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Size-stretched exponential relaxation in a model with arrested states
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We study the effect of a rapid quench to zero temperature in a model with competing interactions, evolving
through conserved spin dynamics. In a certain regime of model parameters, we find that the model belongs to
the broader class of kinetically constrained models, however, the dynamics is different from that of a glass. The
system shows stretched exponential relaxation with the unusual feature that the relaxation time diverges as a
power of the system size. Explicitly, we find that the spatial correlation function decays as exp(−2r/

√
L) as a

function of spatial separation r in a system with L sites in the steady state, while the temporal autocorrelation
function follows exp[−(t/τL )1/2], where t is the time and τL proportional to L. In the coarsening regime, after
time tw , there are two growing length scales, namely L(tw ) ∼ t1/2

w and R(tw ) ∼ t1/4
w ; the spatial correlation

function decays as exp[−r/R(tw )]. Interestingly, the stretched exponential form of the autocorrelation function
of a single typical sample in the steady state differs markedly from that averaged over an ensemble of initial
conditions resulting from different quenches; the latter shows a slow power-law decay at large times.

DOI: 10.1103/PhysRevE.102.022103

I. INTRODUCTION

Systems which are cooled rapidly often reach arrested
states in which the kinetics is strongly constrained. Such sys-
tems then often show anomalously slow dynamics, manifested
through slow decays of time-dependent correlation functions.
A variety of forms is possible for such decays, but a form
which is often encountered is that of a stretched exponential
relaxation (SER)

φ(t ) ∼ exp(−t/τ )β, (1)

where φ(t ) is an autocorrelation function over a time stretch
t , the time τ sets the scale for the decay, and the stretching
exponent β satisfies 0 < β < 1. First observed in capacitor
discharges by Kohlrausch [1] and subsequently by Williams
and Watts in the context of dielectric relaxation [2], this form
of decay has been found in a host of systems, some with
quenched disorder and others without; representative systems
are discussed in Sec. II.

Our focus in this paper is on the decay of the spin auto-
correlation function φ(t ) in a particular type of arrested state
that arises in a one-dimensional (1D) Ising model with com-
peting first- and second-neighbor interactions and conserved
dynamics [3]. Competing interactions arise in magnetic rare
earths through the Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction [4]. Such interactions can also be realized in arti-
ficial spin chains [5] where one can experimentally reach the
regime of interest in this paper (that is, a weak antiferromag-
netic second-neighbor interaction). Competing interactions
between close-by Ising spins in one dimension also arise
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in quite a different context, namely stacking dynamics in
polytypes, where Ising pseudospins +1 and −1 are associated
with cyclic and anticyclic ABC stackings, respectively [6].
The kinetics of stacking transitions such as 3C-6H [7,8]
involves conservation laws in related competing-interaction
spin models [9].

On quenching instantaneously from infinite temperature T
to T = 0, the model considered in Ref. [3] is known to show
a number of distinct types of arrested states, depending on the
ratio of the coupling constants. The arrested state of interest
to us here is one in which φ(t ) follows Eq. (1) but with the
exceptional feature that the relaxation time τ depends strongly
on the system size L,

τ = τL ∼ Lz. (2)

We refer to relaxation characterized by Eqs. (1) and (2) as
size-stretched exponential relaxation (SSER), to emphasize
that the stretching depends on system size. As discussed
in Sec. II, within the class of stretched exponential decays,
SSER is uncommon and so far, to the best of our knowledge,
only one other class of systems with this property has been
identified.

It is interesting to ask about the qualitative physical fea-
tures that give rise to SSER in the arrested state under study
here. During the quench to T = 0, the system is able to anneal
out most localized high-energy excitations, but a dilute gas
of mobile excitations (domain walls) remains, whose number
N varies sublinearly ∼Lα (α < 1) and stays constant in time
owing to a conservation law. The subsequent time evolution of
the state involves microscopic moves which conserve energy
and are consequently constrained by the local configurations
of spins in the close vicinity. Thus the evolution rules fall
within the class of kinetically constrained models (KCMs)
[10–12] discussed in the next section. However, unlike KCMs
studied earlier, these rules produce an SSER, as embodied in
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Eqs. (1) and (2), as a consequence of the number of excitations
growing subextensively.

The main results of this work are as follows: (i) We show
that the spatial correlation function in the steady state decays
exponentially with a length scale varying as

√
L. (ii) For a

rapid quench to zero temperature, the coarsening length scale
L(tw ) at waiting time tw varies as t1/2

w . But there is also a
second length scale R(tw ) which grows as t1/4

w , and governs
the decay of the two-point correlation function. (iii) The
autocorrelation function in the steady state reached on starting
with a typical initial condition shows a stretched exponential
relaxation with the stretching exponent β = 1/2; the unusual
feature is that the relaxation time depends on system size
(SSER). When averaged over initial conditions, the autocor-
relation function shows distinctly different behavior, namely
SSER followed by a power-law decay.

The rest of the paper is organized as follows: A brief
overview of stretched exponential decays in various systems
is given in Sec. II. In Sec. III, we define the model along
with the dynamical rules and also recall different types of
arrested states which ensue on quenching the system to T = 0
depending on parameter values. We discuss some aspects of
the arrested state of interest in Sec. IV, while in Sec. V, we
present quantitative results for statics and dynamics, including
the coarsening regime. In Sec. VI, we obtain analytic results
by relating our system to the simple exclusion process [13,14],
and finally conclude in Sec. VII with a discussion of our
results.

