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Thermokinetic lattice Boltzmann model of nonideal fluids
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We present a kinetic model for nonideal fluids, where the local thermodynamic pressure is imposed through
appropriate rescaling of the particle’s velocities, accounting for both long- and short-range effects and hence full
thermodynamic consistency. The model features full Galilean invariance together with mass, momentum, and
energy conservation and enables simulations ranging from subcritical to supercritical flows, which is illustrated
on various benchmark flows such as anomalous shock waves or shock droplet interaction.
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The lattice Boltzmann method (LBM) [1-4] is a modern
approach to the simulation of complex flows. LBM is a recast
of fluid mechanics into a kinetic theory for the populations
of designer particles f;(x, t), with simple rules of propagation
on a space-filling lattice formed by discrete speeds C = {c;,
i=1,...,0}, in discrete time ¢, and relaxation to a local
equilibrium f(x, 7) at the nodes x.

Classically, LBM features fluid dynamics as a fluctuation
(subject to suitable nonlinearities) over a global thermody-
namic reference state characterized by a lattice temperature
Ti. and a Galilean reference frame “at rest,” u = 0. While
this viewpoint led to a successful LBM for incompressible
flow, limitations are also apparent, in particular, for complex
thermohydrodynamic processes for nonideal fluids. In order to
address the entire spectrum of flows, from sub- to supersonic,
involving sub- as well as supercritical processes, one needs
a formulation of kinetic theory in a local rather than global
thermodynamic reference frame [5].

In this Rapid Communication, we present a discrete-
velocity kinetic theory of nonideal fluids as an extension of
recently proposed formalism [5]. Explicit realization of a local
thermodynamic reference frame enables the simulation of
demanding flow situations such as real-gas anomalous shock
wave and droplet-shock interaction.

We follow [5] and define discrete velocities,

p
v, = |—¢ +u, (1)
pTL

where p(x,t) is the local thermodynamic pressure, p(x, t) is
the local density, and Ty, is a lattice reference temperature,
a constant known for any set of speeds C, and u(x, t) is the
local flow velocity. While (1) applies to a generic equation
of state (EOS) p, below we adopt that of the van der Waals,
p = pRT /(1 — bp) — ap?, with critical values p., = 1/3b,
T.. = 8a/27TRb, pe; = a/(27b%); we seta = 2/49, b =2/21,
and R = 1 in the simulations.
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Local fields in Eq. (1) are evaluated using two sets of
populations, f and g; the former maintains the density and
momentum while the latter corresponds to energy conserva-
tion:

0 0 0
p=Y fn pu=y fv. 20E=Y g ()
i=1 i=1 i=1

where E is the energy per unit mass, E = u®/2 + e, where
e = e(s, v) is the local internal energy per unit of mass, s is
the entropy, v = 1/p the specific volume, and temperature is
defined by the thermodynamic relation, 7 = (de/ds),.

With the particles’ velocities rescaled by the local thermo-
dynamic pressure, Eq. (1) and the local conservation of the
mass, momentum, and energy, Eq. (2), we are set to formulate
a kinetic model which, neglecting the interface energy in
the two-phase coexistence region in the first instance, shall
be essentially local in the sense of the conventional LBM.
Same as in LBM, the proposed scheme is split into two parts:
streaming and collision. Semi-Lagrangian advection [5] is
adopted in the streaming step:

fitx,t) = fi(x — v;6t,t — 6t), 3)

gilx,t) = gi(x —v;6t,t — 8t). 4)

The collision step is then performed employing the Bhatnagar-
Gross-Krook (BGK) model,

e ) = fite,n) + o[ — fix, )], (5)

g, 1) =gix, 1) +o[g! — gilx, )] + Gidr. (6)

The local equilibrium populations in the comoving reference
frame reduce to

£ = pW, )

g4 = pWi[2e — D(p/p) + v?]. (8)

where W; are conventional LBM lattice weights known for any
set of discrete speeds C. The term G;d¢ is introduced in Eq. (6)
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in order to correct the heat flux,

u-c;)’ v? D
u_p_l+_>’

9
2pTy, 2p 2 ©)

Gi = MyW, (1 +
where My =2V - (—uVh + kVT), u is the shear viscosity,
h = e + p/p is the enthalpy, and £ is the thermal conductivity
which can be set independently.

