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A quantified model-competition (QMC) mechanism for multiscale flows is extracted from the integral
(analytical) solution of the Boltzmann-BGK model equation. In the QMC mechanism, the weight of the
rarefied model and the weight of the continuum (aerodynamic and hydrodynamic) model are quantified. Then,
a simplified unified wave-particle method (SUWP) is constructed based on the QMC mechanism. In the SUWP,
the stochastic particle method and the continuum Navier-Stokes method are combined together. Their weights
are determined by the QMC mechanism quantitatively in every discrete cell of the computational domain. The
validity and accuracy of the present numerical method are examined using a series of test cases including the high
nonequilibrium shock wave structure case, the unsteady Sod shock-tube case with a wide range of Kn number,
the hypersonic flow around the circular cylinder from the free-molecular regime to the near continuum regime,
and the viscous boundary layer case. In the construction process of the present method, an antidissipation effect
in the continuum mechanism is also discussed.
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I. INTRODUCTION

For the flows around supersonic and hypersonic aircrafts in
near space, local rarefied regions often arise in the flow field
due to the large gradients in the shock waves and the boundary
layers. For microflows around micro-electro-mechanical Sys-
tems (MEMS), rarefied flows often exist around the boundary
of MEMS, since its characteristic length is comparable to the
molecular mean free path (m.f.p.). In similar situations, the
coexistence of the continuum flow and the rarefied flow in
a single flow field makes the flow behavior and mechanism
extremely complicated. In the researches and simulations of
these complex multiscale flows, numerical methods that can
cover the entire flow regime (including the continuum regime,
slip regime, transitional regime, and free-molecular regime) is
in strong demand.

Since the direct simulation Monte Carlo (DSMC) [1,2] and
the discrete velocity method (DVM) [3,4] are able to simulate
the rarefied flows, and the Navier-Stokes (N-S) solvers are
able to simulate the continuum flows, hybrid methods are de-
veloped, in which a flow field is decomposed into continuum
regions and rarefied regions with the corresponding solvers
working on it. For example, the modular particle-continuum
(MPC) method [5,6] couples the information preservation
(IP) DSMC method [7] with N-S solver, and the unified
flow solver (UFS) [3] couples the DVM with the gas-kinetic
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scheme (GKS) [8], which can be viewed as a N-S solver
with better nonequilibrium performance. The hybrid methods
should use empirical or semi-empirical criterion for domain
decomposition. In hybrid methods, the continuum region and
rarefied region are overlapped for better information exchange
[5,6]. The model inaccuracy of N-S equation and insufficient
particle number of DSMC in the overlap regions should be
addressed well. When DVM method is used as the rarefied
solver, the hybrid method should face the curse of dimension-
ality, which is adjoint to the discrete velocity space used in the
DVM.

To enlarge the cell size and time step of particle meth-
ods such as the DSMC, the analytical solutions of homoge-
nous Bhatnagar-Gross-Krook (BGK)-type model equations
are used to categorize the particles into free-transport particles
and particles participated in collisions [9,10]. Then, the ve-
locities of the particles participated in collisions are sampled
from the corresponding equilibrium distribution function. Up
to now, ES-BGK, Shakhov, and unified-BGK models are
used [11], and real gas effect is considered [12,13]. The
homogenous treatment of particle collisions leads to a first-
order numerical scheme in which the extra numerical vis-
cosity will harm the accuracy and the asymptotic-preserving
(AP) property in prediction of continuum and near-continuum
flows, especially in the boundary layer. To overcome this
drawback, the unified stochastic particle (USP) method is
proposed recently [14,15], in which the extra relaxation terms
toward a Grad distribution are added to both side of model
equation, and the transport process is coupled with the extra
relaxation process (this relaxation process can be viewed as
some kind of particle collision), leading to a correct viscosity
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and AP property. However, using the Fokker-Planck (FP)-type
Boltzmann model equation and the corresponding Langevin-
type stochastic differential equation, particle FP method is
proposed [16] and further extended to real gas, gas mixture
and dense gas [17–19]. Further, the ES-FP [20] and Cubic-FP
models [17] are developed to achieve the right Pr number, and
modifications are made to obtain the AP property [21].

