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Exponential volume dependence of entropy-current fluctuations at first-order phase
transitions in chemical reaction networks
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In chemical reaction networks, bistability can only occur far from equilibrium. It is associated with a first-order
phase transition where the control parameter is the thermodynamic force. At the bistable point, the entropy
production is known to be discontinuous with respect to the thermodynamic force. We show that the fluctuations
of the entropy production have an exponential volume-dependence when the system is bistable. At the phase
transition, the exponential prefactor is the height of the effective potential barrier between the two fixed-points.
Our results obtained for Schlögl’s model can be extended to any chemical network.
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I. INTRODUCTION

Nonequilibrium phase transitions have been long studied
and still remain less understood than their equilibrium coun-
terparts. Most biological systems operate far from equilibrium
and can achieve rich dynamics such as biochemical switching
and oscillations, which are both observed, for example, in
interlinked GTPases [1–4] or in the MinDE system [5–9].
Their complex behavior can be understood with simple chem-
ical networks introduced by Schlögl in the 1970s to study
nonequilibrium first- and second-order phase transitions [10].
Subsequently, order parameters with their associated vari-
ances have been derived for these systems [11–16].

In this paper, we focus on biochemical switches that un-
dergo a first-order phase transition upon activation. From a
deterministic perspective, this phase transition is associated
with bistability where two stable steady states can coexist.
In contrast, in the stochastic perspective, the steady state is
unique and is associated with a bimodal density distribution
[17,18]. In the thermodynamic limit, the stochastic system
will relax to the more stable fixed-point except at the bistable
point [19,20]. There are two timescales relevant for a bio-
chemical switch: a fast relaxation to the nearest fixed-point
and a slower transition between the states, where the coarse-
grained transition rates are proportional to the exponential of
the inverse volume [21,22]. In chemical reaction networks,
bistability can occur only far from equilibrium since an
equilibrium distribution will always be a Poisson distribution
distribution, and, thus, have a single peak [23,24].

The behavior of the entropy production at first- and second-
order phase transitions has been investigated in many systems
such as chemical networks or nonequilibrium Ising models
[18–20,25–34]. At first-order phase transitions, the entropy
production rate has a discontinuity with respect to the thermo-
dynamic force whereas at second-order phase transitions its
first derivative has a discontinuity. Recently, it has been shown
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that the critical fluctuations of the entropy production diverge
with a power-law with the volume at a second-order phase
transition [33]. For first-order phase transitions, the behavior
of entropy production fluctuations has not been investigated
yet to the best of our knowledge.

We will show that the fluctuations of the entropy produc-
tion have an exponential volume-dependence at first-order
phase transitions in chemical reaction networks. Our results
are obtained for Schlögl’s model. First, we compute the
entropy fluctuations numerically from the chemical master
equation using standard large deviation techniques [35,36].
Second, we compute the current fluctuations for a coarse-
grained two-state model and show that the diffusion coef-
ficient diverges at the bistable point with an exponential
prefactor given by the height of the effective potential barrier
separating the two fixed points.

The paper is organized as follows. In Sec. II, we introduce
Schlögl’s model and define the entropy production. In Sec. III,
we consider the chemical master equation and compute the
diffusion coefficient numerically. In Sec. IV, we introduce an
effective two-state model and compute an analytical expres-
sion for the diffusion coefficient. We conclude in Sec. V.

II. SCHLÖGL’S MODEL AND ENTROPY PRODUCTION

A. Model definition

The Schlögl model is a paradigmatic model for biochemi-
cal switches [10,18]. It consists of a chemical species X in a
volume �. The external bath contains two chemical species A
and B at fixed concentrations a and b, respectively. The set of
chemical reactions is

2X + A
k1−⇀↽−

k−1

3X,

B
k2−⇀↽−

k−2

X, (1)

where k1, k−1, k2, and k−2 are transition rates. The system
is driven out of equilibrium due to a difference of chemical
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potential between A and B, which is written as Δμ ≡ μA −
μB. A cycle in which an X molecule is created with rate k1,
and then degraded with rate k−2 leads to the consumption of a
substrate A and generation of a product B. The thermodynamic
force associated with this cycle is

Δμ ≡ ln
k−2k1a

k−1k2b
, (2)

where the temperature T and Boltzmann’s constant kB are set
to 1 throughout this paper. The above relation between the
thermodynamic force Δμ and the transition rates is known as
generalized detailed balance.

