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We use the Fortuin-Kasteleyn representation-based improved estimator of the correlation configuration as an
alternative to the ordinary correlation configuration in the machine-learning study of the phase classification of
spin models. The phases of classical spin models are classified using the improved estimators, and the method
is also applied to the quantum Monte Carlo simulation using the loop algorithm. We analyze the Berezinskii-
Kosterlitz-Thouless (BKT) transition of the spin-1/2 quantum XY model on the square lattice. We classify
the BKT phase and the paramagnetic phase of the quantum XY model using the machine-learning approach. We
show that the classification of the quantum XY model can be performed by using the training data of the classical
XY model.
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Remarkable developments in machine-learning-based
techniques have been made in the past decade, which have
impacted many areas in industry including automated driving,
healthcare, etc. At the same time, the potential of machine
learning for fundamental research has gained increasing inter-
est. Statistical physics is one such scientific discipline [1].

Carrasquilla and Melko [2] used a technique of supervised
learning to propose a paradigm that is complementary to the
conventional approach of studying interacting spin systems.
By using large data sets of spin configurations, they classified
and identified a high-temperature paramagnetic phase and a
low-temperature ferromagnetic phase. It was similar to image
classification using machine learning. They demonstrated the
use of neural networks for the study of the two-dimensional
(2D) Ising model and an Ising lattice gauge theory.

Shiina et al. [3] reported a machine-learning study on
phase transitions. The configuration of a long-range spatial
correlation was treated instead of the spin configuration itself.
By doing so, a similar treatment was provided to various spin
models including multicomponent systems and systems with
a vector order parameter. Not only were the second-order
and the first-order transitions studied, but the Berezinskii-
Kosterlitz-Thouless (BKT) transition [4–7] was studied as
well. The disordered and the ordered phases, along with the
BKT-type topological phase, were successfully classified.
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Cluster algorithms [8,9] have been used to overcome slow
dynamics in the Monte Carlo simulation. Swendsen and Wang
(SW) [8] applied the Fortuin-Kasteleyn (FK) [10,11] rep-
resentation to identify clusters of spins. The single-cluster
variant of the cluster algorithm was proposed by Wolff [9].
Wolff also proposed the idea of an embedded cluster for-
malism [9,12,13] to treat vector spin models. By projecting
a vector spin onto a randomly chosen unit vector, the Ising
degrees of freedom are picked up. Then, a cluster spin flip
can be performed with the FK cluster. A further advantage
of cluster algorithms is that they lead to so-called improved
estimators [13] which are designed to reduce statistical errors.
In calculating spin correlations, only the spin pair belonging
to the same FK cluster should be considered. The feature of
manifesting spin correlations in a spin configuration is utilized
in the probability-changing cluster algorithm, a self-adapted
algorithm to tune the critical point automatically [14].

Evertz et al. [15,16] presented another type of cluster
algorithm, which is called a loop algorithm. In treating vertex
models, closed paths of bonds are flipped. Constraints at the
vertices are automatically satisfied. The loop algorithm was
applied to quantum spin systems in the worldline representa-
tion [17–19]. The improvements accomplished on the quan-
tum Monte Carlo simulation were largely due to the global
update, in which configurations are updated in units of some
nonlocal clusters. By using the loop algorithm, nondiagonal
quantities can be measured.

In this study, we consider an improved estimator for the
correlation configuration in a cluster representation. We use
the machine-learning method of Shiina et al. [3] for the
classification of phases using the improved correlation con-
figuration. Then, we apply this technique to quantum spin
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FIG. 1. Examples of the spin configuration {si} [(a), (d)], cor-
relation configuration {gi(L/2)} [(b), (e)], and improved correlation
configuration {g̃i(L/2)} [(c), (f)] of the 2D three-state Potts model.
The upper figures [(a)–(c)] are snapshots at the low temperature, T =
0.9, and the lower figures [(d)–(f)] are those at the high temperature,
T = 1.06. The borders of FK clusters for the spin configuration
are drawn by lines. They are copied in an improved correlation
configuration.

systems. As an example, we show the results of the spin-1/2
XY model on the square lattice. This model exhibits the BKT
transition [20].

