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Extreme events for fractional Brownian motion with drift: Theory and numerical validation
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We study the first-passage time, the distribution of the maximum, and the absorption probability of fractional
Brownian motion of Hurst parameter H with both a linear and a nonlinear drift. The latter appears naturally
when applying nonlinear variable transformations. Via a perturbative expansion in ε = H − 1/2, we give the
first-order corrections to the classical result for Brownian motion analytically. Using a recently introduced
adaptive-bisection algorithm, which is much more efficient than the standard Davies-Harte algorithm, we test
our predictions for the first-passage time on grids of effective sizes up to Neff = 228 ≈ 2.7 × 108 points. The
agreement between theory and simulations is excellent, and by far exceeds in precision what can be obtained by
scaling alone.
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I. INTRODUCTION

Understanding the extreme-value statistics of random pro-
cesses is important in a variety of contexts. Examples are
records [1], e.g., in climate change [2], equivalent to depin-
ning [3], in quantitative trading [4], or for earthquakes [5].
While much is known for Markov processes, and especially
for Brownian motion [6–12], much less is known for cor-
related, i.e., non-Markovian processes, of which fractional
Brownian motion (fBm) is the simplest scale-free version
[13–20].

FBm is important as it successfully models a variety of
natural processes [21]: a tagged particle in single-file diffusion
(H = 0.25) [22,23], the integrated current in diffusive trans-
port (H = 0.25) [24], polymer translocation through a narrow
pore (H � 0.4) [25–27], anomalous diffusion [28], values of
the log return of a stock (H � 0.6 to 0.8) [14,29–31], hydrol-
ogy (H � 0.72 to 0.87) [32], a tagged monomer in a polymer
(H = 0.25) [33], solar flare activity (H � 0.57 to 0.86) [34],
the price of electricity in a liberated market (H � 0.41) [35],
telecommunication networks (H � 0.78 to 0.86) [36], telom-
eres inside the nucleus of human cells (H � 0.18 to 0.35) [37],
or diffusion inside crowded fluids (H � 0.4) [38].

Recently, first-passage times of fBm have been investigated
[39–44]. Due to the non-Markovian nature of the process,
translating these results to a fBM with drift is far from
trivial, and even properly estimating the drift for H < 1/2 is
a challenge [45]. To our knowledge, no anaytical result for
a fBm with drift are known. It is this gap we intend to fill
here.

As is discussed later, apart from a linear drift, a non-
linear drift may appear as well, leading us to consider the
process,

zt := xt + μt + νt2H . (1)

Here xt is a standard fractional Brownian motion (fBm) with
mean and variance

〈xt 〉 = x0 = 0, (2)

〈xt1 xt2〉 = |t1|2H + |t2|2H − |t1 − t2|2H . (3)

The parameter H is the Hurst parameter. Since fBm is a Gaus-
sian process, the above equations uniquely and completely
specify it. Taking a derivative w.r.t. both t1 and t2 shows that
the increments of the process are correlated,

〈ẋt1 ẋt2〉 = 2H (2H − 1)|t1 − t2|2H−2. (4)

Correlations are positive for H > 1/2, and negative for H <

1/2. The case H = 1/2 corresponds to Brownian motion, with
uncorrelated increments.

The parameters μ and ν are the strength of linear and
nonlinear drift. While linear drift is a canonical choice, non-
linear drift appears as a consequence of nonlinear variable
transformations. As an example, consider the process

yt := ezt . (5)

The exponential transformation appears quite often, be it
in the Black-Sholes theory of the stock market where the
logarithm of the portfolio price is treated as a random walk
[30,46,47], be it in nonlinear surface growth of the Kardar-
Parisi-Zhang universality class [48–50], where the transfor-
mation is known as the Cole-Hopf transformation [51,52], or
in the evaluation of the Pickands constant [53–60]. Like any
nonlinear transform, this generates an effective drift known
from Itô-calculus. Computing the average of yt gives

〈yt 〉 = 〈ezt 〉 = exp
(〈zt 〉 + 1

2

[〈
z2

t

〉− 〈zt 〉2
])

= exp(μt + [ν + 1]t2H ). (6)
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Thus, even if initially there is no nonlinear drift, it is generated
by nonlinear transformations. For this reason, we include it
into our model.

While for Brownian motion, equivalent to H = 1
2 , many

results can be obtained analytically [6–12], for fBm much less
is known. Recently, some of us developed a framework [61]
for a systematic expansion in

ε := H − 1
2 . (7)

It has since successfully been applied to obtain the distribution
of the maximum and minimum of an fBm [42,44], to fBm
bridges [62], evaluation of the Pickands constant [54], the
two-sided exit problem [63] and the generalization of the three
classical arcsine laws [64]. It is also known that the fractal
dimension of the record set of an fBm is df = H [65].

This article is organized into four sections, the introduc-
tion, theory in Sec. II, and numerics in Sec. III, followed by
conclusions in Sec. IV.

II. THEORY

In this section, we find the probability distribution of first-
passage times and running maxima of fBm with linear and
nonlinear drift by way of a perturbation expansion around
simple Brownian motion. The key result of this section is the
scaling function Eq. (91) which together with the auxiliary
functions defined in Eqs. (94), (101), and (105) gives the
distribution of first-passage times. The majority of this section
is devoted to deriving these results.

A. Scaling dimensions

Before developing the perturbation theory, we consider the
scaling dimensions involved. This will be useful for later
discussion of the scaling functions. For fBm as defined in
Eq. (1), there are four dimension-full quantities, x, t , μ, and ν.
Scaling functions will thus depend on three scaling variables,
which we now identify. We start with the terms without drift:

x ∼ tH ⇐⇒ t ∼ x
1
H , (8)

where the tilde means “same scaling dimension.” Thus (with-
out drift), any observable O(x, t ) can be written as

O(x, t ) = xdimx (O) fO(y), y := x√
2tH

. (9)

The variable y is dimension free. In presence of a linear drift,
one has

x ∼ μt ⇐⇒ μ ∼ x

t
∼ x1− 1

H ∼ tH−1. (10)

Thus, the combination u = μx
1
H −1 is dimension free, as is

ũ := u
H

1−H = μ
H

1−H x. For nonlinear drift, we have

x ∼ νt2H ⇐⇒ ν ∼ x

t2H
∼ 1

x
∼ 1

tH
. (11)

Another scaling variable therefore is v = νx. In conclusion,
any observable O can, in generalization of Eq. (9), be

TABLE I. Notations used for probabilities and their various
densities.

P Probability
P = ∂xP Probability density in x
P = ∂t P Probability density in t
P = ∂yP Probability density in y

written as

O(x, t, μ, ν) = xdimx (O) fO(y, u, v), (12)

y = x√
2tH

, (13)

u = μx
1
H −1, or ũ = μ

H
1−H x, (14)

v = νx. (15)

B. The first-passage time

The central result of our work is a perturbative expression
of the first-passage-time density of fBM with linear and
nonlinear drift as introduced in Eq. (1). The first-passage time
tFP is defined as

tFP(m) := inf
t>0

{t, zt � 0|zt=0 = m}, (16)

where m is the starting point of the process zt , and m > 0. The
first-passage-time density for Brownian motion with (linear)
drift, see, e.g., Ref. [6], and rederived below in Eq. (30), is

P0(tFP(m) = t ) = m

2
√

πt3/2
e− 1

2

(
m√
2t

+ μ

2

√
2t
)2

. (17)

This density in time is most naturally expressed in terms of
the scaling variable y introduced in Eq. (9), and which for
Brownian motion (H = 1/2) reads

y = m√
2t

∣∣∣∣
t=tFP (m)

. (18)

For Brownian Motion the probability distribution of y takes
the simple form

P0(y; μ) =
√

2

π
e−F0(y;μ), (19)

F0(y; μ) = 1

2

(
y + μ

2

m

y

)2

. (20)

Note that the measure is dt in Eq. (17) (density in time),
whereas in Eq. (19) it is dy (density in y). To avoid confusion,
we use distinct symbols for probabilities P, densities P in time
t , densities P in y, and densities P in space x, independent of
the actual choice of variables. This is summarized in Table I.

