eq. (23) stationary values of moments (x?), (v?), and
{(xv) can be calculated as

hy (Y2 +0*)+hy
(xz)oo = 7()/22)/(:)2) s
(W) = DGt (24)
hy
(xv>oo = _7)-

The set of equations for V (x) o x*" with n > 1 is more com-
plicated than for n = 1. The increasing complexity is because
of higher-order terms, e.g., (x**) and (x*"~'v); see Eqs. (14)
and (15). For instance, the formula for the time derivative of
(x?"~1v) takes the following form:

d

E<x2'171v> — (2n _ 1)(x2n72v2>

1 2n—3
+ 5 he2n = D21 = 2) (")

_ y<x2n—lv) _ a)Z(x4n—2)’ (25)

because d(x*"~'v) = 2n—1Dx*"2vdx+1(2n—1)2n —2)
x23v(dx)? + x> 'dv and Egs. (A3) and (AS). Conse-
quently, subsequent equations have to be introduced, making
the system of equations infinite. This should be contrasted
with the numerically estimated total average energy (£(¢)) and
moments (v?) « (&), (x*") o (£,), which for the frictionless
dynamics in the quartic potential, i.e., n = 2, grow linearly or
quadratically in time; see Fig. 3.

In the damped case, i.e., y > 0, the linear restoring force
corresponding to n = 1 [see Egs. (23) and (24)] is sufficient
to assure the existence of a stationary state. More precisely,
velocity is bounded due to damping, while position is con-
strained by the restoring force. For steeper potentials than
parabolic, i.e., n > 1, the restoring force is stronger, making
the system localized in a smaller fraction of space. In the limit
of n — 00, the potential well [see Eq. (1)] transforms into an
infinite rectangular potential well producing the marginal P(x)
density uniform.

(&) o

FIG. 4. Time dependence of average energies for the parabolic
[top panel, (a)] and quartic [bottom panel, (b)] potentials with
(hy, hy) = (0, 1). The reset is performed every T =4, ie., f(t) =
8(t —4). Other parameters: k = 1 and m = 1. Solid, dashed, and
dot-dashed lines present () max With 3 (£)maxs 5 (€)max [top panel (a)],
and (&) max With 2 (&) max 3(E)max [bottom panel (b)]; see Egs. (21)
and (22).

Contrary to the damped dynamics, in the frictionless case
there is no stationary state for the model described by Egs. (2),
(12), or (13). The lack of damping allows for unbounded
energy growth. Nevertheless, it is possible to introduce other
mechanisms resulting in bounding of the system energy. To
stop energy growth for y = 0, we consider stochastic resetting
[22,23] at random time instants. We consider the scenario
in which both the velocity and the position are simulta-
neously reset, i.e., v — 0 and x — 0. We assume that the
resetting is associated with the distribution f(t) providing
renewal intervals t (t > 0) between resets [47]. Renewal
intervals are independent, identically distributed random vari-
ables following a (one-sided) distribution f(7).

In the scenario in which both velocity and position are
reset, the energy is fully determined by the survival time (age)
A; =t — tg, i.e., the time measured since the last reset #z. The
sequence of reset times t,({’) is determined by the f(7), i.e.,

W= T (26)
i=1

where 7; is the sequence of renewal intervals. As an introduc-
tory example, we start with f(t) = 6(r — A), where §(---)
is Dirac’s delta function. Typical growth of energies (£(¢)),
(Ep(1)), and (&(¢)), interrupted by regular resets occurring
every time interval A, can be expected. Indeed, this type of
behavior is visible in Fig. 4 for the parabolic and quartic
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(a) 1

0.8
0.6

0.4

FIG. 5. Ratio of average energies (&) /(E) and (£,)/(E) att = A
for the parabolic [top panel, (a)] and quartic [bottom panel, (b)]
potentials with (h,, h,) = (0, 1). The reset is performed every A,
ie., f(r) =&(r — A). Other parameters: k = 1 and m = 1. Solid,
dashed, and dot-dashed lines present theoretical ratios given by
Egs. (21) and (22), i.e., 1/2 [top panel, (a)] and 2/3, 1/3 [bottom
panel, (b)].

