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We discuss the interplay between the degree of dynamical stochasticity, memory persistence, and violation
of the self-averaging property in the aging kinetics of quenched ferromagnets. We show that, in general, the
longest possible memory effects, which correspond to the slowest possible temporal decay of the correlation
function, are accompanied by the largest possible violation of self-averaging and a quasideterministic descent
into the ergodic components. This phenomenon is observed in different systems, such as the Ising model with
long-range interactions, including the mean-field, and the short-range random-field Ising model.
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Introduction. When computing thermodynamic properties
one must, in principle, consider the full statistical-mechanical
average 〈·〉, namely over the realizations of the stochastic
trajectories, the initial conditions, and, if present, over the
quenched disorder distribution. However, if the sample has
specific self-averaging properties, the latter two averages are
not necessary because they are realized by the system itself
in the thermodynamic limit. Restricting for the moment the
discussion to clean samples, i.e., without quenched disorder,
this occurs when the system is ergodic. In this case after some
time a large part of phase space is visited, and the memory
of the initial condition is fully lost: Therefore the fate of
a thermodynamical process does not depend on the specific
initial microstate belonging to the same macrostate.

The situation is more subtle when phase space breaks
into ergodic components [1], namely mutually nonaccessible
regions. In this case, if the initial state is well inside one
of these components its memory cannot be deleted because
the other cannot be accessed. This is trivial for a uniaxial
ferromagnet below the critical temperature Tc, where the equi-
librium magnetization M takes the two possible values M± =
±Meq. A sample prepared with a macroscopic M(t = 0) > 0
(<0) evolves towards the positive (negative) equilibrium value
and self-averaging is not operating.

A different situation occurs when the system is initially
on the boundary B between ergodic components. In ferro-
magnets, B is the set of configurations with M � 0, and
this happens when the initial state is sampled from a high-
temperature (T � Tc) equilibrium state. The evolution in this
case proceeds by the coarsening of domains of the competing
equilibrium phases [2], whose typical size L(t ), at time t ,
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grows unbounded. Aging is manifested [3] and the dynamics
remains on B forever. This is strictly true if the thermo-
dynamic limit is taken before letting time t become large.
However, in all physical situations, one deals with a large
but finite system. Therefore the initial state, due to thermal
fluctuations, will have some offset M(0) from B and one can
ask how this may change the destiny of the system.

The different options can be appreciated in terms of the ex-
ponent λ controlling the decay of the autocorrelation function
and also related [4] to the growth in time of the magnetization
M(t ) ∼ L(t )d−λ, where d is the spatial dimension. The Fisher-
Huse inequality [5,6] fixes the bounds for λ,

d

2
� λ � d. (1)

If the system stays close to B forever [7] the magnetization
does not amplify (λ = d), self-averaging is at work, and
memory of the initial condition is retained the least possible
[8]. In the opposite situation the system deterministically falls
in the ergodic component selected by the sign of M(0). In this
case the offset M(0) is strongly amplified and M(t ) grows as
fast as possible, i.e., λ = d/2. This process is associated with
the longest possible memory of the initial condition and with
the strongest violation of self-averaging. In between these two
extrema there is a continuum of options, with d/2 < λ < d .

Existing analytical [9–12] and numerical [10,13–17] deter-
minations of λ suggest that the maximum of memory, λ =
d/2, is only approached in unphysical limits, diverging space
dimension limit d → ∞ or diverging order parameter com-
ponent limit N → ∞. Instead, upon associating the origin of
the lower bound λ = d/2 with some deterministic properties
of the dynamics, in this Rapid Communication we show that it
is possible to toggle among all the three situations above and
that the case with λ = d/2 is found also for finite d and N in
the presence of long-range interactions or in the presence of
quenched disorder.
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The model and the two limiting regimes. In order to set the
stage with a specific example, let us start our discussion by
considering the one-dimensional clean ferromagnet described
by the Hamiltonian

H = −1

2

∑
i, j

J (|i − j|)sis j, (2)

where si = ±1 are N Ising variables, and J (r) = δr,1 for
nearest-neighbor (NN) couplings, and J (r) = 1/r1+σ in the
case of long-range interactions. We will focus on the case
σ > 0 where additivity and extensivity hold [18]. The model
has a ferromagnetic phase below a finite critical temperature
Tc(σ ) > 0 for σ < 1 [19,20]; it has a Kosterlitz-Thouless
transition [21] for σ = 1; finally, Tc = 0 for σ > 1.