We introduced the scaling function F0. Below we compute
its corrections to first order in ε, leading to a correction of the
first-passage density in y,

P (y; μ, ν) = y
1
H −2

√
2πH

e−F0(y;μ,ν)−εδF (y;μ,ν) + O(ε2). (21)

The result is given in Eqs. (90) and (91). Two comments
are in order: (i) the exponential resummation is chosen for
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better convergence for larger ε, as discussed in Ref. [63], Sec.
IV.C; (ii) the distribution of first-passage times is related to the
distribution of maxima.

Readers wishing to skip ahead will find the function δF
evaluated using path-integral methods, described in Sec. II E.
For the explicit result, see Sec. II L. A confirmation by numer-
ical simulations is shown in Sec. III B.

C. Summary of calculations to be done

To calculate the first-passage-time distribution, we con-
sider the process zt > 0 in the presence of an absorbing
boundary condition at z = 0 and restrict ourselves to zt > 0.
The transition probability density of the process zt to pass
from z0 > 0 to z1 > 0 in time t , without being absorbed at
z = 0 is denoted Pμ,ν

+ (z0, z1; t ). The probability density of
first-passage times P (tFP(m) = t ) can then be obtained as

P (tFP(m) = t ) = ∂z1 Pμ,ν
+ (m, z1, t )

∣∣
z1=0. (22)

This relation holds since the derivative on the right-hand side
picks out those trajectories which assume zt = 0 at time t
for the first time. The general strategy of this work is to
compute ∂z1 Pμ,ν

+ (m, z1, t )|z1=0 and its perturbative corrections
using path-integral methods. In the subsequent Sec. II D, we
discuss the reference point of our expansion, simple Brownian
motion. In Sec. II E, we introduce a perturbative expansion
around Brownian motion, based on a path-integral formalism.
This yields a diagrammatic expansion (Sec. II F), with three
diagrams, listed in Sec. II G, evaluated in Secs. II H to II J, and
regrouped in Sec. II K. The final result is given in Sec. II L.
Contrary to the drift-free case, not all processes are absorbed,
as is discussed in Sec. II M. Relations between the different
probability densities are discussed in Sec. II N, followed by an
analysis of the tail of these distributions in Sec. II O. Numer-
ical checks are presented in Sec. III, followed by conclusions
in Sec. IV.

D. Simple Brownian motion: First-passage time and
absorption probability

The perturbation theory is an expansion around simple
Brownian motion. This base point is considered here. By set-
ting H = 1

2 and ν = 0 in Eq. (1), we obtain simple Brownian
motion with drift. For this process, we compute (i) the positive
transition probability and (ii) the absorption probability.

The transition probability of simple Brownian motion Pμ
+

(to alleviate our notations, we do not put an index 0 to
indicate Brownian motion, since P+ is not used for fBm), the
probability to pass from z0 to z1 within time t without crossing
the line z ≡ 0, satisfies the associated Fokker-Planck equation,

∂t P
μ
+ (z0, z1, t ) = ∂2

z1
Pμ

+ (z0, z1, t ) − μ∂z1 Pμ
+ (z0, z1, t ), (23)

with appropriate absorbing boundary condition at z ≡ 0. Its
solution is given by the mirror-charge solution

Pμ
+ (z0, z1, t ) = 1√

4πt
(e−(z1−z0 )2/4t − e−(z1+z0 )2/4t )

× e
μ

2 (z1−z0 )− μ2t
4 , (24)

satisfying the initial condition

Pμ
+ (z0, z1, t = 0) = δ(z0 − z1). (25)

It is useful to consider its Laplace-transformed version. We
define the Laplace transform of a function f (t ), with t � 0 as

f̃ (s) := Lt→s[ f (t )] =
∫ ∞

0
dt e−st f (t ). (26)

This yields

P̃μ
+ (z0, z1, s) = e

μ

2 (z1−z0 )P̃+
(

z0, z1, s + μ2

4

)
, (27)

where the drift-free propagator reads

P̃+(z0, z1, s) = e−√
s(z0−z1 ) − e−√

s(z0+z1 )

2
√

s
. (28)

The Laplace transform P̃ (m, s) of the first-passage-time prob-
ability density, following Eq. (22), equals the probability to
go close to the boundary, and there being absorbed for the
first time,

P̃ (m, s) :=
∫ ∞

0
dt e−stP (tFP(m) = t )

= ∂z1 P̃μ
+ (m, z1, s)

∣∣
z1=0

= e− μ

2 me−m
√

s+μ2/4. (29)

Its inverse Laplace transform is the first-passage-time proba-
bility density,

P (tFP(m) = t ) = e− μ

2 m− μ2

4 t me− m2

4t

2
√

πt3/2
, (30)

confirming the result in Eq. (17). The total (time integrated)
absorption probability is

Pabs(m) = P̃ (m, s = 0)

= e− μ

2 me− |μ|
2 m =

{
e−μm , μ > 0

1 , μ � 0 . (31)

In what follows, we present perturbative corrections of these
results for ε = 0.

E. The path-integral of a fBm with drift

The technology developed in Refs. [42,61,63] uses a path-
integral to describe fBM. Since zt is Gaussian, its path-
probability measure on a finite interval [0, T ] is

P[zt ] = exp (−S[zt ; μ, ν]), (32)

where S[zt ; μ, ν] is an action quadratic in zt . Without drift
(μ = ν = 0), the action for a fBM to order ε is [42,61,63]

S[zt ; μ = ν = 0]

=
∫ T

0
dt

ż2
t

4Dε

− ε

2

∫ T

τ

dt2

∫ t2−τ

0
dt1

żt1 żt2

|t1 − t2| . (33)

The action consists of a local part, corresponding to simple
Brownian motion, and a nonlocal part, proportional to ε.
The idea behind the perturbative expansion is that Brownian
motion (as given by the first term) samples the whole phase
space of fBm, albeit with the wrong probability measure.

022102-3



ARUTKIN, WALTER, AND WIESE PHYSICAL REVIEW E 102, 022102 (2020)

Our perturbation theory corrects this, by weighing each path
with the second term in Eq. (33). This implies that the
absorbing boundary conditions at the origin are properly
taken into account, and that observables as the absorption
current, which are given by local operators, remain valid. For
regularity, a short-distance cutoff |t1 − t2| > τ is introduced
in the last integral, which is reflected in the diffusion constant
[42]

Dε = 2Hτ 2H−1 = (1 + 2ε)τ 2ε = (eτ )2ε + O(ε2). (34)

Let us now insert the definition Eq. (1) into the action Eq. (33).
The reason to proceed this way is that the method of images
on which our further calculation relies works in terms of xt as
defined in Eq. (1), but not zt . After some algebra we arrive at
the action for an arbitrary drift

S[zt ] =
∫ T

0
dt

ż2
t

4Dε

+
∫ T

0
dt

ε

2
żt

[
(μ+ν) ln

(
t (T −t )

τ 2

)
− 2ν ln

(
t

τ

)]

− ε

2

∫ T

τ

dt2

∫ t2−τ

0
dt1

żt1 żt2

|t1 − t2|
− zT − z0

2

[ μ

Dε

+ ν
]

+ T

4
(μ + ν)2

+ T

2
ε(ν2 − μ2) ln(T ) + O(ε2). (35)

Some checks are in order. In absence of absorbing boundaries,
the exact free propagator reads

Pμ,ν (0, z, T ) = 1

2
√

πT H
e− (z−μT −νT 2H )2

4T 2H

= 1

2
√

πT H
exp

(
− z2

4T 2H
+ z

2
[ν+μT −2ε]

− T

4
[νT ε+μT −ε]2

)
. (36)

Since the above formalism has variables ż only, the term
∼z2 is given by the drift-free perturbation theory. We can
further check that if we replace in the action ż(t ) by its
“classical trajectory,” i.e., ż(t ) → [z(T ) − z(0)]/T , then both
the normalization and the drift term agree with the exact
propagator.