The kinetic system (3)—(8) recovers the equations for den-
sity, flow velocity, and temperature in the hydrodynamic limit
as follows:

Dip =—pV -u, (10)

pDiu=—-Vp—-V.1, (11
ap
oC.D,T =—1:Vu—-T|—=)|V-u—V.gq, (12)
T/,

where D, = 0, +u -V 1is the material derivative, C, =
(0e/dT), is the specific heat at constant volume, g = —kVT
is the heat flux, and the nonequilibrium stress tensor reads

T= —/L(Vu +Vu' — %(V -u)I) —n(V-ul. (13)

The shear and bulk viscosity are
— (! ! ot (14)
e 2 pet.

1 1\/D+2 2
= (_ - _> <L — g)p&, (15)
w 2 D p

respectively, and ¢ = /(dp/dp); is the speed of sound. Note
that the bulk viscosity vanishes in the limit of ideal monatomic
gas, p — pRT, ¢* — (D + 2)RT /D, as expected.

While the derivation of the hydrodynamic limit follows the
standard analysis (see Supplemental Material for details [6]),
a comment on the difference of our proposal from a more
microscopic Vlasov-Enskog kinetic equation is in order. The
latter employs a short-range, excluded volume collision (En-
skog) along with a mean-field force representing a long-range
attraction (Vlasov) (see, e.g., [7]). One prominent feature of
the Vlasov-Enskog model is its nonlocality: the momentum
and energy are conserved globally but not locally. This is
in contrast not only to the Boltzmann equation but also to
the macroscopic fluid dynamics equations, which are local in
the sense of thermodynamic pressure and energy fields [see
Egs. (11) and (12)]. The latter can be derived from the Vlasov-
Enskog equation once the nonlocality is moderated through
a corresponding gradient expansion; with this, the combined
action of both Vlasov and Enskog terms eventually leads to
a van der Waals—type equation of state. The conventional
scenario to derive a reduced model from the Vlasov-Enskog
kinetic equation is to use (a) the Boltzmann or BGK collision
as the leading locally conserving term and define the particles
velocities through the conventional (Gauss-Hermite) sampling
of the local Maxwellian, and (b) to evaluate the remaining
(i.e., essentially nonlocal) parts by the same quadrature. The
latter step brings in all of the nonideal fluid thermodynamics
as a nonlocal forcing term added to the leading local collision
(see, e.g., [8]).
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FIG. 1. Coexistence curve of a van der Waals fluid. Solid line:
Theory (Maxwell’s equal area rule). Symbol: Simulation. Circle:
8 = 1/3. Square: 6 = 2/3. Cross: § = 1/3 advected with the speed
U = 5Ug, characteristic velocity Uey, = +/Per/per- Dashed line: Zero
line of fundamental derivative, I' = 0, for § = 0.0125 (theory). Inset
shows the left and right conditions in the simulation of the shock-tube
problem in Fig. 3.

Here we take a different, bottom-up route to extend the
target hydrodynamic equations to a local (in the sense of the
conventional lattice BGK) kinetic model. This is achieved
by two considerations: First, we employ the scaling of the
particles’ velocities by the local thermodynamic pressure,
Eq. (1). This step endows the manifestly Galilean invariant
momentum equation (11) with the target thermodynamic pres-
sure of nonideal fluid. We term our model “thermokinetic” in
order to stress that particles’ velocities are established from
the target local thermodynamics. Second, we maintain the
total energy conservation, again in a local fashion, by the
second populations. Certainly, the locality approach has its
limitations. First, we cannot avoid nonlocality entirely but it
only appears as a forcing term, which implements the surface
tension in the two-phase region (see below). Second, the heat
flux, resulting from the local energy conservation [Eq. (6) with
the last term dropped] would be proportional to the gradient
of the enthalpy, ¢ = — VA, rather than temperature. The heat
flux is corrected by introducing a counterterm G;4¢ in Eq. (6).

We now proceed with the validation of the thermodynamic
features of the proposed kinetic model. The standard D2Q9
lattice C = C; ® Cy, where C; = {—1,0, 1} was used in all
simulations. For the van der Waals fluid, the internal energy
is given by e = C,T — ap and the specific heat at constant
volume is C, = R/§, where 0 < § < 2/3 [9-11]. Figure 1
demonstrates the independence of saturated liquid and vapor
densities on the choice of §, also in a moving reference frame;
results are in excellent agreement with Maxwell’s equal area
rule.