For simulating flows in entire flow regime, several uni-
fied methods are proposed based on the BGK-type model
equation using the discrete velocity space in a deterministic
way, such as unified gas-kinetic scheme (UGKS) [22–24],
discrete unified gas-kinetic scheme (DUGKS) [25–27], gas-
kinetic unified algorithm (GKUA) [28,29], and the improved
discrete velocity method (IDVM) [30,31]. The free-transport
process and collision process of particles are coupled together
in UGKS and DUGKS, using the analytical solution of full
BGK-type model equation (not simplified homogenous one),
and the characteristic-line function, respectively. The coupled
transport process is not only consistent with the physical
nature, but also leads to the multiscale property. Therefore,
their cell size and time step are not limited by the mean free
path and mean collision time anymore, and can be chosen
according to the flow properties (such as the gradients of
the flow field) and Courant-Friedrichs-Lewy (CFL) condition,
respectively. Up to now, these methods are extended to real
gas [32], plasma gas [33], phonon heat transfer [34], radiation
transfer [35]. Recently, a unified gas-kinetic wave-particle
(UGKWP) method is proposed based on the same philosophy
of the UGKS method [36,37]. In the UGKWP, the parti-
cles are categorized into free-transport particles and particles
participated in collisions (named hydrodynamic particles in
UGKWP) using the analytical solution of full BGK-type
model equation. The particles participated in collisions are
merged into the macroscopic variables, and their contribution
to macroscopic flux are calculated from the time integral
part of the analytical solution. Both the information of free-
transport particles and macroscopic variables are updated in
the UGKWP. After the updating, the particles participated in
collisions are emerged from the macroscopic variables again.
In continuum limit, there is almost no free-transport particles,
then the UGKWP is equivalent to a N-S solver without the
statistical fluctuation associated with particles methods, and
the AP property is fulfilled directly.

In both the analytical solution of BGK-type equation and
the time integral solution of the Langevin-type equation,
there underlies a model-competition mechanism between the
particle free-transport model and the continuum model, which
directly leads to the multiscale properties of the particle FP
method, the UGKS method, and the recent UGKWP method.
In this paper, enlightened from the construction process of
the UGKWP method, a quantified model-competition mech-
anism is found by conducting a close investigation of the
analytical solution of the BGK equation. With this quantified
model-competition mechanism, a simplified unified wave-
particle (SUWP) method is proposed, which combines the
collisionless DSMC method (as the rarefied model) with the
Navier-Stokes solver (as the continuum model). The weights
of rarefied model and continuum model are determined from
the quantified model-competition mechanism.

The remainder of this paper is arranged as follows: Sec. II
is a quick review of the gas-kinetic theory and the BGK-type
Boltzmann model equation. Section III is an investigation
of the analytical solution, from which the quantified model-
competition mechanism is obtained. The SUWP method is
in Sec. IV. Section V is the numerical experiments. The
concluding remarks are in Sec. VI.

II. GAS-KINETIC THEORY AND BGK-TYPE MODEL
EQUATION

In the gas-kinetic theory, molecular motions are described
in terms of the distribution function f (x, ξ, t ), which means
the number density of molecules with the velocity ξ that arrive
the location x at time t . For dilute gas, f is governed by
Boltzmann equation [38]

∂ f

∂t
+ ξ · ∂ f

∂x
+ a · ∂ f

∂ξ
= C( f , f ), (1)

where a is the acceleration of molecule. The left-hand side
of Eq. (1) is the free-transport part, while the right-hand side
is the fivefold nonlinear integral collision part. In most mul-
tiscale methods, the BGK-type Boltzmann model equation is
used in the following form:

∂ f

∂t
+ ξ · ∂ f

∂x
+ a · ∂ f

∂ξ
= (g − f )

τ
, (2)

where the Boltzmann collision term in Eq. (1) is replaced by
a simple relaxation term on the right-hand side of Eq. (2).
Furthermore, τ is the relaxation time defined as μ/p, where
μ and p are the temperature-dependent dynamic viscosity
and the pressure, respectively. Moreover, g is the Maxwellian
distribution with the maximum local entropy, which is in the
following form:

g =
( m

2πkT

)3/2
exp

(
−mc · c

2kT

)
, (3)

where n, c, u, T , k, and m are the number density, the
peculiar velocity defined as ξ − u, the macroscopic velocity,
the thermodynamic temperature, the Boltzmann constant, and
the mass of molecule, respectively.

In the gas-kinetic theory, the macroscopic mass density ρ,
momentum density ρu, energy density ρ|u|2/2 + ρe (here e
is inertial energy per unit mass), stress tensor s, and heat flux
q can be obtained from the distribution function f with the
following equations:

ρ = 〈m f 〉,
ρu = 〈mξ f 〉,

1
2ρ|u|2 + ρe = 1

2 〈mξ · ξ f 〉,
s = −〈mcc f 〉 + pI,

q = 1
2 〈mc(c · c) f 〉,

(4)

where I is a identity matrix, and the operator 〈·〉 denotes an
integral over of the whole velocity space as the following:

〈·〉 =
∫

R3

(·)dξ. (5)
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III. QUANTIFIED MODEL-COMPETITION MECHANISM

The analytical solution of BGK equation is in the following
form:

f (x, ξ, t ) = 1

τ

∫ t

0
g
(
x − ξt + ξt ′, ξ, t

)
e

t ′−t
τ dt ′

+ e− t
τ f (x − ξt, ξ, 0). (6)

Here f (x − ξt, ξ, 0) is the original distribution function at
time 0, and x − ξt is the original coordinate obtained by
tracing the molecules (with velocity ξ) back from x. x −
ξt + ξt ′ is the trace of molecules from time 0 to time t , and
g(x − ξt + ξt ′, ξ, t ) is the equilibrium distribution function
along this trace.