Let us specify Eq. (35) to the two cases of interest: For a
fBm with linear drift as given in Eq. (1) with ν = 0, we have

Sν=0[zt ] =
∫ T

0
dt

ż2
t

4Dε

− μ

2Dε

(zT − z0) + T 1−2ε

4
μ2

−ε

2

∫ T

τ

dt2

∫ t2−τ

0
dt1

żt1 żt2

|t1 − t2|

+εμ

2

∫ T

0
dt żt ln

(
[T − t]t

τ 2

)
+ O(ε2). (37)

For a fBm with nonlinear drift as given in Eq. (1) with μ = 0,
we have

Sμ=0[z] =
∫ T

0
dt

ż2
t

4Dε

− ν

2
(zT − z0) + T 1+2ε

4
ν2

−ε

2

∫ T

τ

dt2

∫ t2−τ

0
dt1

żt1 żt2

|t1 − t2|

+εν

2

∫ T

0
dt żt ln

(
T − t

t

)
+ O(ε2). (38)

Note the appearance of the diffusion constant in the “bias”
(Girsanov) term zT − z0 for a linear drift, and its absence for
a nonlinear drift.

To simplify the notation, we introduce

S0[zt ] =
∫ T

0
dt

ż2
t

4
(39)

as a shorthand for the Brownian action around which pertur-
bation theory expands. The drift (Girsanov) term is e−Sd , with

Sd[z] = z0 − zT

2
(

μ

Dε

+ν) + T

4
(μT −ε+νT ε )2. (40)

Further, define (valid at leading order in ε)

α := μ − ν, β := μ + ν, (41)

μ = α + β

2
, ν = β − α

2
. (42)

This simplifies the drift terms in the action to

Sα[zt ] := 1

2

∫ T

0
dt żt ln

(
t

τ

)
, (43)

Sβ[zt ] := 1

2

∫ T

0
dt żt ln

(
T − t

τ

)
. (44)

Finally, the drift-independent perturbative correction contain-
ing the nonlocal interaction reads

S1[zt ] = 1

2

∫ T

τ

dt2

∫ t2−τ

0
dt1

żt1 żt2

|t1 − t2| . (45)

In these notations, the action to order ε reads

S[zt ; μ, ν] = S0

Dε

+ Sd − ε(S1 − αSα − βSβ ). (46)

Perturbation theory takes place in the three interaction-terms
proportional to ε, plus an additional contribution due to Dε.
The bare result Eq. (27) of transition probabilities of fBM will
thus be corrected by three different terms corresponding to the
three interaction terms Sα,Sβ , and S1, plus a correction from
Dε. The (diagrammatic) rules for computing these corrections
are outlined in the next section.

F. Diagrammatic expansion

The central aim of this work is to calculate the first-
passage-time density. This is done by taking the deriva-
tive of the survival transition density at its endpoint [cf.
Eq. (22)]. The latter is obtained perturbatively by evaluating a
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path-integral over the action defined previously:

Pμ,ν (m, t ) := ∂z1 Pμ,ν
+,ε (m, z1, t )

∣∣∣
z1=0

≡ lim
z1→0

1

z1
Pμ,ν

+,ε (m, z1, t ). (47)

Here we introduced Pμ,ν
+,ε (m, z1, t )

Pμ,ν
+,ε (m, z1, t ) :=

∫ zt =z1

z0=m
D[zt ]
(zt ) exp (−S ), (48)

the probability of a path zt to pass from m to z1 within time t
without being absorbed at z = 0 [cf. Eq. (24)]. At first order
in ε, this path integral has four perturbative contributions:
The three diagrams induced by S1, Sα , and Sβ , as well as
the change in the diffusion constant Dε. The simplest way of
doing these calculations is to calculate with D = 1, and finally
correct for Dε = 1 by writing the FPT density in time of zt as

Pμ,ν (m, t ) = Gμ,ν (m, tDε ), (49)

where we introduce the auxiliary probability density

Gμ,ν (m, t ) = ∂

∂z1

∣∣∣
z1=0

∫ zt =z1

z0=m
D[zt ]
(zt )

× e−S0−Sd+ε(S1−αSα−βSβ ) + O(ε2). (50)

We now use the perturbation expansion established in
Refs. [42,44,61,62]; we refer to Refs. [42,43] for a detailed
introduction, and only briefly summarize the method.

The function Gμ,ν (m, t ) introduced above has the pertur-
bative expansion

Gμ,ν (m, t ) = e−Sd [G0(m, t ) + ε δG(m, t )], (51)

where

δG(m, t )

= ∂z1

∣∣∣
z1=0

∫ zt =z1

z0=m
D[zt ]
(zt )

(
S1 − αSα − βSβ

)
e−S0

!= G1(m, t ) − αGα (m, t ) − βGβ (m, t ) + O(ε). (52)

The three auxiliary functions are defined as

G1(m, t ) := ∂z1

∫ zt =z1

z0=m
D[zt ]
(zt )S1e−S0

∣∣∣
z1=0

, (53)

Gα (m, t ) := ∂z1

∫ zt =z1

z0=m
D[zt ]
(zt )Sαe−S0

∣∣∣
z1=0

, (54)

Gβ (m, t ) := ∂z1

∫ zt =z1

z0=m
D[zt ]
(zt )Sβe−S0

∣∣∣
z1=0

. (55)

As the term Sd only depends on the initial and final point, as
well as the time T , we were able to take it out. Each of the
perturbations S1, Sα , and Sβ , defined in Eqs. (43)–(45) has
to be evaluated inserted into the path integral with absorbing
boundaries at z = 0.

Let us summarize the rules of this perturbative expansion,
explained in detail in Ref. [42]. The first step is to perform
a Laplace transform, from the time variable t to the Laplace
conjugate s. This transform has two advantages: First of all,
it eliminates integrals over the intermediate times. Second,
the propagator Eqs. (27) and (28) is exponential in the space
variables, thus the latter can be integrated over.

The next step is to eliminate the denominator in Eq. (45),
using a Schwinger parametrization (Eq. (31) of Ref. [42]),

1

t2 − t1
=
∫

y>0
e−y(t2−t1 ). (56)

The variable y on the right-hand side of Eq. (56) can be
interpreted as a shift in the Laplace variable s associated to
the time difference t2 − t1, i.e.,

s → s + y, (57)

for all propagators between times t1 and time t2. For an
example see the first diagram in Eq. (65) below.

The integral over times necessitates a cutoff τ at small
times, which can be replaced by a cutoff � for large y (Eq.
(A3) of Ref. [42]). Their relation is∫ T

0
dt
∫ �

0
e−yt dy = ln(T �) + γE + O(e−T �)

!= ln

(
T

τ

)
=
∫ T

τ

1

t
dt . (58)

This implies the choice

� = e−γE/τ. (59)

Finally, while the insertion of the position xt at time t with 0 <

t < T leads to a factor of x in the corresponding propagators,

〈zt 〉z0=a,zT =b =
∫

z
P+(a, z, t )zP+(z, b, T − t ), (60)

the insertion of ẋt yields a derivative (Eq. (A1) of Ref. [42]),

〈żt 〉z0=a,zT =b = 2
∫

z
P+(a, z, t )∂zP+(z, b, T − t ). (61)

Here P+(a, b, T ) is the Brownian transition density introduced
in Eq. (24) in the absence of drift (μ = 0).

G. Diagrams to be evaluated

The three auxiliary functions introduced in Eqs. (53)–(55)
have a diagrammatic representation presented in Fig. 1. They
give to first order in ε for G,

Gμ,ν (m, T ) := exp

[
−m

2

(
μ

Dε

+ν

)
− T

4
(μT −ε+νT ε )2

]
×{G0(m, T ) + ε[G1(m, T ) − αGα (m, T )

−βGβ (m, T )]}. (62)

The zeroth-order contribution G0(m, t ) follows from Eqs. (29)
and (30),

G0(m, t ) = me− m2

4t

2
√

πt3/2
, (63)

G̃0(m, s) = e−m
√

s. (64)

H. Order ε, first diagram G1

The Laplace transform of the first diagram is obtained from
the insertion of S1 (without drift), as represented by the first
diagram of Fig. 1, using the Brownian propagators found in
Eq. (27). (The global factor of 2 = 22/2 comes from a factor

022102-5



ARUTKIN, WALTER, AND WIESE PHYSICAL REVIEW E 102, 022102 (2020)

FIG. 1. Graphical representation of the path-integral for diagram G1(m, t ) (left, expectation of S1), Gα (m, t ) (middle, expectation of Sα),
and Gβ (m, t ) (right, expectation of Sβ ). The wiggly line in the first diagram represents the interaction proportional to 1/(t2 − t1). The red
lines in the second and third diagram contain a log of the corresponding time difference, ln(t/T ) for the first, and ln [(T − t )/T ] for the
second.

of 2 for each insertion of ẋ, and the 1/2 from the action.)