Furthermore, speed of sound was measured by introducing
a pressure disturbance §p = 1073 in the liquid-gas phases
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FIG. 2. Reduced speed of sound in the van der Waals fluid
with § = 1/3 as a function of the reduced temperature. Solid line:
Saturated vapor (theory). Dashed line: Saturated liquid (theory).
Symbol: Simulation. Inset shows details of the speed of sound in
the vapor near critical point.

assumed at the saturation, and tracking the resulting shock
front. Simulation results compare well with the theoretical
prediction ¢? = (C,/C,)(dp/dp); in Fig. 2. Note that the
simulation predicts the speed of sound correctly at critical
point ¢ = 4/(68)(perver). The latter result is nontrivial be-
cause finiteness of the speed of sound at critical point is main-
tained by the simultaneous divergence of C, and vanishing
of the derivative (dp/dp)r. The inset in Fig. 2 demonstrates
a nonmonotonic behavior of the speed of sound in the vapor
phase for sufficiently large C, (§ = 1/3): a decrease with the
increase of the temperature up to 7 /7., = 0.95 followed by a
sharp increase, matching the liquid line at the critical point.

Finally, we consider the anomalous shock-wave problem
[10,12-14]. For ideal gas, only compression shocks and rar-
efaction waves are admissible. However, in a nonideal gas
(Bethe-Zel’dovich-Thompson fluid), a region near the vapor
saturation line may exist, where a rarefaction shock traveling
in the direction of the increase of pressure can be observed.
This anomalous behavior is characterized by the so-called
fundamental derivative, I' = (v° /2 ¢2)(9? p/o v?),. An anoma-
lous shock occurs when I' < O and can be modeled with
the van der Waals fluid at large specific heat values (see
inset in Fig. 1). Figure 3 shows a snapshot of density and
pressure profiles in the shock tube simulation when the left
and right ends of the domain are in the I' < 0 domain. The
anomalous rarefaction shock is clearly visible, traveling to-
wards the high pressure end (left) together with a compression
wave propagating into the low pressure region (right). The
comparison between the present scheme and Ref. [13] shows
good agreement.

We now finalize the model development by including the
effect of the liquid-vapor interface. This is done in two steps.
First, we modify the f-populations kinetics in a conventional
fashion by introducing a forcing term S; after the collision
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FIG. 3. Simulation of an anomalous shock in the van der
Waals fluid, § = 0.0125. Initial conditions: (p., p.) = (1.09, 0.879),
(pr, pr) = (0.885, 0.562) were applied to the left and right parts of
the tube. The snapshot is taken at time t* = (t/L)/per/per = 0.45,
where L is the length of the domain. Line: Density [13]. Dashed:
Pressure [13]. Symbol: Present.

step (5),
fi@ ) = fix, 1) + wlpW; — fix, O] +S;,  (16)
where
Si = G sul Wil — pWi.

Here G is the transformation matrix (see [5] and Supplemental
Material [6]) and du = (F/p)dt is the change of the local flow
velocity due to the force F = V - K, where

K= —k(pV-Vo+5VoP) +1(Vp)(Vp)

a7

(18)

is the Korteweg stress and « is the surface tension coefficient
[15]. One can readily recognize that the forcing (17) is the
exact difference method [16,17] adapted to the comoving
reference frame [5]. Thus, the actual fluid velocity is redefined
as # = u + du/2. With this, the momentum equation (11)
becomes

oDt =-Vp—V .4 -V .K, (19)

A

where 7 is the stress tensor (13) based on the actual flow
velocity &, and D, =8 +a-V.

Second, the g-populations kinetics are modified accord-
ingly. To that end, the local energy pE is redefined with
respect to the actual flow velocity, pE = pe + pii*/2. Con-
sequently, the local equilibrium (8) is modified to take into
account the actual flow velocity,

gl= Wi|:2pE +M-(v,—u)+N: (viv,- — EI—uu)],
0
(20)
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FIG. 4. Schlieren images of the interaction of a shock wave at
Ma = 1.47 and a droplet at different times using the present scheme.
From top to bottom: t* = 0.298, t* = 0.879, t* = 2.413.

where
F) .
M= I[F<E+£)—G~u:|, @1)
(p/p) o
N = pl + o1 G (22)
= pl + ——G,
(2p/p)
E
G=aF +Fi + 8tFF2—. (23)
D

Note that in the absence of the force, the equilibrium (20)
simplifies to Eq. (8). Finally, the correction term (9) is also
modified in the presence of the Korteweg stress, My = 2V -
(—uVh+kVT)+2a-V -K.