We consider the configuration of a spin correlation with a
distance of half of the system size, L/2. We note that this type
of correlation function was used along with the generalized
scheme for the probability-changing cluster algorithm [21].
For the q-state Potts model (including the Ising model), the
correlation between two spins becomes 1 for the same spin
pair, whereas it becomes −1/(q − 1) for a pair of different
states. In the improved estimator for the cluster representation,
the correlation becomes 1 for the spin pair belonging to the
same FK cluster, whereas it becomes 0 for spins of different
clusters. When the embedded algorithm for continuous spins
is used, the projection of spins onto a randomly chosen reflec-
tion axis is made. We denote the site-dependent correlation
configuration as gi(L/2). For the actual calculation, we treat
the average value of the x direction and the y direction, that is,

gi(L/2) = (g[sxi,yi , sxi+L/2,yi ] + g[sxi,yi , sxi,yi+L/2])/2, (1)

where g[s, s′] denotes a spin-spin correlation between a spin
pair s and s′.

In Fig. 1, we show examples of the spin configuration
{si}, correlation configuration {gi(L/2)}, and an improved
correlation configuration {g̃i(L/2)} of the 2D three-state
Potts model. The spin configuration is generated by the
Monte Carlo simulation, and the correlation configuration and
the improved correlation configurations are calculated from
the spin configuration. The upper figures are snapshots at the
low temperature, T = 0.9, and the lower figures are those at

the high temperature, T = 1.06. Temperatures are measured
in units of the coupling J . We note that the exact second-
order transition temperature Tc for this model is known as
1/ ln (1 + √

3) ≈ 0.995.
Spins are displayed in one of three colors, red, green,

or blue. The ordinary correlation takes a value of 1, −1/2,
or +1/4, whereas the improved correlation takes a value
of 1, 0, or +1/2. Both correlations from +1 to −1 are
mapped in grayscale from 255 (white) to 0 (black). The
permutation of three-state spins yields an essentially identical
configuration, and the correlation configurations are invariant
under the permutation. The borders of FK clusters for the
spin configuration are drawn by lines in Figs. 1(a) and 1(d).
They are copied in an improved correlation configuration. The
border of the largest cluster is drawn as a thick yellow line for
convenience.

At high temperatures, the spin configurations and the
correlation configurations are randomly distributed, and the
fluctuation of these quantities gives the susceptibility. In
the improved correlation, the cancellation among different
FK clusters is automatically satisfied. Figures 1(e) and 1(f)
show the difference between the two correlation configura-
tions. While the ordinary correlation configuration in Fig. 1(e)
fluctuates in space, a couple of brighter areas in the largest
cluster show the improved correlation in Fig. 1(f).

For convenience, we provide animations of the spin con-
figuration, the correlation configuration, and the improved
correlation configuration for the 2D Ising model (.mp4 files)
in the Supplemental Material [22]. The animations at various
temperatures are compared at the low temperature (T = 2.1),
at Tc = 2.269, and at the high temperature (T = 2.4). The
system sizes are L = 32 and 64.

We use the same technique of supervised learning as
Shiina et al. [3] for the classification of the phases of the
spin systems. We consider a fully connected neural network
implemented with a standard TENSORFLOW library [23] using
the 100-hidden-unit model to classify the ordered, the BKT,
and the disordered phases. For the input layer, we use the
improved correlation configurations {g̃i(L/2)}. We have used
a cross-entropy cost function supplemented with an L2 reg-
ularization term. The neural networks were trained using the
Adam method [24].

We first analyzed the 2D three-state Potts model. The out-
put layer averaged over a test set as a function of T for the 2D
three-state Potts model is shown in Fig. 2(a). The probabilities
of predicting the phases, disordered or ordered, are plotted
for each temperature. The system sizes are L = 32, 48, and
64. The samples of T within the ranges 0.85 � T � 0.94 and
1.06 � T � 1.15 were used for the training data. We have not
used the samples close to Tc for the training data because we
assumed the situation that the exact Tc is not known. For a
whole temperature range, around 35 000 training data sets are
used, and we use 500 test data sets for each temperature. Ten
independent calculations were performed to provide an error
analysis. This figure corresponds to Fig. 2(a) of Ref. [3], and
we again observe that the neural network could successfully
classify the disordered and ordered phases using the improved
correlation configuration. In the inset of Fig. 2(a), we show
a comparison of the results of the improved correlation (the
present study) and those of the previous study [3] of the
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(a)

(b)