potentials with (A, h,) = (0, 1). A very similar behavior is
recorded for (h, h,) = (1,0) and (hy, hy) = (1, 1) (results
not shown). Solid lines in Fig. 4 present maximal total ener-
gies, while dashed and dot-dashed lines present maximal total
energies multiplied by the prefactors from Eqs. (21) and (22),
which should give maximal average kinetic and potential en-
ergies, respectively. As is visible in Fig. 4, the average kinetic
and potential energies do not necessarily correspond to the
given fraction of total energies. The violation of equipartition
relations in the case of deterministic resets is natural—there
was insufficient time for the system to lose the memory of its
initial state, i.e., transient oscillations are present in between
reset intervals. In Fig. 5 we present ratios of the average
energies as a function of the time interval A between two
consecutive resets. Figure 5 clearly indicates the return to
generalized equipartition [scalings predicted by Egs. (21) and
(22)] in the case of large A. Consequently, if A is too small,
the generalized equipartition cannot be satisfied.

The more interesting situation is recorded when resets are
performed at random time instants. In such a case, in order
to calculate the average energy in addition to averaging over
noise realizations, it is necessary to perform additional averag-
ing over time (age) which passed since the last reset. The rate
of average energy growth is easily traceable analytically when
in the absence of resetting, the average energy grows linearly
in time. As we have shown in Sec. II A, such a situation

takes place for y = 0 with n = 1; see Eq. (19) or any n with
he =0,1ie.,

(E@) = At 27
with
hek+hym
2T for n=1
fr— 2 ’
A {}% for n>1,h =0. (28)

The value of the average energy is then determined by
the properties of the renewal intervals, which are the times
between two consecutive resets. Here, we assume that renewal
intervals 7; are independent and identically distributed random
variables following the F (t) distribution [f(7) = %]. Af-
ter a transient period, the average energy does not depend on
time if the average time since the last reset (age) is finite. The
average time since the last reset (A,) exists if the variance of
renewal intervals 7 is finite, i.e., var(t) = (t2) — (1)? < 0.
In such a case, from the renewal theory [47], we have the
following formula for (A;):

()

(Ar) = 20y’ (29)
where () and (r?) denote moments of the renewal intervals,
e.g., (1) = fooo f(r)r dt. The average energy reads

()
(E@) =AA)=A5—. (30)
2(7)
Figures 6 and 7 present the time dependence of the average
energies for parabolic n = 1 (Fig. 6) and quartic n = 2 (Fig. 7)
potentials with the half-normal renewal time distribution

2 72
f(r)= 77_03 exp [_T‘rz} (t >0), 3D

for which (t) = /2/70,, (t%) = Urz, var(t) = (t%) — (1)2 =
(1 - 2/71)63, and most importantly (A;) = /7 /8 x o,. Con-
sequently, for n = 1 or h, = 0 we have

(€)= AA) = A\/gar, (32)

where A is given by Eq. (28). The above predictions are
confirmed in Figs. 6 and 7, which present results for n = 1
and 2, respectively. For the parabolic potential, the agreement
between theoretical predictions [see Eq. (32)] and computer
simulations is reached in all cases. For (h,, h,) = (1, 0) and
(hy, hy) = (0, 1), the average total energies (£) are the same,
while for (hy, h,) = (1, 1) it is two times larger than in the
former cases. For the quartic potential, we have the formula
for the stationary value of (£) for s, = 0 only (see the top
panel of Fig. 7), because only for h, =0 do we know the
formula for (£(¢)) [see Eq. (28)]. For the quartic potential
with &, > 0 (see the middle and bottom panels of Fig. 7),
the average energies are also bounded. At this time, stationary
values are not easily related to (A;) because in the absence
of resetting, the average energies are nonlinear functions of
time; see Fig. 3. As for n =1, for (hy, h,) = (1, 1), due
to the presence of two noise sources, the average energies
attain larger values. In Figs. 6 and 7, the average energy
partitions differ from the predictions of Egs. (21) and (22).
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FIG. 6. Time dependence of average energies for the parabolic
(n = 1) potential with (h, h,) = (0, 1) [top panel, (a)], (A, h,) =
(1, 0) [middle panel, (b)], and (A, h,) = (1, 1) [bottom panel, (c)].
Renewal intervals t are distributed according to the half-normal dis-
tribution, see Eq. (31). Different curves correspond to various types
of energies (£(1)), (£,(1)), (E(t)). Solid lines depict the asymptotic
energy (£) given by Eq. (32), while the dash-dotted line in the bottom

1

panel (c) shows 5 (£). Other parameters: m = 1 and k = 1.