II. EARLIER WORK ON STRETCHED
EXPONENTIAL DECAYS

In this section, we give a brief overview of different classes
of models which show a stretched exponential decay of cor-
relations [Eq. (1)] with a view to providing a context for our
results.

A well-known mechanism that produces a stretched ex-
ponential decay involves averaging over different regions of
the system, with individual exponential relaxations running in
parallel. A suitable distribution of relaxation times can then
lead to a stretched exponential form for the overall relaxation
function [15,16]. In fact, as discussed in Sec. III B below,
this mechanism also leads to SER in one of the possible
arrested states (not the one of primary interest in this paper)
in the model under study here. The dynamic heterogeneity
picture of glassy materials, as discussed below, invokes and
supports this mechanism for glassy relaxation [17]. In a vari-
ant, Palmer et al. [18] proposed a general mechanism where
an individual region has an exponential relaxation, which,
however, is hierarchically constrained. Trap models [19–24]
consider the diffusion of excitations which reach randomly
distributed static traps, in which case the long-time behavior
is controlled by particle motion in large trap-free regions.
Stretched exponential relaxation also arises in continuous-
time random walks with a broad distribution of pausing times
[15,25].

In the ordered phase of the 2D Ising model, the autocor-
relation function exhibits SER arising from the relaxation of
rare, long-lived droplets of the minority phase [26,27]. Rare
clusters also dominate the T → 0 dynamics of a 1D Ising

ferromagnet with quenched disorder in the coupling, again
leading to SER [28].

SER is one of the hallmarks of glassy dynamics [10,17].
Different theories, ranging from microscopic theories such
as the mode-coupling theory (MCT) [29–31], to phenomeno-
logical theories such as the free volume theory [32] the
Adam-Gibbs-DiMarzio theory [33,34], as well as the ran-
dom first-order transition theory [35–37] have put forward
mechanisms for such relaxations. Within these theories, the
stretching exponent is related to the length scale of dynamic
heterogeneity in the former, whereas it is related to the length
scale of spatially correlated domains in the the latter class of
theories.

A class of simple models, known as kinetically constrained
models (KCMs) [10], have been proposed to understand some
properties of a glassy system. A variety of KCMs have
been studied in the last several decades [11,12,38,39], with
the constraint in the dynamics being included in different
forms, for instance, dynamics with local constraints such as
the magnetization-conserving Kawasaki dynamics. In models
with an infinite number of conservation laws, the configu-
ration space divides up into an exponentially large number
of sectors with different forms of slow relaxation, including
sectors which exhibit stretched exponential decays [40]. Al-
though these models show some glasslike features, the precise
mechanism for SER in glassy systems remains unclear.

An interesting subclass of KCMs of particular relevance
to the current work invokes the action triggered at a site
by the arrival of diffusing entities, whose total number is
conserved. Thus Glarum [41] and Bordewijk [42] argue that
an SER with β = 1/2 describes relaxation of a molecule,
caused by diffusing defects of the liquid structure reaching it.
In another context, Skinner [39] studied a model of polymer
dynamics, which was mapped onto a 1D Ising model. At low
T , only energy-conserving moves are allowed, implying a
conserved number of domain walls (DWs), resulting in local
spin relaxation following an SER with β = 1/2. This form of
SER was established rigorously by Spohn [43] who derived
upper and lower bounds on τ in Eq. (1) in a model with a
conserved number of DWs, while a generalized model was
considered in Ref. [44]. In the arrested state studied in this
paper, we will show that similar DW dynamics holds, but the
result is an SSER with β = 1/2 and τL ∼ L.

We close this section by alluding to the only other example
of SSER that we are aware of. Systems of particles with mu-
tual exclusion driven by a fluctuating surface are known to ex-
hibit fluctuation-dominated phase ordering (FDPO). The au-
tocorrelation function of particle occupancies exhibits SSER.
This result is supported by an analytic calculation of φ(t ) for a
related coarse-grained depth model [45] which exhibits SSER
with β = 1/4 and τL ∼ L2.

III. MODEL AND ARRESTED STATES

A. Hamiltonian and dynamics

We study the relaxation dynamics to, and in, an arrested
state in a simple 1D model with competing interactions,
namely the axial next-nearest-neighbor Ising (ANNNI) model
[6,46]. We consider the ANNNI model on a 1D lattice with
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periodic boundary conditions described by the Hamiltonian

H = −J1

L∑
i=1

SiSi+1 + J2

L∑
i=1

SiSi+2, (3)

where J1 and J2 are the coupling constants corresponding
to the nearest- and the next-nearest-neighbor interactions,
respectively, Si = ±1 is an Ising spin variable at the ith site,
and L is the size of the system. If the next-nearest-neighbor
interaction is antiferromagnetic (J2 > 0), it competes with the
nearest-neighbor interaction J1, which could be either ferro-
magnetic or antiferromagnetic. In this study, we assume that
J1 > 0 and define j = J2/J1. The time evolution of the system
proceeds through double-spin-flip (DSF) dynamics, wherein
only pairs of adjacent parallel spins are flipped: ↑↑ ↔ ↓↓.