G̃1(m, s) = lim
x0→0

2

x0

∫ �

0
dy
∫

x1>0

∫
x2>0

P̃+(m, x1, s)∂x1 P̃+(x1, x2, s + y)∂x2 P̃+(x2, x0, s)

= 2
∫ �

0
dy

√
s(e−m

√
s(my − 2

√
s + y) + 2

√
s + ye−m

√
s+y)

2y2

= em
√

s(m
√

s + 1)Ei(−2m
√

s) + e−m
√

s

{
m

√
s

[
ln

(
m

2
√

sτ

)
− 1

]
− ln

(
2m

√
s
)− γE

}
, (65)

where we introduced the exponential integral function Ei(z) = − ∫∞
−z dt e−z

z , and used Eq. (59) to eleminate �. For the inverse
Laplace transform we find using Appendix C of Ref. [62]

G1(m, t ) = G0(m, t )

[
I
(

m√
2t

)
+ 2

(
m2

4t
− 1

)
ln

(
m2

τ

)
+ ln

(
t

τ

)
+ (γE − 1)m2

2t
− 2γE − 1

]
. (66)

The special function I appearing in this expression was introduced in Ref. [61], Eq. (B53),

I (z) = z4

6
2F2

(
1, 1;

5

2
, 3;

z2

2

)
+ π (1 − z2) erfi

(
z√
2

)
− 3z2 +

√
2πe

z2

2 z + 2, (67)

where erfi(z) is the imaginary error function. Using the definition Eq. (59) of �, Eq. (66), and introducing the variable

z := m√
2t

, (68)

G0(m, t ) and G1(m, t ) can be written more compactly as

tG0(m, t ) = e− z2

2 z√
2π

, (69)

G1(m, t ) = G0(m, t )

{
I (z) − ln

(
4tz4

τ

)
+ z2

[
ln

(
2tz2

τ

)

+ γE − 1

]
− 2γE − 1

}
. (70)

Note that there is a global prefactor of 1/t , and a logarithmic
dependence on t and τ .

I. Order ε, second diagram Gα

To study perturbations with Sα defined in Eq. (43), we
represent the logarithm as

ln

(
t

τ

)
=
∫ ∞

0

dy

y

[
e−τy − e−ty

]
. (71)

This yields for the insertion of Sα

G̃α (m, s) = lim
x0→0

1

x0

∫ �

0

dy

y

∫
x1>0

[P̃+(m, x1, s)e−τy

− P̃+(m, x1, s + y)]∂x1 P̃+(x1, x0, s)

=
∫ �/s

0
dy

[
e−m

√
s

√
sy2

− e−m
√

s
√

y+1

√
sy2

− me−m
√

s−sτy

2y

]

= 1

4
me−m

√
s

[
2e2m

√
sEi(−2m

√
s) + ln

(
4sτ 2

m2

)
+ 2

]

+O(�−1). (72)

We checked that the y integrand is convergent, at least as 1/y2

for large y, and has a finite limit for y → 0; thus neither x0

nor � are necessary as UV cutoffs, and the y integral is finite.
The τ -dependence stems from the ln(t/τ ) of the perturbation
term.
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Doing the inverse Laplace transform using Appendix C of Ref. [62], we get with z defined in Eq. (68)

√
tGα (m, t ) = e− z2

2 z2[I (z) − 2]

2
√

π (1 − z2)
+

z erfc( z√
2

)
√

2
(
z2 − 1

) − e− z2

2 z2
[

ln
(

2tz2

τ

)+ γE − 1
]

2
√

π
, (73)

defining the complementary error function erfc(z) = 1 − erf(z). Note that there is no pole at z = 1. Indeed, for z → 1 one obtains

− 2F2
(
1, 1; 5

2 , 3; 1
2

)− 4 2F2
(
1, 1; 3

2 , 2; 1
2

)+ 2
√

2eπ
[
erfc
(

1√
2

)− 3
]+ 4πerfi

(
1√
2

)− 4 ln
(

2t
τ

)− 4γE + 22

8
√

eπ
. (74)

J. Order ε, third diagram Gβ

Using again the integral representation Eq. (71), the third diagram for the insertion of Sβ is read off from Fig. 1 as

G̃β (m, s) = lim
x0→0

1

x0

∫ �

0

dy

y

∫
x1>0

P̃+(m, x1, s) ∂x1[P̃+(x1, x0, s)e−τy − P̃+(x1, x0, s + y)]

=
∫ ∞

0
dy

[√
y + 1e−m

√
s

√
sy2

−
√

y + 1e−m
√

s
√

y+1

√
sy2

− me−m
√

s−sτy

2y

]

= e−m
√

s
{
m

√
s
[
2 − ln

(
m2

4sτ 2

)]+ ln(4m2s) + 2γE
}

4
√

s
− em

√
s(m

√
s + 1)Ei(−2m

√
s)

2
√

s
. (75)

We checked that the y integrand is convergent, as it decays at least as 1/y3/2 for large y, and has a finite limit for y → 0, thus no
UV cutoff is necessary, and the y integral is finite.

Doing the inverse Laplace transform using Appendix C of Ref. [62], we get with z defined in Eq. (68)

√
t Gβ (m, t ) = e− z2

2 [I (z) − 2]

2
√

π (1 − z2)
+

z erfc
(

z√
2

)
√

2(z2 − 1)
+ e− z2

2 z2
[
1 − ln

(
t
τ

)]
2
√

π
. (76)

K. Combinations

Let us remind that in the drift-free case the result for G0(z) is given in Eq. (69), while G1(z) is given in Eq. (70). Let us
now turn to the corrections for drift. While Gα and Gβ are the appropriate functions for the calculations, we finally need the
corrections for linear drift μ and nonlinear drift ν. Demanding that

αGα + βGβ
!= μGμ + νGν, (77)

and using Eqs. (41) and (42) yields
√

tGμ(m, t ) = √
t[Gα (m, t ) + Gβ (m, t )]

= −e− z2

2 (z2+1)[I (z)−2]

2
√

π (z2−1)
+

√
2 z erfc( z√

2
)

z2−1
− e− z2

2 z2
[

ln
(

2t2z2

τ 2

)+ γE − 2
]

2
√

π
, (78)

√
tGν (m, t ) = √

t[Gβ (m, t ) − Gα (m, t )] = e− z2

2 [I (z)−2]

2
√

π
+ e− z2

2 z2[ln(2z2)+γE]

2
√

π
. (79)

The perturbative contributions can be grouped together as, cf. Eqs. (52) and (62)

G(m, t ) := exp

(
−m

2

[
μ

Dε

+ ν

]
− t

4
[μt−ε + νt ε]2

){
G0(m, t ) + ε[G1(m, t )−μGμ(m, t )−ν Gν (m, t )]

}
. (80)

This expression is to this order equivalent to

G(m, t ) := exp

(
−m

2

[
μ

Dε

+ ν

]
− t

4
[μt−ε + νt ε]2

)
G0(m, t ) exp

(
ε
G1(m, t ) − μGμ(m, t ) − ν Gν (m, t )

G0(m, t )

)
. (81)

See Ref. [63], Sec. IV C for a discussion of why it is better to
write the perturbative corrections in an exponential form.