This analytical solution can be interpreted as
(1) A cluster of particles with velocity ξ located at x −

ξt at time 0 transport in their velocity direction. Their initial
number density is f (x − ξt, ξ, 0).

(2) When they arrive at location x at time t , due to the
intermolecular collisions, some molecules leave their original
trace and do not belong to this cluster anymore. While, some
molecules are not affected by intermolecular collisions. They
are still in this trace, and their portion is exp (−t/τ ).

(3) However, intermolecular collisions also replenish this
cluster with new molecules that emerge from other col-
lisions with post-collision velocity ξ. These post-collision
molecules are determined from the equilibrium distribution
g(x − ξt + ξt ′, ξ, t ) along the trace.

The analytical solution [Eq. (6)] explicitly shows that
in a time interval (0, t ), there are a exp (−t/τ ) portion of
molecules are free-transport ones, and the others should ex-
perience at least one collision. As t increases, the portion
of free-transport molecules decreases. t is actually the scale-
dependent observation time. When t is much larger than τ ,
such as in the case of continuum regime, there is almost
no free-transport molecule left. Since the portion of free-
transport molecules is depended on the observation time, the
analytical solution has a multiscale property.

The molecules participated in collision are named hydro-
dynamic molecules in Ref. [36]. This nomenclature is used
in this paper. To conduct a close investigation of hydrody-
namic molecules, a second-order Taylor expansion is used for
g(x − ξt + ξt ′, ξ, t ) in the analytical solution [Eq. (6)], which
is the equilibrium distribution along the trace. Denote the time
integral term in the analytical solution by h(x, ξ, t ). With the
second-order Taylor expansion for g(x − ξt + ξt ′, ξ, t ), it can
be written as

h(x, ξ, t ) = 1

τ

∫ t

0

{
g(x, ξ, 0) + (−ξt + ξt ′) · ∂g

∂x

∣∣∣∣
(x,ξ,0)

+ t
∂g

∂t

∣∣∣∣
(x,ξ,0)

}
e

t ′−t
τ dt ′. (7)

By calculating the integral in Eq. (7), it becomes

h(x, ξ, t ) =
{

(1 − e− t
τ )g + (e− t

τ t + e− t
τ τ − τ )ξ · ∂g

∂x

+(t + e− t
τ τ − τ )

∂g

∂t

}
(x,ξ,0)

. (8)

Here, all the information is located at (x, ξ, 0). To get a clear
physical picture, this equation is further rearranged as

h(x, ξ, t ) =
{

(1 − e− t
τ )

[
g − τ

(
ξ · ∂g

∂x
+ ∂g

∂t

)]

+e− t
τ t

(
ξ · ∂g

∂x
+ ∂g

∂t

)
+ (t − e− t

τ t )
∂g

∂t

}
(x,ξ,0)

.

(9)

Here, the first term in the curly brackets are actually a distri-
bution (in square brackets) multiplied by a scale factor, and
this distribution corresponds to the second-order Chapman-
Enskog (C-E) expansion of the BGK equation. The second
term is an antidissipation term. The third term is a high-order
temporal term.

In the continuum regime, the relaxation time τ whose
magnitude is in the same order with the mean collision time
is greatly smaller than the observation time t (τ � t and
t/τ → ∞). Then, Eq. (9) is reduced to

h(x, ξ, t ) =
{[

g−τ

(
ξ · ∂g

∂x
+ ∂g

∂t

)]
+ t

∂g

∂t

}
(x,ξ,0)

. (10)

Therefore, h(x, ξ, t ) becomes the second-order C-E distribu-
tion plus a high order temporal term.

In the free molecular regime, the relaxation time τ is
greatly larger than the observation time t (τ � t and t/τ →
0). Then, h(x, ξ, t ) becomes

h(x, ξ, t ) =
{[

−t

(
ξ · ∂g

∂x
+ ∂g

∂t

)]
+ t

(
ξ · ∂g

∂x
+ ∂g

∂t

)}
(x,ξ,0)

= 0. (11)

The coefficients of the transport term (g) of the C-E distribu-
tion and the high order temporal term in Eq. (9) are zero. Since
the coefficient of the antidissipation term is opposite to that
of the dissipation term in C-E distribution, these two terms
are canceled, making a physical correct h(x, ξ, t ) = 0. This
is consistent with the physical nature that there is no colli-
sion (hydrodynamic molecules) in the free molecular regime.
Without the antidissipation term, a nonphysical dissipation
proportional to the observation time t will exist in the flow
field permanently.