Let us now discuss the relaxation of the model with a
nonconserved order parameter after a quench from Ti = ∞
to a low T . We consider Glauber dynamics where a random
spin is reversed with probability w = [1 + exp(�E/T )]−1,
where �E is the energy difference due to the spin flip.
Not only do the static properties but also the nonequi-
librium kinetics change crossing σ = 1. L(t ) ∼ t1/z grows
with a dynamical exponent [22,23] z = 1 + σ for 0 < σ �
1 or z = 2 for σ > 1 and NN. This behavior is cap-
tured by a single domain model. The distance X (t ) be-
tween two neighboring domain walls satisfies an overdamped
Langevin equation Ẋ (t ) = −F (X ) + ξ (t ), where F (X ) is
a force determined by Eq. (2) and ξ (t ) is a Gaussian
white noise. The force is given by F (X ) = −U ′(X ), where
U (X ) = ∑X

i=1 (
∑0

j=−∞ +∑∞
j=X+1)J (|i − j|). For large X we

can replace discrete summations with integrals and evalu-
ating the integrals in the parentheses we obtain U (X ) �
(2/σ )

∫ X
1 ds/sσ , therefore F (X ) ∼ −1/X σ . Given that F (X )

is the average speed of the domain wall, the closure time of
a domain of initial size X (0) = L is t = ∫ 0

L dX/F (X ) ∝ Lz

with z = 1 + σ for σ � 1 and z = 2 for σ > 1. The difference
between these two regimes is due to the deterministic force
F (X ), that affects the coarsening process in the former (σ �
1) while it is irrelevant in the latter (σ > 1). For this reason
these regimes will be called convective and diffusive regimes,
respectively.

These two regimes can be clearly distinguished by con-
sidering the fluctuating magnetization M(t ) = ∑N

i=1 si, which
is shown in Fig. 1 for systems prepared with a fixed con-
dition M(0) ∼ √

N equal for all σ values. In the convective
regime M(t ) asymptotically diverges and it typically has the
same sign as M(0) [24]. In the diffusive regime it fluctuates
around M(0). This means that the convective regime keeps the
memory of the initial condition, while the diffusive does not.
This implies that decorrelation is slower in the first case and,
actually, we will show in a moment that it occurs in the slowest
possible way. Self-averaging with respect to initial conditions
is broken for 0 < σ � 1 (convective regime) while it holds for
σ > 1 (diffusive regime).

With this example in mind, we now turn to a more general
discussion. Let us consider the correlation function which,
using a continuous picture for a scalar field [25] φ(x, t ), reads
S(r; t1, t2) ≡ 〈φ(x + r, t1)φ(x, t2)〉, where t2 > t1 and 〈· · · 〉 is
the full nonequilibrium statistical average. We focus on the
scaling regime where the autocorrelation function C(t1, t2) =
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FIG. 1. The fluctuating magnetization M(t ) for a single realiza-
tion starting from the same initial condition. The system size is
N = 106 and the quench temperature is T = 0.1. In the inset, C(0, t2)
is plotted against L(t2) for different σ after a quench to T = 0.1. The
system size is N = 2 × 107. The dashed straight lines are the decays
x−λ with λ = 1 and λ = 1/2.

S(r = 0; t1, t2) behaves as [26]

C(t1, t2) � [L(t1)/L(t2)]λ, (3)

where, as it will be discussed around Eq. (9), λ is the same
exponent introduced before which therefore obeys Eq. (1).

The inequalities for λ. A derivation of Eq. (1) is now
provided following Ref. [6]. We indicate with ul = φl (q, t1)
the Fourier transform of the field φl (x, t1) evaluated at the
time t1 during the lth realization of the dynamics. Similarly,
we define vl = φl (q, t2) at the time t2. We can therefore
define the scalar product as �u · �v ≡ (2Ñ )−1 ∑

l (ulv
∗
l + c.c.) =

1
2 [S(q, t1, t2) + S∗(q, t1, t2)], where Ñ is the number of real-
izations and S(q, t1, t2) ≡ 〈φ(q, t1)φ(−q, t2)〉 is the Fourier
transform of V S(r; t1, t2), with V the system volume. We can
now apply the Cauchy-Schwarz inequality |�u · �v| � |u||v| and
obtain

1

2
|S(q, t1, t2) + S∗(q, t1, t2)| �

√
S(q, t1)S(q, t2), (4)

where, for ease of notation, S(q, t ) ≡ S(q, t, t ). If we integrate
over q we find

C(t1, t2) � 1

V (2π )d

∫
dq

√
S(q, t1)S(q, t2). (5)

Using Eq. (3) and the scaling form S(q, t ) = Ld (t ) f (qL), with
f (x) � 1 for x � 1 and f (x) negligibly small for x � 1, we
find the lower bound of Eq. (1) [27].