L. Scaling and corrections from the diffusion constant, final
result

The natural scaling variable for fBm is not z, but

y := m√
2tH

. (82)

This will induce some corrections [cf. Eq. (49)]. Consider

e− y2

2 y√
2π

= e− z2

2 z√
2π

[1 + (z2 − 1)ε ln(t )] + O(ε2). (83)

There is also a correction to the diffusion constant,

Dε � (eτ )2ε. (84)
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According to Eq. (49), this implies that

P (m, t ) = G(m, tDε )

= e− y2

2 y√
2πtDε

× exp

(
−m

2

[
μ

Dε

+ ν

])

× exp

{
−Dεt

4
[μ2(Dεt )−2ε + ν2(Dεt )2ε]

}

× exp

{
ε

[
G1(m, t ) − μGμ(m, t ) − ν Gν (m, t )

G0(m, t )

− (y2 − 1) ln(t )

]}
(85)

Note that we used the factored form Eq. (81) to make appear
the ratios of G1, Gμ, and Gν with G0, yielding (relatively
simple) special functions F1, Fμ, and Fν defined below.
Regrouping terms yields

P (m, t ) = e− y2

2 y
1
H −1

√
2πt

× exp

(
−μm1−2ε/H

2
y2ε − νm

2
yε

− t

4
[μt−ε + νt ε]2

)
× exp(ε[F1(y) − μmFμ(y) − νmFν (y)]). (86)

To order ε, this can be rewritten in a more intuitive form as

t P (m, t ) = y
1
H −1

√
2π

× exp

⎛
⎝−y2

2
+ ε
[
F1(y)+F0

1

]

−μm
1
H −1y2ε

[
1

2
+εFμ(y)

]

− νmy2ε

[
1

2
+εFν (y)

]
− m2

8y2

[
μ

(
2y2

m2

)ε
H

+ ν

]2
⎞
⎠.

(87)

Note that since our expansion is restricted to the first order in
ε, in expressions like

1

H
− 1 = 1 − 4ε + O(ε2), 1 − 1

2H
= 2ε + O(ε2), (88)

we have no means to distinguish between left- and right-hand
side. Some choices are given by scaling, as the prefactor of
y

1
H −1, or seem natural, others are educated guesses.

Finally, we wish to rewrite Eq. (87) (a density in time) as
a density in y, given distance m from the absorbing boundary
for the starting point. Using that

dt

t
= 1

H

dy

y
, (89)

this yields

P (y|m, μ, ν) = P>(y|m, μ, ν) + Pescape(m, μ, ν)δ(y). (90)

The function P>(y|m, μ, ν) is equivalent to Eq. (87) after the
change in measure Eq. (89),

P>(y|m, μ, ν)

= y
1
H −2

√
2πH

×exp

⎛
⎝−y2

2
+ ε
[
F1(y)+F0

1

]
− μm

1
H −1y2ε

[
1

2
+εFμ(y)

]

− νmy2ε

[
1

2
+εFν (y)

]
− m2

8y2

[
μ

(
2y2

m2

)ε
H

+ ν

]2
⎞
⎠. (91)

Some trajectories escape, which we count as absorption time
t = ∞, equivalent to y = 0, resulting into the contribution
proportional to δ(y) in Eq. (90), with amplitude

Pescape(m, μ, ν) = 1 − Pabs(m, μ, ν), (92)

where

Pabs(m, μ, ν) :=
∫ ∞

0
dyP>(y|m, μ, ν). (93)

It is evaluated in the next section, see Eqs. (121)–(123).
The three special functions appearing in Eq. (86) and

plotted on Fig. 2 are defined as follows: First, the drift-free
contributions are

F1(y) + F0
1

:= G1(y)

G0(y)
− (y2 − 1)[ln(t/τ ) − 1] + 4 ln y

= I (y) + y2[ln(2y2)+γE] − 2(γE + 1 + ln 2). (94)

The conventions are s.t. F1(y) agrees with Refs. [42,44,61],
i.e., F1(0) = 0. The constant part F0

1 is equivalent to a change
in normalization, N = exp(−εF0

1 ), which for the drift-free
case was of no interest [42,44,61], as there the absorption
probability is one, which is not the case with drift. In the
chosen convention (plotted on Fig. 2),

F1(y) = I (y) + y2[ln(2y2) + γE] − 2, (95)

F1(0) = 0, (96)

F0
1 = −2(γE + ln 2). (97)

Its asymptotic expansions for small and large y are

F1(y) = 2
√

2πy + y2[ln
(
2y2
)+ γE − 3] − 1

3

√
2πy3

+ y4

6
− 1

30

√
π

2
y5 + y6

90
− 1

420

√
π

2
y7 + y8

1260

−
√

π
2 y9

6048
+ y10

18900
+ O(y11), (98)

F1(y) = ln(y2/2) + 1 − ψ
(

1
2

)+ 1

2y2
− 1

2y4
+ 5

4y6

− 21

4y8
+ 63

2y10
+ O(y−11). (99)

022102-8



EXTREME EVENTS FOR FRACTIONAL BROWNIAN MOTION … PHYSICAL REVIEW E 102, 022102 (2020)

FIG. 2. Left: The function F1(y) (blue, solid), with its asymptotic expansions (red and green dashed). Middle: same for Fμ(y). Right: same
for Fν (y). Numerical measurements are presented on Figs. 5, 6, and 8.

Equation (95) is equivalent to Eq. (55) in Ref. [61] and
Eq. (56) in Ref. [42].

The second function is for the drift proportional to μ,

Fμ(y) := Gμ(m, t )

mG0(m, t )
+ ∂ε

∣∣∣∣
ε=0

(
m4ε

2Dεy2ε

)
. (100)

It is evaluated as (for a plot see Fig. 2)

Fμ(y) = (y2 + 1)[I (y) − 2]

2y2(1 − y2)
+

√
2πe

y2

2 erfc
( y√

2

)
y(y2 − 1)

+1

2
[ln(2) − γE]. (101)

Its asymptotic expansions are

Fμ(y) = 1

2
[1 − γE + ln(2)] + 1

3

√
2πy − y2

4
+ 1

15

√
π

2
y3

− y4

36
+ 1

140

√
π

2
y5 − y6

360
+
√

π
2 y7

1512
− y8

4200

+
√

π
2 y9

19 008
− y10

56 700
+ O(y11), (102)

Fμ(y) = ln(2y) + ln(2y2) + γE − 1

2y2
+ 3

4y4
− 5

4y6
+ 35

8y8

− 189

8y10
+ O(y−11). (103)

Note that we added some strangely looking factors into the
result Eq. (91). The factor m × m− 2ε

H = m
1
H −1 accounts for

the dimension of the diffusion constant, m/Dε ∼ mτ−2ε, and
takes out the term ln(m) from Fμ(y). We moved out also a
remaining term ∼ ln y.

The third function is for the drift proportional to ν,

Fν (y) := Gν (y)

G0(y)m
− ln(y). (104)

It is evaluated as (for a plot see Fig. 2)

Fν (y) = I (y) − 2

2y2
+ ln(2) + γE

2
. (105)

Its asymptotic expansions read

Fν (y) =
√

2π

y
+ −3 + γE + ln(2)

2
− 1

3

√
π

2
y + y2

12

− 1

60

√
π

2
y3 + y4

180
− 1

840

√
π

2
y5 + y6

2520

−
√

π
2 y7

12096
+ y8

37800
−
√

π
2 y9

190080
+ y10

623700

+O(y11), (106)

Fν (y) = − ln(y) + 2 ln(y) + γE + 1 + ln(2)

2y2
+ 1

4y4
− 1

4y6

+ 5

8y8
− 21

8y10
+ O(y−11). (107)

Using Eq. (91) for small y, there is a problem when εν <

0, since then the combination (second-to-last term in the
exponential)

−ενmy2ε
[

1
2+εFν (y)

] y→0−→ −ενm
√

2πy2ε−1 ≈ −2ν
√

πtH

(108)

diverges (at least for 1
4 < H < 1

2 ), which is amplified since it
appears inside the exponential. We propose to use the follow-
ing Padé variant, which seems to work well numerically,

[
1

2
+εFν (y)

]
ε<0, ν>0−−−−−−−→ 1

2 − 4εFν (y)
. (109)

While Fν (y) diverges for small y, this is at leading order
nothing but a normalization factor depending on νtH .

All three functions F1(y), Fμ(y), and Fν (y) are measured
in Sec. III; see Figs. 5, 6, and 8.