Let us define the sublattice magnetizations as

Meven =
L/2∑
j=1

S2 j, Modd =
L/2∑
j=1

S2 j−1. (4)

The staggered magnetization, defined as the difference of
the sublattice magnetizations, M ≡ Meven − Modd, evidently
remains conserved as every DSF move changes both Meven

and Modd equally.
Under a transformation which flips every spin on the even

sublattice, the nearest-neighbor coupling J1 reverses its sign
but J2 does not. The DSF dynamics then maps into spin-
exchange or Kawaski dynamics ↑↓ ↔ ↓↑. In other words,
the DSF dynamics with the ferromagnetic nearest-neighbor
interaction and antiferromagnetic next-nearest-neighbor inter-
action becomes equivalent to the Kawasaki dynamics with
both the nearest-neighbor and next-nearest-neighbor interac-
tions being antiferromagnetic. The two descriptions are thus
equivalent; we use DSF throughout in this paper. It is simple
to transcribe results to the Kawsaki dynamics description.
For instance, single-point correlation functions such as spin
autocorrelation functions remain unchanged, as do correlation
functions between two sites on the same sublattice.

B. Arrested states

Consider performing an instantaneous quench to temper-
ature T = 0 from an infinite-temperature random state. The
T = 0 condition only allows those DSF moves which lead
to a negative- or zero-energy change, as computed using the
Hamiltonian, Eq. (3). Initially the system enters a coarsening
regime in which both negative-energy change and zero-energy
change moves occur, and the overall energy decreases as a
result. Ultimately, this ceases when the system reaches the
steady state (here, the arrested state), where only the zero-
energy change moves operate. The set of allowed DSF moves
depends on the ratio of couplings j. There are five different
regions along the j axis, each corresponding to a type of
arrested state [3]. The local environment which affects the
orientation of a pair of adjacent parallel spins consists of the
nearest and next-nearest neighbors of these two spins. Since
each spin can be either up or down, there is a total of 16
possible distinct local environments for a given pair of spins;
these are listed in Ref. [3].

Each of the five arrested states has different characteristics.
In particular, the arrested state which occurs when j > 1,

FIG. 1. An arbitrary spin configuration. The domains with even
number of spins (E ) ultimately get annihilated in the DSF dynamics
whereas those with odd number of spins (O) cannot be annihilated.
The curly lines depict domain walls, and an example of an E domain
(eight blue spins, underlined with dots) and an O domain (three green
spins with a solid underline) are shown.

called the inhomogeneous quiescent and active (IQA) state,
was studied in detail in Ref. [3]. In this state, active and
quiescent regions of varying lengths alternate in space. Each
active region relaxes exponentially, with different relaxation
times for each. This leads to an SER for the autocorrelation
function ∼ exp[−(t/τ )

1
3 ] [3].

In this paper, we concentrate on a different arrested state
which arises when 0 � j < 0.5. This state has an interesting
structure, with large ferromagnetically ordered domains sepa-
rated by mobile domain walls, whose number is conserved.
This state with conserved mobile domain walls also shows
a stretched exponential relaxation with the autocorrelation
function decaying as ∼ exp[−A(t/τL )1/2] but the mechanism
behind this decay is quite different from that in the IQA state.
Notably, while τ in the IQA state is L independent, in this state
τL grows with system size ∼L, implying that the relaxation
follows SSER. This is one of the main results of this paper.
We now turn to a discussion of the properties and dynamics in
this phase.

IV. DOMAIN WALL DESCRIPTION

Consider a quench from a completely disordered state
to T = 0, in the coupling-constant range 0 � j < 0.5. The
allowed moves are shown in Table I, where energy-lowering
moves have been shown separately from equal-energy moves.
The former lead to the approach to steady state, while the
latter operate even in the arrested steady state, where they lead
to nontrivial decays of spin autocorrelation functions.

Domain walls (DWs) separate successive parallel-spin seg-
ments and hence lie between every pair of adjacent parallel
spin segments (Fig. 1). It is interesting to follow the fate
of DWs under the DSF dynamics. Table I shows that (a)
zero-energy moves correspond to a single DW moving by a
distance 2a in each step, where a denotes the lattice spacing,
(b) if two DWs are a distance 2a apart, a DSF move which
flips the intervening pair of spins leads to the annihilation of
both DWs and a concomitant lowering of the energy, and (c)
if two DWs are a distance 3a apart, they cannot approach any
closer.

Now consider two successive DWs as shown schematically
in Fig. 1. Two cases arise. (i) If the separation between DWs is
an even multiple of a, then they get annihilated at a long time.
(ii) If the DWs are separated by an odd multiple of a, then it is
not possible to annihilate these DWs, as shown in more detail
in Sec. V B.

In view of (i) and (ii) above, we deduce that a succession
of annihilations leads to the steady state with N domains,
each containing an odd number of parallel spins; further,
the minimum size of each domain is three. The question
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TABLE I. Allowed moves (those that do not raise the energy) in the double-spin-flip dynamics for a quench to T = 0 from a high-
temperature random initial configuration when 0 � j < 0.5.