B. Entropy production

Along a stochastic trajectory n(t ), where n labels the state
with n molecules of species X , the entropy production change
of the medium can be identified as [37]

Δsm = ZB(t ) ln
k−2

k2b
+ ZA(t ) ln

k1a

k−1
. (3)

Here, ZA(t ) and ZB(t ) are random variables which count
transitions in the A and B channels, respectively. For example,
ZB(t ) increases by one if a B is produced, which happens if a
reaction with rate k−2 takes place. Likewise, it decreases by
one if a B is consumed, which happens if a reaction with rate
k2 takes place, i.e.,

2X + A
k1−→ 3X, ZA → ZA + 1,

3X
k−1−→ 2X + A, ZA → ZA − 1,

X
k−2−→ B, ZB → ZB + 1,

B
k2−→ X, ZB → ZB − 1. (4)

In this paper, we focus on Δsm, the extensive part of the total
entropy production Δstot ≡ Δsm + Δs. The remaining part is
the change in stochastic entropy [38]

Δs = − ln pnt (t ) + ln pn0 (0), (5)

where pnt (t ) is the probability to find the system in state nt at
time t .

Using Eqs. (3) and (4), we can write the mean entropy
production rate per volume in the steady state as [37]

σ ≡ lim
t→∞

〈Δsm〉
t�

= lim
t→∞

[ 〈ZB(t )〉
t�

ln
k−2

k2b
+ 〈ZA(t )〉

t�
ln

k1a

k−1

]
= JBΔμ. (6)

In the steady state, the mean flux density of B molecules

JB ≡ lim
t→∞

〈ZB(t )〉
t�

= lim
t→∞

〈ZA(t )〉
t�

(7)

is equal to the flux of A molecules consumed.

We can quantify the fluctuations of B molecules with the
diffusion coefficient

DB ≡ lim
t→∞

〈ZB(t )2〉 − 〈ZB(t )〉2

2t�

= DA ≡ lim
t→∞

〈ZA(t )2〉 − 〈ZA(t )〉2

2t�
, (8)

where we prove the second equality, DB = DA, in Ap-
pendix A. Specifically, we show there that ZA(t ) and ZB(t )
have the same cumulants.

Finally, using Eqs. (3) and (8) we obtain the diffusion coef-
ficient associated with the entropy production in the medium
as

Dσ ≡ lim
t→∞

〈(Δsbath)2〉 − 〈Δsbath〉2

2t�

= DB

(
ln

k−2

k2b

)2

+ DA

(
ln

k1a

k−1

)2

+ lim
t→∞

[ 〈ZA(t )ZB(t )〉 − 〈ZA(t )〉〈ZB(t )〉
2t�

]
× 2

(
ln

k−2

k2b

)(
ln

k1a

k−1

)
= DBΔμ2. (9)

Since the stochastic entropy production is not extensive in
time, this diffusion coefficient is equal to the one for the total
entropy production.

III. CHEMICAL MASTER EQUATION

A. Stationary solution

The state of the system is fully determined by the total
number n of X molecules. The time evolution of P(n, t ),
which is the probability to find the system in state n at time
t , is governed by the chemical master equation (CME)

∂t P(n, t ) = fn−1P(n − 1, t ) + gn+1P(n + 1, t )

− ( fn + gn)P(n, t ). (10)

Here, we define the rate parameters as

fn = α+
n + β+

n ≡ ak1n(n − 1)

�
+ bk2�,

gn = α−
n + β−

n ≡ k−1n(n − 1)(n − 2)

�2
+ k−2n. (11)

The system can reach a nonequilibrium steady-state with a
distribution written as Pn. The analytical solution for this
steady-state probability distribution reads

Pn

P0
=

n−1∏
i=0

fi

gi+1
,

= f0

g1

√
f1g1

fngn
exp

[
1

2
ln

(
f1

g1

)
+

n−1∑
i=2

ln

(
fi

gi

)