M. Absorption probability

From Eq. (62), we obtain Pabs(m, α, β ),
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Pabs(m, α, β ) =
∫ ∞

0
dt G(m, tDε )

=
∫ ∞

0
dt exp

(
−m

2

[
μ

Dε

+ν

]
− t

4
[μt−ε+νt ε]2

)
G0(m, tDε )

+ ε

∫ ∞

0
dt exp

(
−m

2
β − t

4
β2

)
[G1(m, t ) − αGα (m, t ) − βGβ (m, t )] + O(ε2)

= exp

(
−m

2

[
μ

Dε

+ ν

]){∫ ∞

0
dt exp

(
− t

4
[μt−ε + νt ε]2

)
G0(m, tDε )

+ ε[G̃1(m, s) − α G̃α (m, s) − βG̃β (m, s)]
∣∣∣√

s=|β|/2

}
+ O(ε2). (110)

Here G̃1(m, s) is given by Eq. (65), G̃α (m, s) by Eq. (72), and
G̃β (m, s) by Eq. (75). We still need the integral∫ ∞

0
dt exp

(
− t

4
[μt−ε + νt ε]2

)
G0(m, tDε )

= e−|β|m/(2
√

Dε ) + αβ

2
εG3(m, β ), (111)

G3(m, β ) =
∫ ∞

0
dt e− β2t

4 t ln(t )G0(m, t ). (112)

The last expression can be calculated as

G3(m, β ) :=
∫ ∞

0
dt e− β2t

4 t ln(t )G0(m, t )

= ∂κ

∣∣∣
κ=0

∫ ∞

0
dt e− β2t

4 t1+κG0(m, t )

= ∂κ

∣∣∣
κ=0

|β|−κ− 1
2 mκ+ 3

2 Kκ− 1
2

(m|β|
2

)
√

π

= −
m3/2∂κ

∣∣∣
κ=0

Kκ− 1
2

( |β|m
2

)
√

π |β| +
me− |β|m

2 ln
(

m
|β|
)

|β|

= −me
m|β|

2 Ei(−m|β|)
|β| +

me− m|β|
2 ln

(
m
|β|
)

|β|
= m

|β| [−2 ln(|β|) − γE] + 1

2
m2[−2 ln(m)

− γE + 2)] + O(m3), (113)

where Kn(z) denotes the modified Bessel function of the
second kind. With the above formulas, Eq. (110) is rewritten
as

Pabs(m, α, β )

= e−m(β+|β|)/2

{
1 + ε e|β|m/2

[
αβ

2
G3(m, β )

+ α+β+|β|
2

m(1+ ln τ )e−|β|m/2 + G̃1(m, s)

−αG̃α (m, s) − βG̃β (m, s)

]
√

s= |β|
2

+ O(ε2)

}
. (114)

We note the exact relations, which can be verified numerically,

G̃1(m, s) + 2
√

s G̃β (m, s) = 0, (115)

G3(m, β )|β| + 2G̃α (m, s) − m(1 + ln τ )e− m|β|
2

∣∣∣√
s= |β|

2

= 0.

(116)

Let us analyze Pabs separately for β < 0 and β > 0, starting
with the former. Using both cancelations in Eqs. (115) and
(116), we find

Pabs(α, β < 0) = 1 + O(ε2). (117)

Thus, there is no change in normalization for a drift toward the
absorbing boundary. For β > 0, we find again with the use of
Eqs. (115) and (116),

Pabs(α, β > 0) = e−mβ × {1 + ε[(α+β )m(1 + ln τ ) + 2eβm/2(G̃1(m, s) − αG̃α (m, s))√s= β

2
] + O(ε2)}. (118)

For what follows, we note regularity of the combination Ei(−x) − ln(x) − γE. We can write Eq. (118) as

Pabs(m, α, β ) = e−mβ × {1 + ε [(m(β − α) + 2)(eβmEi(−mβ ) − ln(βm) − γE)

−αm(2 ln(β ) + γE) + βm(2 ln(m) + γE)] + O(ε2)}
= e−mβ × {1 + ε m[2(β − α) ln(β ) − γE(α + 3β ) − 2β + 4β ln(m)] + O(ε2) + O(m2ε)}. (119)

As the asymptotic expansion in the last line shows, a common resummation is possible; passing to variables μ and ν, it reads

Pabs(m, μ, ν) = exp(−m
1
H −1μ [1 + 2(1 − γE)ε] − m

1
H −1ν(μ + ν)

1
H −2 [1 + 2(1 − 2γE)ε]) + O(ε2) + O(m2ε). (120)

This formula represents the leading behavior of Pabs(m, μ, ν) for small m; thus, terms of order O(m2ε) could be neglected. Note
that the (inverse) powers of H were chosen s.t. the resulting object is scale invariant. Expanding in ε leads back to Eq. (119).
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FIG. 3. Example for the absorption probability as a function of μ at ν = 0 (left), and ν at μ = 0 (right). In all cases m = 0.1. The blue solid
line represents the result obtained by a direct numerical integration of Eq. (91), and adjusting the overall normalisation at μ = ν = 0 to 1; this
has the advantage that the combination μm

1
H −1 appears naturally. The green dashed curve is the same, without adjustment of normalisation.

The red dotted curve (visible only on the left plot) is obtained using Eq. (121). The magenta curve is obtained using Eq. (122). The cyan curve
is from Eq. (123), and is identical to the magenta one on the right plot.

One finally arrives at (see Fig. 3)

Pabs(m, μ, ν) = exp
(− m

1
H −1{μ [1 + 2(1 − γE)ε] + ν(μ + ν)

1
H −2[1 + 2(1 − 2γE)ε]}

+ ε{2(mν + 1)[em(μ+ν)Ei(−m(μ + ν)) − ln(m(μ + ν)) − γE]

− 2m(μ + ν)[ln(m(μ + ν)) + γE − 1]})+ O(ε2). (121)

In order that this formula be invariant under m → λm, μ → λ1− 1
H μ, and ν → λ−1ν, we can either replace mμ by mμ

H
1−H , or

m
1
H −1μ. The first version is (see Fig. 3)

P(a)
abs(m, μ, ν) = exp

(− m
1
H −1{μ [1 + 2(1 − γE)ε] + ν(μ

H
1−H + ν)

1
H −2 [1 + 2(1 − 2γE)ε]}

+ ε{2(mν + 1)[em(μ
H

1−H +ν)Ei(−m(μ
H

1−H + ν)) − ln(m(μ
H

1−H + ν)) − γE]

− 2m(μ
H

1−H + ν)[ln(m(μ
H

1−H + ν)) + γE − 1]})+ O(ε2). (122)

The alternative second version is (see Fig. 3)

P(b)
abs(m, μ, ν) = exp

(− m
1
H −1{μ [1 + 2(1 − γE)ε] + ν(μ

H
1−H + ν)

1
H −2 [1 + 2(1 − 2γE)ε]}

+ ε{2(mν + 1)[em
1
H −1μ+mνEi(−m

1
H −1μ − mν) − ln(m

1
H −1μ + mν) − γE]

− (m
1
H −1μ + mν)[ln(m

1
H −1μ + mν) + γE − 1]})+ O(ε2). (123)

From the appearance of fractal powers of m and ν in Eq. (120),
we suspect that both power series in mμ

H
1−H and m

1
H −1μ might

appear. While numerical simulations could decide which ver-
sion is a better approximation, only higher-order calculations
would be able to settle the question.

N. Relation between the full propagator, first-passage times,
and the distribution of the maximum

In this section, we demonstrate how the probability den-
sities of three different observables follow from the same
scaling function. This shows how our result can be used to
find the probability distribution of both running maxima and
first-passage times for fBM with linear and nonlinear drift.

Let us start with the drift-free case, μ = ν = 0.