Nature of the MC moves �E

Energy lowering moves (a) ↑ ↓ ↑↑ ↓ ↑ −→ ↑ ↓ ↓↓ ↓ ↑ −4
(b) ↓ ↓ ↑↑ ↓ ↓ −→ ↓ ↓ ↓↓ ↓ ↓ −8(0.5 − j)
(c) ↑ ↑ ↑↑ ↓ ↑ −→ ↑ ↑ ↓↓ ↓ ↑ −4 j
(d) ↑ ↓ ↑↑ ↓ ↓ −→ ↑ ↓ ↓↓ ↓ ↓ −4(1 − j)

Zero-energy cost moves (e) ↑ ↑ ↑↑ ↓ ↓ ←→ ↑ ↑ ↓↓ ↓ ↓ 0
(f) ↑ ↓ ↑↑ ↑ ↓ ←→ ↑ ↓ ↓↓ ↑ ↓ 0

then arises: What is the typical value of N in the steady
state of a system of size L? We observe that N is equal
to the sublattice magnetization M ≡ Meven − Modd, defined
in Sec. III, as each domain contributes unity to M. Since
M is conserved by DSF dynamics its value can be de-
duced from the initial configuration. Since the initial state is
purely random, M has a binomial distribution from −L to
L with zero mean and standard deviation

√
L for a system

of size L. Therefore, the typical number of domains N in
steady state is ∼O(

√
L). On the other hand, if we start

with a carefully designed random initial state with M = 0,
the system reaches a state with all spins either up or down
and the dynamical rules in this regime at T = 0 forbid any
dynamics in this state. We show the evolution of such a state
in Appendix B.

Thus we arrive at the following simple description of the
steady state. A conserved number N of DWs separate N
domains, each with an odd number � 3 of parallel spins. Each
DW performs a random walk with a step length of 2a with the
‘hard-core’ constraint that the closest distance of approach of
two successive walkers is 3a. The total number �(N, L) of
allowed configurations with N walkers in a system of size L
can be found by considering the distribution of L spins in N
boxes, ensuring an odd number, at least 3, in each box. The
result is �(N, L) = (2L/N )

((L−N−2)/2
(N−1)

)
.

We now invoke the condition of detailed balance to show
that in the steady state, every allowed configuration C is
equally likely, and is given by Pss(C) = 1/�(N, L). Since all
allowed zero-energy moves occur at the same rate (Table I),
we have W (C → C ′) = W (C ′ → C), where W (C → C ′) is the
rate from configuration C to C ′. This implies Pss(C)W (C →
C ′) = Pss(C ′)W (C ′ → C), which proves the assertion above.

Figure 2 illustrates features of the steady state and the
approach to it. Figure 2(a) shows the time evolution of the
system in the steady state on a large scale. The zoomed-
in version in Fig. 2(b) and successive collisions of two
walkers (domain walls) shown in Fig. 2(c) illustrate the 3a
hard-core constraint which operates between successive walk-
ers. Figure 2(d) shows the evolution of the system during
the approach to steady state, when annihilations of succes-
sive even-separation DWs occur. Finally, Fig. 2(e) shows the
time evolution when DWs follow the rules of the simple
exclusion process (SEP) [13,14]. We will argue below that
our system resembles the SEP, which can then be used to
deduce the time dependence of correlation functions at long
times.

V. RESULTS

We now present the results of numerical simulations which
quantitatively characterize the state with mobile domain walls.
We begin with one of two initial configurations:

(C1) A configuration with spins at every site chosen at
random, but subject to the constraint that the sublattice mag-
netization is M, with M even. The number of DWs in such a
configuration is typically much larger than M.

(C2) A configuration with an even number M of domain
walls placed at random, but subject to the constraint that every
domain has an odd number n of spins with n � 3. As shown
in Sec. IV, every configuration of this type occurs with equal
probability in steady state.

Configurations of type C1 are used for studies of coarsen-
ing, while configurations of type C2 are appropriate for studies

(a)

(c)

(b)

(d)

T
im

e

Position

(e)

FIG. 2. In all the subfigures, the vertical axis denotes increasing
time and the horizontal axis denotes increasing site index. (a) A
typical timeline of the arrested state, where black pixels are down-
spins, and gray pixels are up-spins. (b) A zoomed-in version of the
timeline. (c) A timeline showing the hard-core interaction between
walkers, where yellow pixels are the domain walls, and purple pixels
are domains. (d) The system is still coarsening. Some annihilations
of the domain walls are circled, where yellow pixels are the domain
walls, and purple pixels are domains. (e) A typical timeline of the
SEP-mappable Ising system, where black pixels are down-spins, and
gray pixels are up-spins.
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FIG. 3. Spin-spin spatial correlation functions in the steady state
follow exp(−2r/

√
L). (a) CSS(r) vs r in linear scale. (b) Scaling

collapse. CSS(r) vs r/
√

L. Inset in (b): CSS(r) vs r/
√

L in semilog
scale. Each point is an average over 5000 histories.

of dynamics within steady state. At large enough times, an
evolution starting with a C1 configuration leads to a steady
state configuration of type C2, as verified also by numerical
simulations. In the simulations discussed below, we chose
M = √

L, typical of a purely random state.

A. Static correlation function in steady state

As discussed above, we begin with a configuration of type
C2 with M = √

L. The correlation function in the steady state
is defined as

CSS(r) = 1

L

L∑
i=1

〈SiSi+r〉, (5)

where 〈· · · 〉 denotes a steady state ensemble average. CSS(r)
is plotted in Fig. 3(a) for different system sizes L. Due to
the presence of the

√
L-sized domains in the steady state,

we expect CSS(r) to decay exponentially with a length scale√
L. Indeed, as shown in Fig. 3(b), plotting CSS(r) as a

function of r/
√

L leads to an excellent scaling collapse to a
single master curve. The inset in Fig. 3(b) shows a straight
line for the same plot on a semilog scale; this confirms the
exponential behavior. As we show in Sec. VI, by relating the
large-distance, long-time properties in the steady state of our
model to that of a simple exclusion process (SEP), we find

CSS(r) = exp

(
− 2r√

L

)
. (6)

Our simulation data support this analytical prediction.
Note in passing that our system displays long-range order

(LRO) defined by

m2
0 ≡ lim

r→∞ lim
L→∞

〈SiSi+r〉. (7)

Although ordered regions are not of order system size L as is
customary, the fact that they are of order

√
L suffices to ensure

that m2
0 = 1.