The difference, in the case of n =1, comes from regular
oscillations and relatively small (7). In the special case of
hy =h, =1 and m = k = 1 when there are no oscillations
(see the bottom panel of Fig. 1), the problem has not appeared;
however, the equipartition was accidental (see below).

The saturation of average energies (see Figs. 6 and 7)
is connected with the existence of nonequilibrium stationary
states. For the parabolic potential, nonequilibrium stationary
densities corresponding to Fig. 6 are depicted in Fig. 8.
Various panels of Fig. 8 correspond to (hy, h,) = (0, 1) (top
left panel), (4, h,) = (1, 0) (top right panel), and (4, h,) =
(1, 1) (bottom panel). If nonequilibrium stationary densities
would be of BG type, these densities would be constant on the
constant energy curves, i.e., they would be elliptical. In the
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FIG. 7. The same as in Fig. 6 for the quartic (n = 2) potential.
The solid line in the top panel (a) depicts the asymptotic energy (£)
given by Eq. (32).

case of n = 1 with k = 1 and m = 1, these ellipses should re-
duce to circles. Therefore, for (h,, h,) = (0, 1) and (h,, h,) =
(1, 0), nonequilibrium stationary densities are clearly not of
BG type. For (hy, h,) = (1, 1), the nonequilibrium stationary
density appears to be spherically symmetric, however this is
only one of the properties of the BG distribution. To finalize
our tests, we present the additional Fig. 9 with marginal
densities P(x) (top panel) and P(v) (bottom panel). Figure 9
confirms that nonequilibrium stationary densities differ from
BG type also for (hy, h,) = (1,1). As is clearly visible in
Fig. 9, in all cases under study, decay of marginal densities
P(x) and P(v) (points) appears to be exponential. Conse-
quently, it differs significantly from the appropriate decay
of marginal densities of the BG distribution, which for the
parabolic potential is of exp(—bx?) and exp(—bv?) type, i.e., it
is half-Gaussian. Moreover, in order to emphasize differences,
additional solid lines in Fig. 9 show half-Gaussians fitted
to results of simulations. Finally, we have checked that also
in situations when generalized equipartition relations hold,

022105-7



MICHAL MANDRYSZ AND BARTEOMIEJ DYBIEC

PHYSICAL REVIEW E 102, 022105 (2020)

(a) 1 (b) 1

0.5 +

-0.5 +

FIG. 8. Nonequilibrium stationary densities P(x,v) for the
parabolic (n = 1) potential with (h,, h,) = (0, 1) [top left panel, (a)],
(hy, hy) = (1, 0) [top right panel, (b)], and (4, h,) = (1, 1) [bottom
panel, (c)]. Renewal intervals t are distributed according to the
half-normal distribution, see Eq. (31). Other parameters: m = 1 and
k=1.

i.e., for o, large enough, nonequilibrium stationary densities
are not of BG type (results not shown). In particular, the
distributions appear to have elongated tails compared with
the BG distribution. In all the above-mentioned cases the
nonequilibrium stationary states exist due to rapid decay of
the tails of the renewal time distribution (faster than 2); see
[22] and [48].

Violations of the generalized equipartition relations visible
in Figs. 6 and 7 are produced by resetting. The parameter o,
controls the mean value and the variance of renewal intervals
7; see Eq. (31). It is responsible for the spreading of A, and
the increase in (A;). To reintroduce equipartition relations,
the parameter o, has to be large enough to increase the mean
survival time (age) (A,) beyond the transient oscillatory phase.