(i) In Ref. [61] was calculated P+(m, t ), the normalized
probability density to be at m, given t , when starting at x0 close
to 0 (in Ref. [61] this quantity is denoted P+(x, t ) with m = x).
While P+ is a density in m, and thus should be denoted P+ (cf.
Table I), it is the time derivative of a probability, see Eq. (129).
This can be seen from its definition,

P+(m, t ) := P+(m, t |x0)∫∞
0 dm P+(m, t |x0)

, (124)

and the asymptotic expansion at small x0, (see, e.g., Ref. [61],
Appendix C) ∫ ∞

0
dm P+(m, t |x0) ∼ x

1
H −1
0 , (125)

which implies that P+(m, t ) has dimension 1/time.
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(ii) Here we consider the probability density to be ab-
sorbed at time t when starting at m. This is a first-passage
time, with distribution Pfirst (m, t ).

(iii) Third, let the process start at 0, and consider the
distribution of the max m, given a total time t , Pmax(m, t ),
denoted by PT

H (m) (with t = T ) in Ref. [42].
All three objects have a scaling form depending on the

same variable y = m√
2tH :

Pfirst (m, t ) = H

t
Pfirst (y) , (126)

P+(m, t ) = H

t
P+(y), (127)

Pmax(m, t ) = 1√
2T H

Pmax(y). (128)

The factors of H and
√

2 where chosen for later convenience.
These objects are related. Denote Psurv(m, t ) the probability
to start at x = 0, and to survive in presence of an absorbing
boundary at m up to time t . Note that Psurv(m, t ) is a probabil-
ity, whereas Pfirst (m, t ), P+(m, t ), and Pmax(m, t ) are densities,
the first two in t , the latter in m. Then

P+(m, t ) = Pfirst (m, t ) = −∂t Psurv(m, t ), (129)

Pmax(m, t ) = ∂mPsurv(m, t ). (130)

Since Psurv(m, t ) is a probability, it is scale free, and scaling
implies that

Psurv(m, t ) = Psurv

(
y = m√

2tH

)
. (131)

Putting together Eqs. (129), (130), and (131) proves
Eqs. (126)–(128), with

Pfirst (y) = P+(y) = yP′
surv(y), (132)

Pmax(y) = P′
surv(y). (133)

The scaling functions appearing are almost the same, differing
by (innocent looking) factors of t and H and a (noninnocent
looking) factor of y. However, when changing to the measure
in y, all of them become identical. The survival probability in
absence of a drift is given in Eqs. (63) and (64) of Ref. [42].

Let us finally add drift. Then the survival probabil-
ity Psurv(y, ũ, v) depends on three variables introduced in
Eqs. (12)–(15), setting there x → m. Since ũ = mμ

H
1−H , and

v = νm are both constants multiplying m, we can write
Psurv(y, ũ, v) = Psurv(y, m). Using Eqs. (129) and (130), we
find

P+(m, t ) = Pfirst (m, t ) = − d

dt
Psurv(y, m)

= H

t
∂yPsurv(y, m), (134)

Pmax(m, t ) = d

dm
Psurv(y, m)

=
[ y

m
∂y + ∂m

]
Psurv(y, m). (135)

Passing to the measure in y, we obtain

P+(y, m) = Pfirst (y, m) = y∂yPsurv(y, m), (136)

Pmax(y, m) =
[
∂y + m

y
∂m

]
Psurv(y, m). (137)

This set of equations allows us to express Pmax(y, m) as an
integral over P+(y, m) = Pfirst (y, m).

O. Tail of the distribution

Piterbarg [66] states (Sec. 11.3, p. 85) that for a fBm
defined on the interval [0,1], with 〈x2

1〉 = 1, in the limit of
u → ∞,

P(max0�t�1 xt > u)

� �(u) ×

⎧⎪⎨
⎪⎩

2 , H = 1/2
1 , H > 1/2

H2H

2H
2

1
2H u

1
H −2 , H < 1/2

,

(138)

�(u) := 1√
2πu

exp

(
−u2

2

)
� 1√

2π

∫ ∞

u
exp

(
−x2

2

)
dx.

(139)

The estimate for H < 1/2 seems to contain misprints:
We find σ (t ) :=

√
〈x2

t 〉 = 1 − H |1 − t | (i.e., H instead of
2H). Rescaling t − 1 → (t − 1) × 2

1
2H gives σ (t ) → 1 −

H × 2
1

2H × |1 − t |, thus

P(max0�t�1 xt > u) � H2H

2
1

2H H
u

1
H −2�(u), H <

1

2
. (140)

Using the latter result, taking a derivative w.r.t. u, and passing
to the measure in y, one obtains P (y) ≡ P>(y|m, μ = ν =
0) ≡ Pmax(y) (in terms of our variable y), in the limit of large
y,

P (y) � e− y2

2√
2π

×

⎧⎪⎨
⎪⎩

2 , H = 1/2
1 , H > 1/2

H2H

2
1

2H H
y

1
H −2 , H < 1/2

.

(141)
The Pickands constant H2H has ε-expansion [54]

H2H = 1 − 2γEε + O(ε)2. (142)

How is this consistent with Eq. (91)? Taylor-expanding the
latter for large y yields

P (y) � 2
e−y2/2

√
2π

{1 − [1 + γE + 2 ln(y) + ln(2)]ε

+O(ε2) + o(y0)}. (143)

In Ref. [61] this was interpreted as P (y) ∼ y−2εe−y2/2. Equa-
tion (141) shows that this interpretation is incorrect. For large
y, our expansion is almost the sum of the two contributions in
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Eq. (141) for H = 1/2,

P (y) ≈ e−y2/2

√
2π

[
1 + H2H

2
1

2H H
y

1
H −2 + ...

]

� 2
e−y2/2

√
2π

{1 − [1 + γE + 2 ln(y) − ln(2)]ε

+O(ε2) + O(y0)}. (144)

Note the difference in sign for the ln(2) term between
Eqs. (143) and (144), showing that the guessed Eq. (144)
slightly underestimates the amplitude for ε < 0.

III. NUMERICS

A. Simulation protocol

Fractional Brownian motion can be simulated with the
classical Davis-Harte (DH) algorithm [18,67], whose algo-
rithmic complexity (execution time) scales with system size
N as N ln N . Here we use the adaptive-bisection algorithm
introduced and explained in Refs. [68,69]. For H = 1/3 its
measured algorithmic complexity grows as (ln N )3, making
it about 5000 times faster, and 10 000 times less memory
consuming than DH for an effective grid size of N = 232.

To measure the functions F1, Fμ, and Fν , which all depend
on y only, we

(i) generate a (drift free) fBm xt with x0 = 0, of length N ;
the latter corresponds to a time T = 1,

(ii) add the drift terms to yield zt = xt + μt + νt2H ,
(iii) for given m, find the first time t , s.t. zt = m,
(iv) evaluate y = m√

2tH ; add a point to the histogram of y.
This histogram misses values of t > T = 1, i.e. y < m√

2
.

We checked the procedure for Brownian motion (with ν →
0), where

P (y|m, μ) =
√

2

π
e
− (μm+2y2 )2

8y2 . (145)

Note that this is a function of y and mμ only, so that we can
write

P (y|mμ) =
√

2

π
e− y2

2 × e− mμ

2 e
− (mμ)2

8y2 . (146)

For fBm, we measure P (y|m, μ, ν), and then extract F1, Fμ,
and Fν . First,

F ε
1 (y|m) := 1

ε
ln
(
P (y|m)y2− 1

H e
y2

2
)|μ=ν=0 (147)

and F ε
1 (y|m) = F1(y) + O(ε2). The following combination is

more precise, since terms even in ε cancel,

F ε,sym
1 (y|m) = 1

2

[
F ε

1 (y|m) + F−ε
1 (y|m)

]+ O(ε2). (148)

The second-order correction can be estimated as

F ε
2 (y|m) := 1

ε

[
F ε

1 (y|m) − F1(y|m)
]+ O(ε). (149)

Its symmetrized version again suppresses subleading correc-
tions,

F ε,sym
2 (y|m) := 1

2ε

[
F ε

1 (y|m) − F−ε
1 (y|m)

]+ O(ε2). (150)

The third-order correction can be extracted as

F ε
3 (y|m) := 1

2ε2

[
F ε

1 (y|m) + F−ε
1 (y|m) − 2F1(y|m)

]
+O(ε). (151)

For the remaining functions Fμ and Fν , we can employ
similar formulas; we have to decide how to subtract F1,
numerically from the simulation, or analytically, i.e., by sup-
plying numerically or analytically the denominator in

F ε
μ(y|m, μ) := −1

ε

[
ln

( P (y|m, μ, ν = 0)

P (y|m, μ = ν = 0)

)
× y−2ε

μm
1
H −1

+ 1

2
+ μ

4

(m

2

)1
H −1

y3− 5
2H

]
, (152)

F ε
ν (y|m) := −1

ε

[
ln

( P (y|m, μ = 0, ν)

P (y|m, μ = ν = 0)

)
× y−2ε

νm

+1

2
+ νm

8
y−ε−2

]
. (153)

We can also work symmetrically

F ε
μ(y|m) := −1

ε

[
ln

( P (y|m, μ, ν=0)

P (y|m,−μ, ν=0)

)
y−2ε

2μm
1
H −1

+1

2

]
,

(154)

F ε
ν (y|m) := −1

ε

[
ln

( P (y|m, μ=0, ν)

P (y|m, μ=0,−ν)

)
y−2ε

2νm
+ 1

2

]
.