B. Correlation function in coarsening regime

We next look at the coarsening following a sudden quench
to T = 0 starting at t = 0 with a random initial configuration
of type C1. Domain walls separated by ordered regions with
an even number of spins diffuse until they are two lattice
spacings apart, at which point they annihilate. Finally, the

FIG. 4. Spin-spin spatial correlation functions in the coarsen-
ing regime follow exp(−�r/t1/4

w ). (a) C(r, tw ) vs r in linear scale.
(b) Scaling collapse. C(r, tw ) vs r/tw1/4. Inset in (b): C(r, tw ) vs
r/tw1/4 in semilog scale. Each point is an average over 1000 histories
in a system with L = 4096.

system approaches the steady state [see Fig. 2(d)] with M ∼√
L domain walls.
In the coarsening regime, there are two length scales of

relevance, each growing with a different power of the waiting
time tw. The first is L(tw ), the length scale below which
the system has achieved a quasiequilibrium. Here, L(tw ) is
the typical separation between two even-sized domains, and
considering the diffusive nature of the process which leads to
the annihilation of even domains, we have L(tw ) ∼ t1/2

w . Now
each such equilibrated stretch holds a large number of DWs
separating odd-sized domains. The second length scale of
relevance is R(tw ), the mean separation of these DWs, which
scales as

√
L(tw ) and determines the decay of the two-point

correlation function. Evidently we have R(tw ) ∼ t1/4
w , so we

expect the correlation function in the coarsening regime to
follow

C(r, tw ) = exp

(
− �r

tw1/4

)
, (8)

where � is a constant. Figure 4(a) shows the correlation
function C(r, tw ) as a function of r after a quench from the
random configuration to T = 0 for four different values of
tw for a system with L = 4096. Figure 4(b) shows that when
C(r, tw ) is plotted as a function of r/t1/4

w , a very good data
collapse is obtained at large values of tw, confirming the
scaling prediction, Eq. (8). The inset of Fig. 4(b) shows the
same plot in semilog scale, clearly showing a better collapse
for larger values of tw. We provide a detailed description of
the coarsening dynamics in Appendix A.

C. Autocorrelation function in steady state

The spin-spin autocorrelation function φ(t ) in the steady
state is defined as

φ(t ) ≡ 1

L

∑
i

〈Si(t0)Si(t0 + t )〉 − 〈Si(t0)〉2, (9)

where 〈· · · 〉 represents an average over t0. As already dis-
cussed, in the steady state, there are M = (

√
L) domains and

an equal number of DWs, with a hard-core repulsion between
successive DWs [see Fig. 2(c)]. Each DW performs a random
walk through the energy-conserving moves alone as listed
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FIG. 5. Spin-spin autocorrelation functions in the steady state
follow exp[−A(t/L)1/2]. (a) φ(t ) vs t in linear scale in the steady
state with exactly

√
L domain walls. (b) Scaling collapse. φ(t ) vs

(t/L)1/2 for the same set of data presented in (a). The line is a fit of
Eq. (10) that yields A = 4.6. Inset: φ(t ) vs (t/L)

1
2 in semilog scale.

Each point is an average over at least 5000 histories and in some
cases it is substantially larger, for instance, 105 for the smallest L.
(c) Evolution of φ(t ) as a function of (t/L)1/2 with a different number
of DWs as quoted in the legend and L = 2048. (d) The coefficient A
in Eq. (10) increases linearly with the number of DWs. Symbols are
results obtained from fitting Eq. (10) with simulation data of a system
of size L = 2048 and the line is a fit A(x) = κx with κ = 0.11.

in Table I. This feature leads to the conservation of M, a
dynamical constraint in the steady state.

From simulation, we find that φ(t ) shows stretched expo-
nential relaxation in the steady state,

φ(t ) = exp

[
−A

(
t

L

) 1
2

]
, (10)

where A is a constant. We plot φ(t ) as function of t for
different system sizes L in Fig. 5(a). We obtain excellent data
collapse when we plot φ(t ) as a function of (t/L)1/2 as shown
in Fig. 5(b). The inset shows the same data on a semilog scale
where it is expected to be a straight line at large (t/L)1/2.
The coefficient A in Eq. (10) depends on the number N of
DWs present in the system; our simulations show that A varies
linearly with N [Fig. 5(d)]. Since the DSF dynamics does not
annihilate DWs in the steady state, N is determined by the
sublattice magnetization M of the random initial state. For
convenience of simulation, we generate steady state configu-
rations with precisely N = √

L DWs and take an average over
these configurations, which is equivalent to averaging over
t0. From a fit of Eq. (10) with the simulation data we obtain
A � 4.6.

D. Ensemble average of autocorrelation function

Consider performing successive quenches from the T =
∞ state, and averaging the autocorrelation function over the

ensemble of steady states reached, which in general have
different numbers N of DWs. Since the number of DWs
in a steady state is conserved, it follows that an average
over this ensemble and an average over t0 for a particular
value of N need not be the same. In fact, as we show
below, there are significant differences, especially at large
times.