If we increase o, and consequently (A;), the ratios of the
average energies become closer to the predictions of Egs. (21)
and (22); see Figs. 10 and 11. Figures 10 and 11 show ratios
of average energies for parabolic and quartic potentials as a
function of the average age (A;). These figures suggest that
violation of generalized equipartition relations is caused by
too frequent resets. Moreover, they indicate that if the average
age (A;) is longer than the duration of the transient phase,
the generalized equipartition relations are recovered. For large
enough (A,), the generalized relations, see Egs. (21) and (22),
are in tact for all studied setups, i.e., also under the action of
two noise sources; see Fig. 11. Therefore, for random resets
the situation resembles the already discussed problem of ratios
of energies at fixed times for equidistant resets; see Fig. 5. In
Fig. 5, generalized equipartition holds (at reset time points)
for large enough A.

(a) 10! 3
10° ;‘>‘
E0 ]
1072

1073

(b) 10"
100 b
=0t |

1072

1073

FIG. 9. Marginal nonequilibrium stationary densities corre-
sponding to Fig. 8, i.e., P(x) [top panel, (a)] and P(v) [bottom panel,
(b)] for the parabolic (n = 1) potential. Different curves correspond
to different values of 4, and h,. Solid lines represent a, exp(—b.x?)
and a, exp(—b,v?) fits. Renewal intervals T are distributed according
to the half-normal distribution, see Eq. (31). Other parameters: m =
landk = 1.

If the variance, var(t) = (t2) — (1), of the renewal inter-
val diverges, the average energy (£(¢)) no longer saturates
but it starts to grow, because there is no stationary state in
the system [48]. The energy growth cannot be faster than
in the dynamics without resetting, which limits the overall
growth rate. In particular, for n = 1 or any n with &, = 0 the
growth is sublinear, as the linear growth is the limiting growth
that is recovered in the absence of resetting; see Eq. (16).
To calculate the time dependence of the average energy, one
needs to know the distribution g(A,) of the time since the
last reset, i.e., the age at time r. The age A, is given by
A; =t — tg, wWhere tg is the last resetting (renewal) time. The
age distribution fulfills [47]

PU, <5) = {F(z) —Jo "L=F@ =»IdRY), s <1,
1, s>,
(33)
where F(¢) is the renewal interval distribution
[F(t) = [" f(s)ds] and R(t) = (N;) with N, :=max{n €
N:>" ,wu<r}. Now, the average energy can be
calculated as
t
(&) = A/ g:(s)sds, (34)
0
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0 1 | 1 1 1
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FIG. 10. Ratio of average energies for the parabolic (n =1)
potential with (A, h,) = (0, 1). Different curves correspond to
(Ep)/{E) and (&)/(£). Dashed and dot-dashed lines depict theoret-
ical ratios predicted by Egs. (21) and (22). Renewal intervals 7 are
distributed according to the half-normal distribution, see Eq. (31).
Other parameters: m = 1 and k = 1.

where
[1—=F()IR(t —s), s<t,
gi(s)=— =1 =F®IR0)5(t —s), s=t, (35
ds 0, s >t.

If (t) is finite for + — oo, due to Blackwell’s theorem [47],
we can approximate R(¢) by ¢/(t) and R'(¢) by <71> Moreover,
for the Pareto density [see Eq. (38)], characterized by the finite
mean, we can calculate R'(0), which is equal to 0, because

R (Near) = (V)
E(t)_hm

di—0 dt ’ (36)

and for dr < § we get Noqsr = 0. Consequently, we have

t A t

(&) = A/ g/(s)sds = —/ [1 —F(s)]sds. 37
0 (t) Jo

The estimate of (£(z)) can be provided after selecting (7).

Starting from now, for tractability reasons, we assume that

renewal intervals follow Pareto’s distribution (o > 0, § > 0),

o
ol ‘[25,

_ )z
fr) = {6, i (38)
with the cumulative density F(r) = 1 — §*t~*. The Pareto
density is an example of the heavy-tailed, power-law distribu-
tion [48]. The average energy

t t
(E@) = Af g (s)sds = %/ [1—F(s)]sds o t>7%.