(155)

Finally, a more precise estimate of the theoretical curves is
given by symmetrizing results for the same |ε|, using the
analog of Eq. (148).

Below, we measure the three scaling functions F1, Fμ,
and Fν for H = 0.33, using our recently introduced adaptive-
bisection algorithm [68,69]. The latter starts out with an initial
coarse grid of size 2g, which is then recursively refined up to a
final gridsize of 2g+G. It gains its efficiency by only sampling
necessary points, i.e., those close to the target.

The optimal values of g and G depend on H . We run
simulations with the following choices: H = 0.33 (g = 8,
G = 18), H = 0.4 (g = 10, G = 14), H = 0.6 (g = 8, G =
8), and H = 0.67 (g = 8, G = 6). Thanks to the adaptive-
bisection algorithm, we can maintain a resolution in x of
10−3, with about 25 million samples at H = 0.33, H = 0.6,
and H = 0.67, and twice as much for H = 0.4. As we will
see below, this allows us to precisely validate our analytical
predictions.

B. Simulation results

We show simulation results on Figs. 4 to 8. First, on
Fig. 4 (left), we present results for the first-passage probability
P (y|m, μ, ν = 0), using m = 0.1. The numerical results (in
color) are compared to the predictions from Eq. (91). One
sees that theory and simulations are in good quantitative
agreement. This comparison is made more precise by plotting
the ratio between simulation and theory on the right of Fig. 4.

The function F1(y) is extracted on Fig. 5. We show simu-
lations for m = 0.1 (colored solid lines), and m = 1 (colored
dashed lines). The theoretical result Eq. (95) agrees with
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FIG. 4. Left: First-passage time density Pfirst (m, t ) = P (y) plotted as a function of y as given in Eq. (9). To increase the resolution of
the plot, we use overlapping bins with binsize 5 × 105, with y increasing by 105 points for each bin; m = 0.1. For various values of H and
μ, numerical simulations are compared to the theory. As can be seen on this plot, and on the ratio between simulations and theory to the
right, the relative error is about 3% at the extreme points. Note that neglecting F1(y) would lead for H = 0.4/0.6 to an error of 15%, and for
H = 0.33/0.67 to an error of 25%.

numerical simulations for all H , at both values of m. Using
the symmetrized form Eq. (148) with H = 0.4/0.6 shows
a particularly good agreement. It allows us to extract the
subleading correction via Eqs. (149) and (150). This is shown
in the inset of Fig. 5; again the symmetrized estimate is the
most precise. Note that the second-order correction is rather
sensitive to the choice of m; more effort would be needed to
estimate it properly. Also note that adding a constant to F1(y)
is equivalent to an overall change in normalization, thus one
should concentrate on the shape of the cuves.

FIG. 5. Numerical estimate of F1. The black curve is the theo-
retical estimate Eq. (95), followed by a number of estimates using
Eq. (147). Solid lines are for m = 0.1, dashed ones for m = 1. The
symmetrized estimates Eq. (148) are in olive/cyan. The latter has
minimal deviations from the theory. The inset shows a numerical
estimate for F2(y), as given by Eqs. (149) and (150). All curves
are consistent, and let appear even the next-to-leading corrections.
[Remember that changing the normalization is equivalent to adding
a constant to F1(y) or F2(y).] The strong curve-down for small and
large y are due to numerical problems.

Using the data presented on Fig. 4, Fig. 6 shows the order-
ε correction Fμ extracted via Eq. (154). The symmetrized
estimate is rather close to the analytical result. The inset
estimates the subleading correction. Again, estimates for m =
0.1 (dashed lines) and m = 1 (solid lines) are consistent, and a
proper measure of the second-order correction would demand
a higher numerical precision.

The results for nonlinear drift ν are presented on Fig. 7,
starting with the probability distribution P (y|m) (left), fol-
lowed by the ratio between simulation and theory on the right,
using m = 0.1. The agreement is again good. From these

FIG. 6. Numerical estimate of Fμ. The black curve is the theoret-
ical result Eq. (101). The colored curves are obtained using Eq. (154)
with μ = ±1 for H = 0.6 and H = 0.67, and μ = ±3 for H = 0.33
and H = 0.4. Solid lines are for m = 0.1, dashed ones for m = 1.
The symmetrized estimates Eq. (148) are in olive/cyan. The cyan
curve using the equivalent of Eq. (148) with H = 0.4/0.6 is our
best numerical estimate of Fμ(y). The inset shows the estimated
second-order correction, analogous to Eqs. (149) and (150).
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FIG. 7. Left: first-passage-time density plotted with overlapping bins as in Fig. 4 for various values of H and nonlinear drift ν compared
to the theory given in Eq. (91). Right: Ratio of simulation and theoretical values.

data is extracted the function Fν (y) defined in Eq. (105), see
Fig. 8. Note that Fν (y) is much larger than Fμ(y) (Fig. 6),
and diverges for small y. The subleading corrections to Fν (y)
are not negligible, seemingly m-dependent, and estimated as
well, allowing us to collapse all measured estimates on the
theoretical curve.

In summary, we have measured all scaling functions with
good to excellent precision, ensuring that the analytical results
are correct.

IV. CONCLUSION

In this article, we gave analytical results for fractional
Brownican motion, both with a linear and a nonlinear drift.
Thanks to a novel simulation algorithm, we were able to

verify the analytical predictions with grid sizes up to N = 228,
leading to a precise validation of our results.

Our predictions to first order in H − 1/2 are precise,
and many samples of very large systems are needed to see
statistically significant deviations. We therefore hope that our
formulas will find application in the analysis of data, as, e.g.,
the stock market.

Another interesting question is how a trajectory depends
on its history, i.e. prior knowledge of the process. We obtained
analytical results also in this case, and will come back with its
numerical validation in future work.

Our study can be generalized in other directions, as, e.g.,
making the variance a stochastic process, as in [70] or in the
rough-volatility model of Ref. [71], which both use fBm in
their modeling.

FIG. 8. Left: Numerical estimate of Fν , using Eq. (155). The black curve is the theoretical prediction Eq. (105). The colored curves are
simulation results using Eq. (155). Solid lines are for m = 0.1, dashed ones for m = 1. The cyan and olive curves are the symmetrized results
using the equivalent of Eq. (148) for H = 0.4/0.6 (cyan) and H = 0.33/0.67 (olive). The former one is the best numerical estimate of the
theory, and very close to the latter. The inset shows the estimated second-order corrections, analogous to Eqs. (149) and (150). There seem
to be nonnegligible corrections of order three. An almost perfect data collapse can be obtained for m = 0.1 as εF ε

ν (y) � Fν (y)ε + (2y−2 −
4y−1 − 6 + y)ε2 + (3y − 20)ε3, and for m = 1 as εF ε

ν (y) � Fν (y)ε + (y − 1.7)(1.5ε2 − 6ε3), see right figure. Since extrapolation problems
mentioned around Eq. (109) become important for small y, this estimate is intended as a fit only, to show that the scatter on the left plot is
consistent with higher-order corrections.
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