We define the ensemble average of the autocorrelation
function q(t ) in steady state,

q(t ) = φ(t ) = 1

L

∑
i

〈Si(t0)Si(t0 + t )〉 − 〈Si(t0)〉2, (11)

where O defines the ensemble average of O. Starting from a
random initial condition, the number of DWs in steady state
has a distribution, given as

P(N ) =
√

2

πL
exp

[
−N2

2L

]
, (12)

where N (�0) is the number of DWs. We saw in Sec. V C that
the coefficient A in Eq. (10) increases linearly with the number
of DWs, whose typical number is of the order of

√
L, as can be

seen from Eq. (12). Therefore, we write A = A0N/
√

L, where
A0 is the typical value of A. Averaging over N , we obtain q(t )
as

q(t ) =
√

2

πL

∫ ∞

0
exp

[
−N2

2L

]
exp

[
−A0Nt1/2

L

]

= exp

[
A2

0t

2L

]
erfc

(
A0

√
t

2L

)
. (13)

At short times t � L, Eq. (13) reduces to q(t ) ≈ [1 −
A0

√
2/π (t/L)1/2], which is consistent with Eq. (10). On

the other hand, at long times t � L, we may use the
asymptotic form erfc(x) ∼ exp (−x2)/

√
πx to obtain q(t ) ≈√

2/πA2
0(t/L)−1/2. Figure 6 shows the very good agreement

of Eq. (13) with simulation results for q(t ). For comparison,
the figure also shows the decay of φ(t ) for a single typical
configuration with L = 2048 and

√
L number of DWs. We

see that there is a significant difference at long times: While
φ(t ) exhibits SSER throughout, q(t ) shows a slow power-law
decay at long times t . This difference arises as at large t ,
there is always a fraction of members of the ensemble (those
with A0N/L2 � t) which would have decayed very little, and
would contribute strongly to q(t ).

VI. RELATION TO THE SIMPLE EXCLUSION PROCESS

From the coarse-grained point of view, in the steady state
the system consists of M = √

L domains separated by dif-
fusing DWs with a no-crossing constraint. We expect that
microscopic details, such as the odd number of spins in each
domain, the domain walls moving in steps of two lattice
spacings, and the minimum possible distance between the
walls being three lattice spacings should not matter for large-
separation or long-time properties.

The DW dynamics should then be well approximated by
the simple exclusion process (SEP) that describes a system
of identical particles with hard-core repulsion moving on a
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FIG. 6. Simulation data for the autocorrelation function q(t )
averaged over the ensemble of initial states, plotted for different L
as noted in the figure. Equation (13) gives the form of a master curve
when q(t ) is plotted as a function of t/2L. The figure shows that the
numerical data agrees well with the plot of Eq. (13) with A0 = 4.6.
Also plotted in the figure is the autocorrelation function φ(t ) starting
with a single, typical configuration with L = 2048 and

√
L DWs.

Notice that q(t ) decays much slower than φ(t ) at long times. Each
point is an average over at least 5000 histories.

lattice [13,14]. Each particle attempts to move to its nearest-
neighbor sites with equal probability; the move is imple-
mented if the site in question is not already occupied. The
dynamics in our arrested system in steady state resembles
that of an Ising spin chain with a number

√
L of alternating

domains, evolving with the rule that a single spin can flip
only if the two neighboring spins are mutually antiparallel.
Such spins are necessarily at the boundaries of the domains.
The spin system is related to the SEP through the relation
ηi+1/2(t ) = 1

4 [Si(t ) − Si+1(t )]2, where ηi+1/2 = 1 if there is a
DW (which represents a particle in the SEP) between sites
i and i + 1, and 0 otherwise. A particular snapshot of the
simulation of this system is presented in Fig. 2(e). As ex-
pected, with increasing system size, the details of the original
arrested steady state become irrelevant and the behaviors of
the original and the new system converge. Thus, we consider
a system that has

√
L DWs which perform random walks but

cannot cross each other—a SEP with a subextensive number
of particles.

A similar system was considered in Refs. [39,43,44], but
with the important difference that the number of DWs was
proportional to L. In that case, the autocorrelation function
follows φ(t ) ∼ exp[−(t/τ )1/2] where upper and lower bounds
derived in Ref. [43] imply that τ remains finite in the limit
L → ∞. For the system of interest in this work, the density
of domain walls, ρ = 1/

√
L → 0 as L → ∞, which leads to

τ being proportional L, while the exponent β of the SER as
well as the linear dependence of A in Eq. (10) on the number
of DWs remain the same.

We now turn to the analytic derivations of the spatial cor-
relation and temporal autocorrelation functions in the steady
state, using the independent interval approximation (IIA)
[47,48].