We now originally prove that the same lower bound can be
derived from the term q = 0 only of Eq. (4),

S(0, t1, t2) �
√

S(0, t1)S(0, t2) . (6)

Using the scaling form for S(q, t ) [see below Eq. (5)] it is
straightforward to rewrite the previous equation as

S(0, t1, t2) � f (0)(L1L2)d/2, (7)

where we used the shorthand L1 ≡ L(t1), and similarly for L2.
The left-hand side of Eq. (5) can be worked out expressing
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the two-time correlation function as follows, C(t1, t2) =
1

V (2π )d

∫
dq S(q, t1, t2) = Ld

2
V (2π )d

∫
dq F (qL2, L1/L2), where

we have used the scaling hypothesis S(q, t1, t2) =
Ld

2 F (qL2, L1/L2), valid when both times t1 and t2 are in
the scaling regime. In the limit of large L2 (i.e., of large
t2) only wave vectors q < 1/L2 contribute to the integral.
If S(q → 0, t1, t2) goes to a constant, which is the case for
quenches below Tc or to T = 0, we can finally write

C(t1, t2) � 1

V (2π )d

S(0, t1, t2)

Ld
2

. (8)

Using this relation and Eq. (7) we find C(t1, t2) �
const(L1/L2)d/2 and the scaling form (3) gives λ � d/2.
Therefore Eq. (6) is equivalent to the lower bound (1).

The upper bound in Eq. (1) is defined in Ref. [5] as a
“suggestive bound” because it cannot be proved as rigorously
as the lower bound. In order to derive it, starting from the
straightforward relation 〈M(t1)M(t2)〉 = S(0, t1, t2), and using
Eqs. (8) and (3), one arrives at

〈M(t1)M(t2)〉 = const Lλ
1 Ld−λ

2 . (9)

The authors of Ref. [5] argue that λ � d because “forget-
ting of an initial bias appears unlikely.” In other words, the
strongest memory loss corresponds to the limit λ = d .

Averaging and memory. We now consider the role of the
different statistical averages. The full one 〈· · · 〉 is taken over
the stochastic trajectories 〈· · · 〉tr, the initial condition 〈· · · 〉i,
and, if present, over the quenched disorder 〈· · · 〉q. Let us
consider, to begin with, a clean system. We can split the fluc-
tuating magnetization as M(t ) = 〈M(t )〉tr + ψ (t ), where ψ (t )
is the stochasticity left over after taking the partial averaging
〈M(t )〉tr, so that 〈ψ (t )〉tr ≡ 0. Then we have 〈M(t1)M(t2)〉 =
〈〈M(t1)〉tr〈M(t2)〉tr〉i + 〈ψ (t1)ψ (t2)〉. If we now fix t1 and let t2
diverge, 〈ψ (t1)ψ (t2)〉 = 〈ψ (t1)〉〈ψ (t2)〉 = 0, and from Eq. (9)
we obtain

〈〈M(t1)〉tr〈M(t2)〉tr〉i � Ld−λ
2 . (10)

Next, we argue that, if the quench is made in a ferromagnetic
phase, due to the presence of two ergodic components, for
large t1 it is sgn[M(t1)] = sgn[M(t2)]. This is very well ob-
served for σ < 1 (see Fig. 1). Hence it is also sgn〈M(t1)〉tr =
sgn〈M(t2)〉tr, therefore Eq. (10) (valid for t1 fixed) amounts to

〈M(t )〉tr � L(t )d−λ, (11)

where we have denoted t2 as t to ease the notation. No-
tice that the equation above is more general and applies to
systems without a proper ferromagnetic phase, such as the
one-dimensional (1D) Ising model with σ > 1 or with NN,
because in this case there is no development of magnetization
starting from a given state (see Fig. 1), and indeed it is λ = d .