FIG. 2. (a) The output layer averaged over a test set as a function
of T for the 2D three-state Potts model. The system sizes are L = 32,
48, and 64. The samples of T within the ranges 0.85 � T � 0.94
and 1.06 � T � 1.15 are used for the training data. In the inset, the
comparison is made between the results of improved correlation and
those of ordinary correlation in the case of L = 48. The exact Tc,
1/ ln(1 + √

3) ≈ 0.995, is shown as a dashed line for convenience.
(b) The same plot for the 2D six-state clock model. The system sizes
are the same. The samples of T within the ranges 0.4 � T � 0.64,
0.77 � T � 0.83, and 0.96 � T � 1.2 are used for the training data.

ordinary correlation in the case of L = 48. We used the
same conditions for both the training data and test data of
the improved and ordinary correlations produced from the
same spin configurations. The point where the probabilities of
predicting two phases are 50% is slightly closer to the exact
critical temperature, shown as the dashed line in the inset,
for the improved correlation, but the difference is small. The
advantage of the improved estimator appears at high enough
temperatures [compare Fig. 1(f) with Fig. 1(e)].

We next consider the 2D six-state clock model. Because
of the discreteness, there are two transitions. One is a higher
BKT transition, T2, between the disordered and BKT phases,
and the other is a lower transition, T1, between the BKT and
ordered phases. The output layer averaged over a test set as
a function of T for the 2D six-state clock model is shown

in Fig. 2(b). The system sizes are L = 32, 48, and 64. The
samples of T within the ranges 0.4 � T � 0.64, 0.77 � T �
0.83, and 0.96 � T � 1.2 were used for the low-temperature,
midrange temperature, and high-temperature training data,
respectively. The recent numerical estimates of T1 and T2 for
the six-state clock model are 0.701(5) and 0.898(5), respec-
tively [25]. This figure corresponds to Fig. 4(a) of Ref. [3],
and the present figure again shows the successful classification
into the three phases.

We have classified the phases of transitions by means of
the machine-learning approach by Shiina et al. [3] using the
improved correlation configuration. There is no appreciable
difference in accuracy between the use of the correlation con-
figuration and that of the improved correlation configuration.
The result indicates that the machine-learning-based phase
classification is robust; that is, the phase classification does
not discriminate the improved correlation configuration from
the ordinary one.

Many applications of the loop updating method have been
done for quantum systems. Here, we consider the quantum
spin-1/2 XY model in two dimensions, which clearly demon-
strated the utility of the loop algorithm [20]. The Hamiltonian
is written as

H = −J
∑
〈i, j〉

(
Ŝx

i Ŝx
j + Ŝy

i Ŝy
j

)
. (2)

Here, the spin operators Ŝx,y are one-half of the Pauli matri-
ces σ x,y. The summation is taken over the nearest-neighbor
pairs. This model exhibits the BKT transition at around
T = 0.342 [20].

We performed the quantum Monte Carlo simulation using
the loop algorithm, and calculated the spatial correlation with
a distance of L/2. A D-dimensional quantum system can
be treated as a (D + 1)-dimensional classical system with
an extra dimension of imaginary time. In calculating the
spatial correlation, the summation over the imaginary-time
axis is taken. The Ŝx component of the correlation function
is calculated as [26]

g̃x
ri,r j

= 4

β2

∫ β

0

∫ β

0
Ŝx(ri, τ1)Ŝx(r j, τ2)dτ1dτ2

= 1

β2

∫ β

0

∫ β

0
δ�(ri, τ1; r j, τ2)dτ1dτ2, (3)

where δ�(·) is the function that returns 1 if the loop of the
position ri and the time τ1 and that of the position r j and
the time τ2 belong to the same loop, whereas it returns 0
otherwise. Due to the O(2) symmetry of the model, the Ŝy

component of the correlation function is exactly the same
as the Ŝx component [26]. A factor of 4 is introduced for
the comparison of the spin-1/2 system with the classical
model. We checked our calculation by the consistency with
the precise calculations at T = 0 [27,28].