+ 1

2
ln

(
fn

gn

)]
(n � 3), (12)
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where the normalization is given by

P0 = 1 −
∞∑
j=1

Pj . (13)

For a large number of states (� → ∞), we can write x =
n/� as a continuous variable and approximate the exponential
by an integral using the trapezium rule, which is valid if
fn/gn is bounded. Without loss of generality, we will choose
parameters such that the fixed-points are far enough from the
boundary, which means that the probability to find the system
close to x = 0 is negligible. Note that the case where the
solution does not vanish at the boundary is discussed in details
in [22].

From Eq. (12), the continuous steady-state distribution can
be written as

p(x) ∝ exp

[
−�

(
φ0(x) + 1

�
φ1(x)

)]
, (14)

where we define the nonequilibrium potential

φ0(x) ≡ −
∫ x

0
dy ln

(
f (y)

g(y)

)
(15)

and

φ1(x) ≡ −1

2
ln

1

f (x)g(x)
. (16)

Here, we have defined the total transition rates

f (x) ≡ α+(x) + β+(x) = ak1x2 + k2b,

g(x) ≡ α−(x) + β−(x) = k−1x3 + k−2x. (17)

In the deterministic limit (� → ∞), we obtain the equation
of the time evolution of the density,

x̄ ≡
∑

n

nP(n, t )/� (18)

as
dx̄

dt
= f (x̄) − g(x̄) (19)

from the chemical master Eq. (10). In the steady state, this
equation has three solutions (x−, x0, x+). Bistability occurs
when all solutions are real, we order the fixed points as fol-
lows: 0 < x− < x0 < x+, where x± are stable [i.e., f ′(x±) <

g′(x±)] and x0 is unstable [i.e., f ′(x0) > g′(x0)].

B. Behavior of the entropy production at the phase transition

The mean entropy production rate, defined in Eq. (6), can
be written using Eq. (17) as

σ = Δμ

∫ ∞

0
dx[β−(x) − β+(x)]p(x). (20)

In the thermodynamic limit, the stochastic system will relax
to the more stable fixed point except at the bistable point
[19,20]. Consequently, the rate of entropy production will
be discontinuous with respect to the thermodynamic force at
the bistable point. Specifically, with increasing Δμ, σ will
jump from [β−(x−) − β+(x−)]Δμ to [β−(x+) − β+(x+)]Δμ,
which are the rates of entropy production at the two fixed
points x− and x+, respectively.

We now derive an expression for the fluctuations of the
entropy production. We follow an approach based on large
deviation theory [35,36,39] and considered for Brownian
ratchets in [40]. We want to compute the cumulants related
to the number of produced B molecules. They are obtained
through the scaled cumulant generating function (SCGF)

α(λ) ≡ lim
t→∞

1

t
ln〈eλZB〉, (21)

where ZB is the time-integrated current of B molecules de-
fined in Eq. (4). Note that α(λ) is unrelated to the transition
rate defined in Eq. (11). From now on, we will drop the t
dependence on ZB for readability. Expanding the generating
function yields

α(λ) = �JBλ + �DBλ2 + O(λ3). (22)

The SCGF can be obtained by considering the moment
generating function

g(λ, t ) ≡ 〈λeλZB〉 =
∑

n

g(λ, n, t )P(n, t ), (23)

where we define

g(λ, n, t ) ≡ 〈eλZB |n(t ) = n〉 =
∑
ZB

eλZB P(n, ZB, t ), (24)

which is conditioned on the final state of the trajectory n(t ).
The time evolution of this quantity is given by

∂t g(λ, n, t ) =
∑

m

Lnm(λ)g(λ, m, t ), (25)

where L(λ) is the tilted operator. Note that for λ = 0, it is
identical to the operator generating the time evolution of the
probability distribution in Eq. (10)

We want to specify L(λ) for the chemical master Eq. (10).
First, we write the time evolution of the probability distribu-
tion as