8 s (39)
Consequently, for the Pareto renewal interval distribution with
1 < o < 2 the average energy grows as a power law with
the exponent 2 — «. For o < 1, the average renewal interval
diverges and R(¢) cannot be approximated by ¢/(t). Never-
theless, we anticipate the linear growth of (£(¢)) as it is the
limiting growth in the absence of resetting. The linear growth
is already recovered for o« — 17, as for « — 17 the exponent
2 — « tends to 1; see Eq. (39).

(a) 1 T T

B

0.6 +

04 +

0.2+

0.8 F
0.6 -

04 -

0.2 +

0.8 +

06|

0.4 +

0.2 + 4

0 | 1 1
0 1 2 3 4

(Ar)

FIG. 11. The same as in Fig. 10 for the quartic (n = 2) poten-
tial with (hy, h,) = (0, 1) [top panel, (a)], (h,, h,) = (1, 0) [middle
panel, (b)], and (h,, h,) = (1, 1) [bottom panel, (c)]. Renewal in-
tervals 7 are distributed according to the half-normal distribution;
see Eq. (31).

For comparison with numerical simulations, the top panel
of Fig. 12 presents the time dependence of the average energy
(E(t)) for the parabolic potential with the Pareto distribution
of renewal intervals with 1 < o < 2. Various curves corre-
spond to various exponents «. For 1 < o < 2, the Pareto dis-
tribution is characterized by the finite mean renewal interval,
but the variance of the renewal intervals diverges. Therefore,
we are in the regime of validity of Eq. (39). The minimal
renewal interval is set to § = 0.01. Additional parameters are
equal to m = 1, k = 4. We show only results for (h,, h,) =
(0, 1), as for (hy, hy,) = (1,0) and (hy, h,) = (1, 1) the same
scaling is recorded. Asymptotically, the average energy (E(t))
scales in accordance to the predictions of Eq. (39), which
are depicted by solid lines. Moreover, with decreasing « the
quality of the t>~* approximation improves. For « tending to
1+ the 1>~ scaling approaches the linear scaling. The very
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FIG. 12. Time dependence of average energies for the parabolic
potential with (h,, h,) = (0,1) and the Pareto distribution, see
Eq. (38), of renewal intervals with 1 < « < 2 [top panel, (a)] and
0 < o < 1 [bottom panel, (b)]. Various curves correspond to various
values of the exponent «. Other parameters: § = 0.01, k =4, and
m = 1. Solid lines present the theoretical >~ scaling.

same scaling is recorded for average kinetic and potential
energies (results not shown). For the quartic potential, the
situation is more complex because average energies do not
need to grow linearly in time. Nevertheless, for the fully
traceable case of i, = 0, we observe the same scaling as for
the parabolic potential, i.e., 27 (results not shown).

The case of @ < 1 needs to be considered separately as for
a < 1 the mean renewal interval does not exist. For o < 1,
the linear scaling of the average energy is perfectly visible in
the bottom panel of Fig. 12. The solid line in the bottom panel
of Fig. 12 presents the (£(¢)) = At line. In the limit of @ —
0 there is no resetting. For o = 0.1, the motion can still be
reset but the dependence of (£(¢)) is very close to that without
resetting. A change in «, as long as « < 1, does not change the
linear scaling, but changes the prefactor in the scaling.

For a < 1, the ratios of average energies corresponding to
the bottom panel of Fig. 12 asymptotically follow Egs. (21)
and (22) for all studied values of h, and h, (results not
shown). The situation for o > 1 is more complex. As all
types of average energies display the same scaling, we expect
a kind of generalized equipartition relations with the exact
shape determined by the distribution of the renewal intervals.
For f(r) used in the top panel of Fig. 12, relations given
by Egs. (21) and (22) are recovered for « — 1. Otherwise,
ratios of average energies are different. Violations of gener-
alized equipartition relations are due to too frequent resets.

Despite the fact that the Pareto density with 1 <« < 2 is
characterized by the diverging variance, it still allows for
frequent resetting. The number of very short renewal intervals
can be reduced either by decreasing o or by increasing §.
Therefore, we have performed additional simulations with
6 =5, which is well above the transient period. For § =
5, we have recovered equipartition relations (21) and (22)
(results not shown). Here, the situation is similar to the one
observed for f(r) = 8(r — A) and f(r) given by Eq. (31):
too frequent resets introduce violations to equipartition
relations.