It is instructive to compare the correlation configurations of
the quantum XY model and the classical XY model. In Fig. 3,
examples of the snapshots of {g̃i(L/2)} of two models are dis-
played. At high temperatures above TBKT [Figs. 3(b) and 3(d)],
both improved configurations represent the behavior of a finite
correlation length. At low temperatures below TBKT [Figs. 3(a)
and 3(c)], they are different from the high-temperature
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(a) quantum T = 0.24 (b) quantum T = 0.44

T = 0.6 (d) classical(c) classical T = 1.2

FIG. 3. Comparison of snapshots of {g̃i(L/2)} of the 2D quantum
[(a), (b)] and classical [(c), (d)] XY models. Examples of snap-
shots below TBKT [(a), (c)] and those above TBKT [(b), (d)] are
displayed.

configurations and at the same time they are different from the
behavior of the ordered state, which was shown in Fig. 1(c).
(Note that the precise estimate of the BKT temperature of the
classical XY model is TBKT = 0.8929 [29].)

The classification of the BKT and paramagnetic phases of
the spin-1/2 XY model using the machine-learning technique
is shown in Fig. 4(a). The samples of T within the ranges
0.16 � T � 0.32 and 0.38 � T � 0.54 were used for the
BKT-temperature and high-temperature training data, respec-
tively. If we estimate the value of TBKT from the point that the
probabilities of predicting two phases are 50%, this tempera-
ture becomes around T = 0.40. It is slightly higher than the
precise estimate for the infinite system, TBKT = 0.342 [20],
although this temperature becomes lower as the system size
increases. We also tested the classification of the quantum XY
model using the training data of the classical model. For the
classical model, not only the classical XY model (plane rota-
tor) but also the anisotropic Heisenberg model with the XY
interaction was treated. This anisotropic Heisenberg model
has an out-of-plane fluctuation and the BKT transition tem-
perature is slightly lowered at around TBKT = 0.70 [30,31].
In Fig. 4(b), we show the result of the classification of the
quantum XY model using the training data of the classical
XY model (plane rotator). We reproduced the BKT transition
of the quantum XY model. The same conclusion was obtained
when using the anisotropic Heisenberg model as the training
data. The classification into two phases is slightly sharper for

(a)

(b)

FIG. 4. (a) The output layer averaged over a test set as a function
of T for the 2D spin-1/2 XY model. The system sizes are L = 32,
48, and 64. The samples of T within the ranges 0.16 � T � 0.32 and
0.38 � T � 0.54 are used for the training data. (b) The classification
of the quantum XY model using the training data of the classical XY
model (plane rotator). The samples of T within the ranges 0.50 �
T � 0.84 and 0.96 � T � 1.30 for the classical XY model are used
for the training data.

the anisotropic Heisenberg model than the classical XY model
(plane rotator). The opposite direction, using the training data
of the quantum model in the classification of the classical
models, was also successful.

To summarize, we have proposed a method to use the
improved estimator of the correlation configuration in the
machine-learning study of the phase classification of spin
models. For the classical spin systems, we have demonstrated
the machine-learning studies of the 2D three-state Potts model
(the second-order transition) and the 2D six-state clock model
(the BKT transition). The results were compared with those
of a previous study [3] using the ordinary correlation instead
of the improved correlation. The method was also applied
to the quantum Monte Carlo simulation using the loop al-
gorithm. We treated the spin-1/2 quantum XY model, and
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analyzed the BKT transition of the model. We emphasize that
the classification scheme based on the training data of the
classical XY model can be used for the phase classification of
the quantum model. It indicates the universality of the phase
transition, and at the same time, the generalized feature of the
phase classification based on the machine learning. We also
point out the effectiveness of the improved estimators in the
loop algorithm to bridge classical and quantum Monte Carlo
simulations.

We have opened a door to using the improved estimators
for the machine-learning study of quantum systems. It is not
trivial whether loop clusters in quantum spin systems can
be identified with FK clusters in classical spin systems [32].
In this study, we clarified that the phase classification using
machine learning does not discriminate between loop clusters
and FK clusters. The BKT transition of the present study is a
thermal phase transition. The investigation of a quantum phase
transition at T = 0 will be interesting. For future studies,
we may list several models for spin and charge degrees of

freedom with loop algorithms. Examples are several quantum
spin models, strongly correlated electron models, hard-core
boson models, optical lattices, etc.

Another direction of future study is related to the inverse
renormalization group approach [33]. Efthymiou et al. [34]
have proposed a method to increase the size of the lattice
spin configuration using superresolution, deep convolutional
neural networks. At high temperatures, however, there is a
problem that the noise is largely random and difficult to learn.
The present improved correlation configuration could reduce
this difficulty at high temperatures.
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