Spatial correlation function. The spatial correlation func-
tion CSS(r) can be written as

CSS(r) =
∞∑

n=0

(−1)n pn(r), (14)

where pn(r) is the probability that a segment of length r has
exactly n domain walls. If domains are drawn independently
from a common distribution P(l ), the correlation function in
Laplace space, C̃(s) = ∫ ∞

0 CSS(r)e−srdr, can be written as

C̃(s) = 1

s
− 2

〈l〉s2

1 − P̃(s)

1 + P̃(s)
, (15)

where P̃(s) is the Laplace transform of P(l ) and 〈l〉 is the
average domain size. For large L, the probability that a
domain is of length l is given by P(l ) = (1 − ρ)lρ, where
ρ = √

L/L = 1/
√

L is the density of the domain walls. For
large l , we have P(l ) ≈ ρe−ρl , which gives us 〈l〉 = √

L and
P̃(s) = ρ

s+ρ
. Using these relations in Eq. (15), we get

C̃(s) = 1

s + 2√
L

. (16)

Inverting the Laplace transform gives us (6).
Autocorrelation function. We now argue that the temporal

autocorrelation function φ(t ) can be found similarly by focus-
ing on the time segments between successive returns of a DW,
noting that each sign change of the spin is associated with
such a return of the DW. Thus, in analogy with Eq. (14), we
write

φ(t ) =
∞∑

n=0

(−1)n pn(t ), (17)

where pn(t ) now stands for the probability that there are n
returns to the origin in a time stretch t . The probability that
a random-walking DW first returns to its starting point at
time t follows Preturn(t ) ∼ t−3/2 [49], assuming that the DW
performs an unhindered random walk. This would be expected
to hold up to a time tcoll, which is of order the typical collision
time between successive walkers. Since the mean spacing
between walkers is

√
L, we expect tcoll to be proportional

to L.
Since successive returns to the origin for a free random

walk are independent events, within the time tcoll ∼ L, we use
the IIA to make further progress. Note that the mean return
time τ within tcoll is τ = 2

√
L and that the Laplace transform

of Preturn(t ) is P̃(s) ∼ 1 + �(− 1
2 )

√
s. We now use Eq. (15),

replacing C̃(s) by φ̃(s) [the Laplace transform of φ(t )] and 〈l〉
by τ . We obtain the small-s behavior of φ̃(s) as

φ̃(s) ≈ 1

s
− 2

√
π

τ
s−3/2. (18)

Performing the inverse Laplace transform, we find

φ(t ) ≈ 1 − 2

(
t

L

)1/2

, (19)

which, for small values of t/L, coincides with the size-
stretched exponential form Eq. (10).
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VII. CONCLUSION

We have studied the relaxation properties of a system in
an arrested state in which the dynamics involves a conserved
number of interacting, diffusing excitations. The key point
which underlies the unusual behavior of the system is that the
number of excitations grows subextensively with the system
size. This ultimately leads to the feature of SSER in the
autocorrelation function in the steady state, namely stretched
exponential decay with a relaxation time that diverges with
growing system size. It also leads to an unusual feature in
the coarsening dynamics describing the approach to the steady
state, namely the existence of two length scales, each growing
with a different power of the time. Further, the characteristic
time-dependent behavior of a single typical sample differs
markedly from the average behavior over an ensemble of
initial conditions.

We demonstrated these properties in the ANNNI model
with double-spin-flip dynamics that conserves the staggered
magnetization. For a range of parameters, a rapid quench
from a disordered state towards zero temperature leads to
an arrested steady state with a conserved number of domain
walls separating domains with an odd number of parallel
spins. In the steady state, the dynamics is governed by energy-
conserving moves, under which domain walls diffuse but
respect a no-crossing constraint. In a system of size L, we
showed that the spatial correlation function decays exponen-
tially with a length scale that varies as

√
L and the system

exhibits long-range order. The autocorrelation function in the
steady state displays a stretched exponential relaxation with
the stretching exponent β = 1/2. The noteworthy feature is
that the relaxation time depends on L. The form of relaxation
of a single typical sample in steady state differs markedly from
that averaged over an ensemble of initial conditions resulting
from different quenches. The latter shows a slow power-law
decay at large times, reflecting the propensity of systems with
a low value of N to relax very slowly.

In the coarsening regime, the size of odd-spin domains
grows as t1/4

w , whereas the typical separation between even-
sized domains grows as t1/2

w . This pattern of growth continues
indefinitely in an infinite system, but in a finite system of size
L, as tw → ∞, the number of even-sized domains vanishes,
while the number of odd-sized domains approaches

√
L,

characteristic of the steady state.
For large-distance long-time properties in the steady state,

our system resembles an Ising system where the dynamics
involves only energy-conserving moves [39,43,44], insofar as
domain walls move diffusively in the steady state and respect
a no-crossing constraint in both systems. But the analogy
cannot be extended too far. For instance, in the coarsening
regime, the occurrence of two distinct diverging length scales
in our system (in contrast to the single diverging length in
the Ising model) can be traced ultimately to the competing
interactions of the ANNNI model along with the conservation
law implied by double-spin-flip dynamics.

The dynamics in the arrested steady state studied in this
paper is constrained since we consider dynamic evolution at
T = 0 and allow only energy-conserving moves. In this sense,
our system belongs to the class of kinetically constrained
models (KCMs) that have been studied earlier in the context

of glass. As in several KCMs, our system too shows stretched
exponential relaxation. But there are a couple of distinctive
features: First, the relaxation time diverges as a power of
the system size, corresponding to SSER, and second, the
average over the ensemble of initial conditions yields a form
of relaxation which is quite different from that of a single
sample. It would be interesting to identify such features in
other KCMs as well.
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APPENDIX A: DETAILS OF THE
COARSENING DYNAMICS

Below we discuss key characteristics of the approach to
the steady state, based on a detailed consideration of domain
dynamics. As discussed in Sec. IV, domains with an even
number of spins (denoted E ) get annihilated at long times,
and in steady state we are left only with domains with an odd
number of spins (denoted O). Even domains with ↑ and ↓
spins are denoted as E↑ and E↓ and odd domains with ↑ and ↓
spins as O↑ and O↓, respectively. The time evolution starting
from an arbitrary initial configuration is shown in Fig. 7(a),
where black and red refer to O↑ and O↓, respectively, and
green and blue refer to E↑ and E↓, respectively.