III. SUMMARY AND CONCLUSIONS

Frictionless, noise driven dynamics in a single-well po-
tential allow for unlimited growth of average energies. Here,
we presented a possible mechanism that can assure the exis-
tence of nonequilibrium stationary states. The reintroduction
of stationary states and bounding of energy is achieved by
resetting the velocity and position at random time instants.
If the variance of the renewal intervals is finite, the average
energies are again finite and stationary states are reestablished.
Contrary to the linear damping case, these states are not of the
Boltzmann-Gibbs type. If the variance of the renewal intervals
diverges, the systems still exhibit unbounded energy growth,
yet it is slower than the limiting growth corresponding to the
absence of resetting.

Using methods of statistical physics, it is possible to cal-
culate the average kinetic and potential energies as a fraction
of the average total energy. Here, we show that generalized
equipartition relations hold also in setups for which a sta-
tionary state does not exist, e.g., in frictionless, noise-driven
motions in single-well potentials. To observe generalized
equipartition relations, the observation time needs to be longer
than the transient period. Consequently, in frictionless dy-
namics, the average energies grow in an unlimited manner,
but after the transient period their ratios become constant.
The very same relations hold also when both velocity and
position are perturbed by noise. Generalized equipartition
relations are recovered in systems in which resets are not
too frequent. This means, in practice, that for systems with
resetting for which the nonequilibrium stationary state exists,
the average time since the last reset has to be longer than the
length of the transient period. If despite resetting there are no
stationary states, which takes place if the variance of renewal
interval diverges, generalized equipartition relations hold if
short renewal intervals are excluded. This property is related
to the fact that also in the absence of resetting, equipartition
relations are observed after a transient period.

The studied model can be generalized in numerous ways.
For example, it is possible to consider other types of resetting.
For instance, one can reset the velocity or position only [49].
After such resetting, the system energy is reduced to kinetic
or potential energies only. Therefore, initial conditions do not
correspond to & = 0. On the one hand, such scenarios are
capable of bounding energy growth. On the other hand, these
resetting scenarios are not easily accessible analytically, as
energy is not only determined by the time since the last reset,
but also by the value of the energy after reset.
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APPENDIX: EVOLUTION OF AVERAGE ENERGIES
From Eq. (13), i.e.,

d
’;(t” = 0(t) + VI (1),
de) = —pu(t) — P N0) + VhE(), (Al

it is possible to derive equations describing the time evolution
of average kinetic (&) and potential (£,) energies. Starting

2n
from £, = k%—, we have
14 2n

d€ 1d%€,

d€y = —Fdx+ S — 2 (dx) 4+ (A2)
= kx™dx + %k(Zn — D2 (dx)?
with
dx = vdt + /hdW,, (A3)

where dW, stands for increments of the Wiener W, process

(Brownian motion). Analogously for & = %mvz, we have

dE = ——dv + S ——(dv)’ + (Ad)
= mvdv + %m(dv)2
with
dv = —yvdt — o™ x> dt + Vh,dW,, (AS)

where dW, represents increments of the Wiener process W,,.
We assume that both processes W, and W, are independent,
i.e., (£:(1)&,(s)) = 0. Keeping terms that are at most linear in
dt, we have

1
dgp = kxznflvdt + \/}Txkxz”’ldWx + Ehxk(zn _ l)xz"*zdt

(A6)
and

1
d& = —myvidt — mo*x*" " 'vdt + my/ hyvdW, + Emhvdt.
(A7)
From the above equations, we obtain the following formulas
for time derivatives of average energies:
d

7 (A8)

<5p(l)) = k(x2n71v> + %hxk(zn _ 1)<x2n—2>
and

%(&(t)) = —my (v?) — mo?* (x* 1) + %mhv, (A9)

since the correlators (x*"~'dW,) and (vdW,) vanish [45]. The
change of total energy is described by

d d
E(ﬁt)) = E(gp(t) + &) (A10)

1 1
= —my (v?) + Ehxk(Zn — DX + Emhv.

Alternatively to the It6 lemma, one can use the method de-
scribed in Chap. 3 of Ref. [45], which gives the same results.
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