Equation (11) shows that the slowest possible decorrela-
tion, λ = d/2, is accompanied by the fastest possible growth
of the magnetization developed from an initial condition [4].
Let us observe that such maximum growth is the one expected
upon assuming a random arrangements of a number ∼V L−d

of domains of size L each contributing a magnetization ∼Ld .
Equation (11) for λ = d/2 then derives from the central limit
theorem.
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FIG. 2. 〈M(t )〉tr [normalized by its typical initial value M(0)] is
plotted against L(t ) for different σ . The system size is N = 106 and
the quenching temperature is T = 0.1. The orange straight line is the
behavior L(t )1/2. In the inset a similar plot is shown for 〈M(t )〉tr,i in
the 1D RFIM quenched to T → 0 with h/T = 1/2. The system size
is N = 105.

The result (11) implies also that there is breaking of
self-averaging with respect to initial conditions if λ < d , as
reflected by the fact that, for large N , the observable magne-
tization does not attain its average value limN→∞〈M(t )〉 = 0
unless the average over initial conditions is performed. The
most severe self-averaging breakdown occurs when λ is at the
lower bound in (1), while it is fully restored when it is at the
upper bound.

Let us put these arguments to the test in different models,
starting from the 1D model of Eq. (2). Let us recap what is
known about λ. For NN there is the exact result [28] λ = 1,
the upper bound of Eq. (1) is saturated, and self-averaging
holds. For the long-range case it was shown in Ref. [29] that
there are two universality classes associated with the values
λ = 1 (for σ > 1) and λ = 1/2 (for σ � 1). Since it is known
[6] that for the nonconserved order parameter this exponent is
independent of t1, the best determination can be obtained by
letting t1 = 0. This is displayed in the inset of Fig. 1, where
C(0, t2) is shown for various choices of σ , showing that λ = 1
for σ > 1 and λ = 1/2 for σ � 1.

In Fig. 2 we plot 〈M(t )〉tr as a function of L(t ), for different
σ and the same initial condition. This shows very clearly that
in the convective regime (0 < σ � 1) where λ = d/2 it is
〈M(t )〉tr ∼ √

L(t ) while in the diffusive case (σ > 1 or NN) it
is 〈M(t )〉tr ∼ M(0), as expected after Eq. (11). Hence σ = 1
separates the two opposite situations in which the dynamics
occurs on the boundary B of the ergodic components (for
σ > 1) from the one where it deterministically sinks into such
components (for σ � 1). We should stress that Tc = 0 is not a
sufficient condition to have λ = d , as attested by the 2D XY
model where λ � 1.17 < d = 2 even if Tc = 0 [30].

In our model (2) determinism can be ascribed to the
convective character of domain wall motion [29,31]. Let us
suppose to have two close domains of sizes 
1, 
2, with 
2

slightly larger than 
1. In the diffusive case the average closure
time of 
1, t1, is slightly smaller than the one of 
2, t2,
but the probability that t1 < t2 is only slightly larger than
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1/2. In the convective regime, instead, the dominance of the
deterministic force makes a domain wall always move towards
the closest one [29], so that t1 is always smaller than t2. This
induces a memory effect, since domains which are eliminated
have a larger probability to be antialigned with M(t ) and
their removal further increases M(t ). Summarizing, in the
convective regime there is a reduced degree of stochasticity
and an increased memory with respect to the diffusive one,
and this is the physical origin of the saturation of λ to the
lower bound.

Same ideas, other models. Let us now apply these ideas to
different systems, starting from the short-range ferromagnetic
model in d > 1. In this case we have strict inequalities for any
d , d/2 < λ < d [11]. Hence self-averaging is spoiled, λ < d ,
in opposition to d = 1. This is because in d > 1 interfaces do
not freely diffuse, and there is a deterministic drift induced
by the curvature. However, the fate of the system is not fully
determined by such a deterministic force because the shape of
the percolating cluster plays a major role in the subsequent
dynamics [32]. Hence there is only a weak drift from B
towards the ergodic components and λ stays larger than d/2.