Apart from the local energy pE, the total energy of a two-
phase system p& also includes the energy of the interface,

A A K
p6=pE+5|Vp|2. 24)

With the above changes to the g-populations kinetics, the
equation for the total energy is recovered in a standard form
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FIG. 5. Two-dimensional droplet center-line width evolution.
Lines: Present scheme. Solid line: M; = 1.18. Long dashed: M, =
1.33. Dashed: M; = 1.47. Symbol: Experiment [22]. Square: M; =
1.18. Delta: M; = 1.30. Diamond: M, = 1.47. Inset: Cross section
of the droplet at three different times.

for a two-phase system (e.g., [18]; see Supplemental Material
for details [6]),

Q&Y+ V- (pli+pi+i-a+q)
+V-(K-a+kpV-aVp)=0. (25)

However, the density (10) and the temperature (12) equations
remain intact provided u is replaced by the actual flow ve-
locity @&. The interface has no effect on the thermodynamic
temperature equation, as is expected [18].

We conclude this Rapid Communication with a simulation
of the interaction of a water column with a planar shock
wave. To this end, a planar shock wave was generated initially
separating the postshock part and the saturated vapor. A two-
dimensional droplet representing a cross section of the liquid
column is placed downstream from the shock, initially at
equilibrium with the vapor at the temperature 7 /T, = 0.9.
In order to compare with the experiment [19,20], we use the
reduced time t* = t(ug/do)\/pg/p1(s1/5,) Where ¢, is the
speed of sound in the liquid and the postshock gas, p; . are
corresponding densities, dj is the initial diameter of the liquid
column, and u, is the flow speed upstream.

The evolution of the water-column cross section is shown
in Fig. 4 by Schlieren images. After the incident shock wave
(ISW) reaches the upstream interface of the droplet, one can
see that a left-propagating reflected shock wave (RSW) as well
as the transmitted wave (TW) are generated. The TW quickly
travels the width of the droplet since the speed of sound is
significantly higher in the liquid phase than in the vapor.
These are typical waves generated in the early stages upon
the impingement of a shock wave on a droplet as reported in
experiments and other numerical simulations [19,21]. At later
stages, the droplet starts flattening in the flow direction and
expanding in the radial direction. Furthermore, two vortices
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are formed near the equator, which are the result of the shear
forces and the flow separation behind the droplet. Figure 5
represents a more quantitative assessment of the simulation
where the width of the droplet was measured with respect to
its center line and compared to the experimental results from
[22]. The results are in good agreement with the experiment
showing that the deformation of the droplet was accurately
captured by the proposed scheme.

In conclusion, the main novelty of our approach is to intro-
duce local thermodynamics by a velocity rescaling whereas
the rest follow automatically provided the local conservation
laws are correctly taken into account by model collision. The
sampling of particles’ velocities based on the local thermo-
dynamics is markedly different from a conventional Gauss-
Hermite sampling at the core of LBM. In our notation, LBM
velocities correspond to choosing the ideal gas pressure at
a constant lattice temperature p;, = pTp. in Eq. (1) whereas
we proposed the target thermodynamic pressure therein in-
stead. The restriction of the flow velocity in LBM to small
values limits its application in high-velocity flows, leaving the
compressible-multiphase flow regime an uncharted field in the

context of LBM. The Galilean-invariant nature of this method
removes this barrier, on account of error-free collision. Real-
gas EOS is naturally introduced through the discrete particle
velocities, providing full thermodynamic consistency. Finally,
we note that the semi-Lagrangian propagation adopted in the
present numerical realization can alternatively be replaced
by other available off-lattice propagation schemes such as
finite volumes or finite differences. The above benchmarks
demonstrate that the proposed approach can be useful to study
dynamical regimes of nonideal fluids in the supercritical and
supersonic flow regimes which are not readily accessible by
standard LBM. Exploring these flow regimes shall be the
focus of our future studies.
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