P(n, ZB, t ) =
∑

m

wmnP(m, ZB − dmn, t ) − wnmP(n, ZB, t ),

(26)

where wmn is the transition rate from state m to state n and
dmn is the distance matrix which characterize how ZB changes
during a transition. In the case of the CME, Eq. (26) reduces
to

P(n, ZB, t ) = α−
n+1P(n + 1, ZB, t ) + α−

n−1P(n − 1, ZB, t )

+ β−
n+1P(n + 1, ZB + 1, t )

+ β+
n−1P(n − 1, ZB − 1, t )

− (α+
n + β+

n + α−
n + β−

n )P(n, ZB, t ), (27)

where the rates α±
n and β±

n are given by Eq. (11). Using
Eq. (24), we can write

∂t g(λ, n, t ) =
∑

m

wmn

∑
ZB

eλZB P(m, ZB − dmn, t )

− wnmg(λ, n, t ). (28)
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With a change of variable, we obtain

∂t g(λ, n, t ) =
∑

m

wmn

∑
YB

eλ(YB+ dmn )P(m,YB, t )−wnmg(λ, n, t )

=
∑

m

eλdmnwmng(λ, m, t ) − wnmg(λ, n, t ), (29)

which specifies the tilted operator L(λ) defined in Eq. (25).
The cumulants can be obtained by solving the eigenvalue

equation L(λ)Q(λ) = α(λ)Q(λ), where

L(λ) = L0 + L1λ + L2λ
2 + O(λ3) (30)

and the distribution

Q(λ) = P + Q1λ + Q2λ
2 + O(λ3). (31)

Sorting by orders of λ, we obtain

L0P = 0,

L0Q1 + L1P = �JBP,

L1Q1 + L0Q2 + L2P = �DBP + �JBQ1. (32)

We multiply these equations with 〈1| on the left-hand side and
note that P is normalized, i.e., 〈1 | P〉 = 0, where 〈·|·〉 denotes
the standard scalar product. We can compute the mean flux
density

JB = 1

�
〈1|L1 |P〉 = 1

�

∑
n

(β−
n − β+

n )Pn (33)

and the diffusion coefficient

DB = 1

�
(〈1|L1 |Q1〉 + 〈1|L2 |P〉) − JB〈1 | Q1〉

= 1

�

∑
n

(
(β−

n − β+
n )(Q1)n + 1

2
(β−

n + β+
n )Pn

)
− JB

∑
n

(Q1)n. (34)

The mean rate of entropy production σ as well as its associ-
ated diffusion coefficient Dσ can be evaluated using Eqs. (6)
and (9).

C. Numerical results

Throughout this paper, we set the parameters to k1 =
1, k2 = 0.2, k−2 = 1, a = 1, and b = 1. The transition rate
k−1 is computed from Δμ and the generalized detailed bal-
ance relation Eq. (2), where Δμ is a control parameter of the
phase transition.

In Fig. 1(a), we plot the stationary distribution p(x) which
is bimodal in the vicinity of the phase transition (Δμbi 	
3.045). In Fig. 1(b), we plot the entropy production rate σ as a
function of Δμ. With increasing system size, σ gets steeper at
the bistable point. In Fig. 1(c), we show that the first derivative
of σ follows a power-law with an effective prefactor close to 1.
In the thermodynamic limit (� → ∞), the entropy production
rate becomes discontinuous as shown by Ge and Qian [19,20].

The diffusion coefficient Dσ reaches a maximum at the
bistable point and has an exponential volume dependence.
In Fig. 2(a), we compare simulations of the chemical master
Eq. (10) using Gillespie’s algorithm [41] for three increasing

0 1 2 3 4 5
0

2

4

6

x

p(x)

Δμ = 3.00
Δμ = 3.05
Δμ = 3.10
Δμ = 3.15

(a)

3 3.02 3.04 3.06 3.08 3.1 3.12 3.14

0

2

4

6

8

10

Δμ

σ

Ω = 50
Ω = 100
Ω = 200
Ω = 1000

(b)

200 400 600 800 1,000

500

1,000

1,500

Ω

∂σ
∂Δμ

∝ Ω0.97±0.01

(c)