We now turn to a discussion of domain dynamics.
(i) The number of E domains NE (tw ) decreases as t−1/2

w ,
as shown in Fig. 7(b) for four different system sizes. NE (tw )
is expected to be proportional to system size L and therefore
NE (tw )/L should follow a master curve as shown in Fig. 7(c).

(ii) The length scale L(tw ), defined as the separation be-
tween two successive E domains, varies as t1/2

w as shown in
Fig. 7(d).

(iii) During coarsening, the system has equilibrated within
the length scale L(tw ), which typically contains several O
domains. In equilibrium, there are typically

√
L number of

odd domains in a system of size L. Therefore, we expect the
number of O domains during coarsening to vary as

√
L(tw ).

Thus, their average number NO(tw ) decreases as t−1/4
w , as

shown in Fig. 7(e), and the average O domain length ξ (tw )
increases as t1/4

w , as shown in Fig. 7(f).
(iv) The decrease of NO(tw ) shows that some O domains

get annihilated during coarsening. To understand how this
happens, consider a particular configuration O↓E↑O↓. The
number of spins in E↑ decreases through a succession of
double spin flips until it reduces to width two, following which
E↑ is annihilated. The two O↓ domains then join and create a
single E↓ domain as highlighted in the region A in Fig. 7(a).

(v) There are two separate mechanisms by which E do-
mains get annihilated: (a) Consider a configuration O↓E↑E↓.
When E↑ is annihilated, the entire domain becomes O↓ as
highlighted in the region B in Fig. 7(a). (b) If there are succes-
sive E domains, such as E↓E↑E↓, annihilation of E↑ creates an
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FIG. 7. Details of coarsening, following even- and odd-spin clusters. (a) Time evolution (upward) towards the steady state, starting from a
random configuration. Black and red colors mark odd domains with spins ↑ and ↓, denoted as O↑ and O↓, respectively. Green and blue colors
show even domains with ↑ and ↓, denoted as E↑ and E↓, respectively. The highlighted regions, A, B, and C, show three mechanisms discussed
in points (iv), (v), and (vi) in the main text. (b) The number of even domains NE (tw ) decreases as t−1/2

w , the line being a fit with a function
f (x) ∼ x−1/2. (c) During coarsening in a system of length L, NE (tw ) is expected to be proportional to L. NE (tw )/L for different L follows a
master curve. (d) L(tw ) grows as t1/2

w , the line being a fit. (e) Number of odd domains NO(tw ) decreases as t−1/4
w . (f) Length of odd domains

increases as t1/4
w . (g) The fit shows that P(ξ ) ∼ exp(−ξ 1/2) and thus the plot of ln[P(ξ )] as a function of ξ 1/2 becomes linear. (h) Scaling

collapse of the distribution of odd domain sizes confirm that odd domain length increases as t1/4
w .

E↓ domain. We find this second mechanism becomes rarer as
coarsening proceeds.

(vi) Consider a configuration where an E domain is
surrounded by several O domains on either side, for
instance, O↓O↑O↓E↑O↓O↑O↓. Through the mechanism

(iv) above, O domains will continue getting annihilated until
the configuration meets an E domain on one side and an O
domain on the other side. In this case, annihilation of the
central E domain creates a broad E domain that becomes
narrower with time and eventually gets annihilated creating
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FIG. 8. Time evolution of the configuration for a quench to T =
0 starting from a random initial state with Meven = Modd. The color
black refers to ↓ and yellow to ↑ with system size L = 1024 and
Meven = 32.

another broad E domain:

O↑O↓O↑O↓E↑O↓O↑O↓E↑ ⇒ O↑O↓O↑E↓O↑O↓E↑
⇒ O↑O↓E↑O↓E↑ ⇒ O↑E↓E↑
⇒ O↑.

Such a process is highlighted by region C in Fig. 7(a).

(vii) To understand the tw dependence of the typical O
domain length ξ (tw ), we follow the distribution P(ξ (tw )).
We find that P(ξ (tw )) ∼ exp(−ξ 1/2) as shown in Fig. 7(g).
Considering ξ ∼ tα

w, we have

P(ξ (tw )) ∼ 1

tα
w

e−(ξ/tα
w )1/2

. (A1)

Plotting tα
wP(ξ (tw )) as a function of ξ/tα

w, we obtain ex-
cellent data collapse for α = 1/4 for different tw as shown
in Fig. 7(h). This confirms our earlier expectation that
ξ ∼ t1/4

w .

APPENDIX B: TIME EVOLUTION OF THE SYSTEM
WHEN INITIAL STATE IS PREPARED WITH ZERO

SUBLATTICE MAGNETIZATION M

As discussed in Sec. IV, the number of domain walls
N equals the sublattice magnetization M. This implies that
when a system with an initial state that has M = 0 is
quenched to T = 0, it evolves to a steady state with zero
domain walls, that is, a state with all spins ↑ or ↓. To test this
result, we have prepared random initial states with Meven =
Modd with different values of Meven for a range of system sizes
L. A typical time evolution for a quench to T = 0 from such
an initial sate is shown in Fig. 8, where black refers to ↓ and
yellow refers to ↑. We find that the system goes to a state with
all spins either ↑ or ↓.
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