When long-range interactions are present, results in d >

1 are rare [33] and studies of λ are almost absent [34].
However, it is interesting that for the NN case in the limit
d → ∞, which corresponds to the, so to say, longest possi-
ble range of interactions, the mean field, one has λ → d/2
[11] and M(t ) ∼ L(t )d/2 [31,35], as expected on the basis of
our previous argument. In this limit there are no interfaces
and therefore the strong memory effects leading to λ = d/2
cannot be associated with the determinism of their motion, as
in finite dimension. Instead, it can be observed that the mean
field amounts to an averaging procedure which makes the
evolution, in a sense, more deterministic. Again, this reduction
of the stochastic degree is perhaps the physical origin of the
saturation of λ to the lower bound of Eq. (1).

There is another well-known limit in which phase ordering
has a similar character. This is the case of a vectorial order
parameter �φ(x, t ) with a large number N of components
and short-range interactions. In the N → ∞ limit (a model
sometimes denoted also as a spherical model) one finds [12]
λ = d/2 for any d [36]. By choosing an initially magnetized
state it can be shown [37] that the magnetization evolves de-
terministically as M(t ) ∼ L(t )d/2, as expected after Eq. (11).
It must be recalled that the large-N limit effectively amounts
to replacing φ2 with its mean value [12]. Then, similarly to the
mean field, the model realizes a sort of averaging which tames
the stochasticity and sets λ to the minimum possible value.

Up to now we have only considered clean systems. It is
now interesting to discuss the case with quenched disorder
focusing, as a paradigm, on the random-field Ising model
(RFIM). The RFIM Hamiltonian is given by Eq. (2), plus
a contribution −∑

i hisi due to a quenched random external
field that in the following we will consider with zero average

and bimodal distribution hi = ±h. We will focus on the NN
case. In order to discuss the role of the different averages, as
done before, we must now take into account that in this case
also the quenched one 〈· · · 〉q comes into the game. Splitting
the magnetization as M(t ) = 〈M(t )〉tr,i + ψ (t ), similarly to
what done previously for the clean case but where now 〈· · · 〉tr,i

is a partial average taken over both dynamical trajectories and
initial conditions, one can follow the same line of reasoning
as before, arriving at the same results, replacing everywhere
〈M(t )〉tr with 〈M(t )〉tr,i.

Let us start discussing the case with d = 1, for which some
analytical arguments are available. The model is characterized
[38] by a value of λ at its minimum, λ = 1/2. Hence, one
should expect 〈M(t )〉tr,i ∼ L(t )1/2. In the inset of Fig. 2 we
plot 〈M(t )〉tr,i versus the average size of domains L(t ) [which
grows as (ln t )2]. The result nicely confirms our expectation.
In this case the growth of 〈M(t )〉tr,i can be traced back to the
fact that the sum of the random fields in a given quenched
realization is of order N−1/2 and hence there is an explicit
breaking of the up-down spin symmetry. Hence, here it is
the random field which causes the deterministic fall into the
ergodic components. Interestingly, this effect seems not to
be limited to one dimension. For d > 1 the RFIM can only
be studied numerically. For d = 2 one observes [39] that
λ = d/2 = 1 is still at the lowest possible value, as for d = 1.
This suggests that the mechanism found in d = 1 might be a
general feature with random fields.

Conclusions. We have interpreted the exponent λ and its
bounds, d/2 � λ � d , in terms of stochasticity, memory ef-
fects, ergodicity breaking, and self-averaging. When λ = d
memory is lost as fast as possible, magnetization does not
develop, and there is no breaking of self-averaging. This
occurs, for instance in the 1D Ising model with NN, or in the
2D O(2) model E [40]. When λ = d/2 memory is maintained
as much as possible, magnetization grows as M(t ) ∼ [L(t )]d/2

and there is a strong breaking of self-averaging. This occurs in
the 1D long-range Ising model with σ � 1, in the mean-field
and spherical model limits, in the RFIM. Between the two
limiting cases, a continuum exists.

It would be interesting to check if some model contrasts
these ideas, starting from long-range systems in d > 1 [34].
The case of aging without ergodicity breaking, as in the case
of a ferromagnet quenched to the critical temperature, is also
another test bench where the relation between stochasticity,
memory effects, and self-averaging ought to be considered. In
this case the Fisher-Huse lower bound generalizes [6] to λ �
(d + β )/2, where β is an exponent characterizing the small
q behavior of the structure factor. It would be interesting to
check if in this case it is still possible to relate the bounds on
λ to specific features of the dynamics.
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