FIG. 1. Phase transition in the Schlögl model. (a) Stationary
distribution of chemical species X for � = 100 and different values
of Δμ. (b) Mean entropy production rate σ as a function of Δμ for
different system sizes �. (c) Maximum of the first derivative of σ

as a function of the system size �. Parameters are given in the main
text.

sampling times T with the numerical solution obtained by
solving the linear system given by Eq. (34). The systematic
difference between these two methods is due to a limited
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FIG. 2. Behavior of the diffusion coefficient Dσ close to the
bistable point. (a) Diffusion coefficient from simulations using
Gillespie’s algorithm for 104 trajectories with a sampling time of
T = 104, 105, 106. For the CME, we solve the linear system given
by Eq. (34) numerically for � = 100. (b) Diffusion coefficient for
the two-state model obtained by evaluating Eq. (43). (c) Finite-
size scaling of the maximum of the diffusion coefficients Dbi

σ . The
corresponding slopes are given in Table I.

sampling time. In the next section, we present an effective
two-state model and derive an analytical expression for the
diffusion coefficient.

IV. TWO-STATE MODEL

A. Stationary solution

In the bistable regime, the system has two timescales. First,
it will relax towards the nearest stable fixed-points x± and
fluctuate around it. Close to the fixed points, the system can
be modeled by stationary Gaussian processes. Specifically,
the distribution p(x) can be expanded around its stable fixed
points x± as [18]

p(x) ≈
∑

x∗=(x−,x+ )

e−�φ0(x∗ )

ZGA2(x∗)
exp

[−�φ′′
0 (x∗)(x − x∗)2

2

]
,

(35)

where

ZG ≡
∑

x∗=(x−,x+ )

e−�φ0(x∗ )
√

2π

A2(x∗)
√|φ′′

0 (x∗)|�. (36)

Second, as stochastic fluctuations are always present,
the system will at some point in time reach the unstable
fixed point x0 beyond which it can relax towards the other
fixed point. Based on this behavior, the infinite-state system
Eq. (10) can be coarse-grained into a two-state process be-
tween the stable fixed points x± [42]. The transition rates from
x± to x∓ depend exponentially on the system size and are
given explicitly by [21,22]

r± = e−�[φ0(x0 )−φ0(x± )] f (x±)
√−φ′′

0 (x0)φ′′
0 (x±)

2π�
. (37)

B. Behavior of the entropy production at the phase transition

We want to characterize the fluctuations of the entropy
production for the two-state model. We consider the thermo-
dynamic flux JB and its associated diffusion coefficient DB

defined in Eqs. (7) and (8). There are two contributions to both
of these quantities. First, the system can fluctuate around one
of the fixed-point, which is modeled by a Gaussian process
Eq. (35). Within the state x±, the thermodynamic flux J± and
its diffusion coefficient D± can be computed exactly [36].
Second, the system can jump from state x± to x∓ on the largest
timescale. For simplicity, we will assume that a transition
from x± to x∓ produces an average flux of B± molecules,
where we expect B± ∼ O(�). The probability to be in state
x± is

p± ≡ r∓
r− + r+

. (38)

We will compute DB using large deviation theory as intro-
duced in Sec. III B. In Appendix B, we compute DB without
relying on large deviation theory.

Combining these two contributions, the tilted operator for
this two-system system reads [43]

L(λ) =
(

−r− + J−λ + D−λ2 r+eλB+

r−eλB− −r+ + J+λ + D+λ2

)
.

(39)
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The maximal eigenvalue of L(λ) is

α(λ) = TrL(λ)/2 +
√

(TrL(λ))2/4 − DetL(λ), (40)

where Tr and Det denote the trace and the determinant,
respectively. From Eq. (22), the average flux of B is given by

JB = ∂α(λ)

∂λ

∣∣∣∣
λ=0

= p−J− + p+J+ + r− p−(B− + B+)

= p−J− + p+J+ + O(e−�|Δφ|), (41)

where Δφ0 = φ0(x0) − φ0(x−). The diffusion coefficient
reads

DB = 1

2

∂2α(λ)

∂λ2

∣∣∣∣
λ=0

= p− p+
(J− − J+)2

r− + r+
+ p−D− + p+D+

+ p− p+(B− + B+)(p+ − p−)(J− − J+)

+ 1

2
(B− + B+)2 p− p+(r− p+ + p−r+)

= p− p+
(J− − J+)2

r− + r+
+ O(�). (42)

We insert the transition rates Eq. (37) into the previous
expression and obtain

DB|Δμbi = p− p+(J− − J+)2 e�[φ0(x0 )−φ0(x± )]π�

f (x−)
√−φ′′

0 (x0)φ′′
0 (x±)

, (43)

where f (x−) = f (x+) and φ0(x−) = φ0(x+) at the bistable
point. As a main result, we have thus shown that the diffusion
coefficient scales as

DB|Δμbi ∝ e�[φ0(x0 )−φ0(x± )], (44)

where the exponential prefactor is the height of the effective
potential barrier between the two fixed points. The mean rate
of entropy production σ as well as its associated diffusion
coefficient Dσ can be evaluated using Eqs. (6) and (9).

Here, we have assumed that the average flux of B
molecules B± produced during a jump from x± to x∓ is known
and inserted these values in Eq. (39). In fact, a trajectory from
x− to x+ will produce a path-dependent flux of B±. When
we perform a coarse-graining of the CME into a two-state
model, we lose this information. Nevertheless, as we are only
interested in the leading terms of DB, we have shown that
the contributions from jumps between the fixed points B±
can be neglected close to the bistable point for large system
sizes.

C. Numerical results

We now compare the analytical results with numerical
evaluations the CME. In Fig. 2(b), we show Dσ , Eq. (43), and
compare it with the numerical results from the CME. We find
that Dσ evaluated for the two-state model almost matches the
CME close to the bistable point. In Fig. 2(c), we show that the
diffusion coefficient has an exponential volume-dependence
at the bistable point. In Table I, we compare the scaling of

TABLE I. Scaling of the diffusion coefficient Dσ obtained with
the CME, Eq. (34), the two-state model, Eq. (43), and by evaluating
the height of the effective potential barrier separating the two fixed
points, Eq. (44). The maximum logarithm of the diffusion coefficient
is fitted with an linear function of the system size � and the errors is
given with 95% confidence bounds.

Method Exponential prefactor δ (Dσ ∝ eδ�)

Eq. (34) 0.0846 ± 0.0005
Eq. (43) 0.0846 ± 0.0005
Eq. (44) 0.0823

the maximum of the diffusion coefficient obtained numeri-
cally and by evaluating Eq. (44). The difference between the
numerical prefactors and our analytical expression, Eqs. (43)
and (44), is due to finite-size effects.

V. CONCLUSION

We have investigated the fluctuations of the entropy pro-
duction at the phase transition occurring in a paradigmatic
model of biochemical switches. A control parameter for this
phase transition is the thermodynamic force driving the sys-
tem out of equilibrium. The mean entropy production rate has
a discontinuity with respect to the thermodynamic force at the
phase transition and fluctuations, which are quantified by the
diffusion coefficient that diverges. First, we have computed
the diffusion coefficient numerically for the chemical master
equation. Second, we have derived an analytical expression
of the diffusion coefficient for an effective two-state model.
We find that the diffusion coefficient from the two-state
model slightly underestimates the diffusion coefficient from
the chemical master equation. This difference could be ex-
plained by the coarse-graining procedure, which is known to
underestimate fluctuations far from equilibrium [44]. Finally,
we have shown that the diffusion coefficient has an expo-
nential volume-dependence at the bistable point, where the
exponential prefactor is given by the height of the effective
potential barrier between the two fixed points.

In this paper, we have considered Schlögl’s model as a sim-
ple model for a nonequilibrium first-order phase transitions.
We expect that models with additional chemical reactions or
species show qualitatively the same behavior at the phase tran-
sition. For bistable systems with multiple species, one can in-
troduce reaction coordinates along which the system becomes
effectively one-dimensional. More generally, we expect that
diffusion coefficients associated with currents or the entropy
production can be computed at first-order phase transitions
for a large class of nonequilibrium systems by describing
them with discrete jump processes. The exponential volume
dependence discussed here should then be generic for these
cases.
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APPENDIX A: RELATION BETWEEN THE CUMULANTS
OF CURRENTS IN A SYSTEM WITH

TWO REACTION CHANNELS

Here, we will prove that time-integrated currents ZA(t ) and
ZB(t ), which are defined in Eq. (4), have the same cumulants.
We will rely on the large deviation theory [35,36,39], which
is introduced in Sec. III B.

The tilted operators are defined for general observables in
Eqs. (25) and (29). For the A reaction channel, it reads

(LA(λ))i, j ≡ δi, j+1(α+
i eλ + β+

i ) + δi, j−1(α−
i e−λ + β−

i )

− δi, j (α
+
i + α−

i + β+
i + β+

i ), (A1)

and for the B reaction channel

(LB(λ))i, j ≡ δi, j+1(α+
i + β+

i e−λ) + δi, j−1(α−
i + β−

i eλ)

− δi, j (α
+
i + α−

i + β+
i + β+

i ), (A2)

where α±
i and β±

i are the transition rates for the A and B
channels, respectively. A simple calculation shows that LA(λ)
and LB(λ) are related by the following symmetry:

LB(λ) = A−1LA(λ)A, (A3)

where

Ai, j = δi, je
λ j . (A4)

As Eq. (A3) describes a similarity transformation, LA(λ) and
LB(λ) have the same eigenvalues. It then follows that ZA(t )
and ZB(t ) have the same scaled cumulant generating function,
Eq. (21), as it is given by the largest eigenvalue of the tilted
operator [45].

APPENDIX B: CALCULATION OF THE DIFFUSION
COEFFICIENT WITHOUT RELYING ON LARGE

DEVIATION THEORY

Here, we present a derivation of the diffusion coefficient
without relying on large deviation theory. We consider the
two-state model introduced in Sec. IV. For simplicity, we
neglect contributions from jumps between fixed points B± and
the diffusion around the fixed points, see Sec. IV B for further
explanations.

Along a stochastic trajectory n(t ), the time-integrated cur-
rent of B molecules is given by

ZB =
∫ T

0
dt (J−δn(t ),− + J+δn(t ),+), (B1)

where J± is the flux of B molecules in state x±. The average
flux is

JB = lim
T →∞

〈ZB〉
T

=
∑

n=−,+
pnJn. (B2)

To compute the diffusion coefficient, we will now consider
a shifted system where the flux is 0 in state x− and (J+ − J−)
in state x+. The shifted time-integrated current is

Z̃B ≡
∫ T

0
dtJδn(t ),+, (B3)

and its associated flux

〈Z̃B〉 = 〈ZB〉 − J− = T (J+ − J−)p+. (B4)

The second moment of Z̃B is given by〈
Z̃2

B

〉 = (J+ − J−)2
∫ T

0
dt

∫ T

0
dt ′ 〈δn(t ),+δn(t ′ ),+〉︸ ︷︷ ︸

p(+,t ;+,t ′ )

, (B5)

where p(+, t ; +, t ′) is the joint probability to be in state x+
at times t and t ′, in the steady state it is equal to p(+, t −
t ′; +, 0). We solve the two-state master equation and obtain

p(+, τ ; +, 0) = p+ p(+, τ |+, 0)

= p+(p+ − (p+ − 1)e−(r−+r+ )τ ). (B6)

By inserting this expression into Eq. (B5), we can compute
the variance which does not depend on the shift. We obtain〈
Z2

B

〉 − 〈ZB〉2 = 〈
Z̃2

B

〉 − 〈Z̃B〉2

= 2p+(J+ − J−)2
∫ T

0
dt

∫ t

0
dτ

× (p+ − (p+ − 1)e−(r−+r+ )τ ) − 〈Z̃B〉2

= 2p+(J+ − J−)2

(
(1 − p+)

(r− + r+)2 (e−(r−+r+ )T − 1)

+ (1 − p+)T

(r− + r+)

)
. (B7)

Finally, we get the diffusion coefficient

DB = lim
T →∞

〈
Z2

B

〉 − 〈ZB〉2

2T
= p− p+

(J+ − J−)2

r− + r+
. (B8)
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