Combine the dissipation and antidissipation term and drop
the high order temporal term, h(x, ξ, t ) can be finally written
as

h(x, ξ, t ) =
{

(1 − e− t
τ )

[
g − cvisτ

(
ξ · ∂g

∂x
+ ∂g

∂t

)]}
(x,ξ,0)

,

(12)
where cvis [defined in Eq. (13)] is the coefficient of the
dissipation term after combined with the antidissipation term.
The subscript “vis” stands for viscous since the dissipation
term leads to the viscous flux in the N-S solver in the later
analysis.

cvis = 1 −
(

t

τ

)
e− t

τ

1 − e− t
τ

. (13)

The value of cvis is unity in continuum regime and zero in the
free molecular regime.
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So far, the mechanism can be extracted from the analytical
solution of the BGK equation is quite clear. For time scale
(observation time) t , exp (−t/τ ) portion of molecules are free-
transport molecules; 1 − exp (−t/τ ) portion of molecules
participate in collisions and follow a modified C-E expansion
in Eq. (12). The free transport molecules follow the free
transport mechanism (rarefied model), and the hydrodynamic
molecules follow a modified hydrodynamic mechanism (con-
tinuum model) since their distribution is a modified C-E
distribution.

The macroscopic flux can be calculated from
〈(ξ · n)ψ f 〉 [the operator is defined in Eq. (5)], where
ψ = (m, mξ, mξ · ξ/2) are the microscopic conservative
variables, n is the normal direction of a cell interface, f is
defined at the central point of the interface. Therefore, set x
the central point of the interface whose normal direction is
n, the macroscopic flux Fhydro caused by the hydrodynamic
molecules is expressed as follows:

Fhydro = 〈(ξ · n)ψh〉

= (1 − e− t
τ )

{
〈(ξ · n)ψg〉

+ cvis

〈
(ξ · n)ψτ

(
ξ · ∂g

∂x
+ ∂g

∂t

)〉}
.

(14)

Since the two integrals in Eq. (14) are the inviscid flux and
viscous flux of the N-S equation. Fhydro can be finally written
as

Fhydro = (1 − e− t
τ )(FNS,inv + cvisFNS,vis). (15)

Here, “inv” stands for inviscid. Since [1 − exp (−t/τ )] is the
portion of the hydrodynamic molecules, Eq. (15) means that
the flux caused by hydrodynamic molecules is in the form of
N-S flux except a scale dependent coefficient cvis is multiplied
to the viscous flux.

For numerical methods, the observation time t is the
numerical time step �t . The weight of the rarefied model
and the weight of the continuum model can be defined as
follows, which are actually the proportions of free-transport
and hydrodynamic molecules, respectively:

wfree = e− �t
τ ,

whydro = 1 − e− �t
τ .

(16)

The flux caused by the free-transport molecules Ffree is di-
rectly obtained from their straight line motions. The flux cause
by the hydrodynamic molecules Fhydro is in a modified N-S
form:

Fhydro = whydro(FNS,inv + cvisFNS,vis), (17)

where the scale dependent coefficient cvis is multiplied to the
viscous flux, and cvis is defined as

cvis = 1 −
(

�t

τ

)
wfree

whydro
. (18)

Finally, the philosophy of the quantified model-competition
(QMC) mechanism can be summarized explicitly as follows:

(1) During the time step �t , wfree portion of molecules
are the free-transport ones. whydro = 1 − wfree portion of

molecules are hydrodynamic ones that participate in inter-
molecular collisions.

(2) The behavior the free-transport molecules is the
straight free motion, and their macroscopic behavior is ob-
tained by the direct summation of the molecular information
(rarefied model). The hydrodynamic molecules follows the
modified C-E expansion [Eq. (12) with t replaced by �t],
and their macroscopic behavior is governed by a modified N-S
mechanism [continuum model, Eq. (17)].

(3) The weight of rarefied model and the weight of con-
tinuum model are the proportions of molecules governed by
them, respectively.

IV. SIMPLIFIED UNIFIED WAVE-PARTICLE METHOD

This section is about the simplified unified wave-particle
method (SUWP) that use the QMC mechanism for multiscale
flow simulations. Like other flow solvers, the physical space
and time in the SUWP are the discrete ones. In discrete physi-
cal elements (cells), both the information of the free-transport
molecules and the information of the macroscopic variables
are recorded and renewed. The SUWP solver is composed by
the following three parts:

(1) Stochastic particle solver for free-transport molecules
(the collisionless DSMC is used in this paper).

(2) N-S solver for the macroscopic behavior of hydrody-
namic molecules.

(3) Functions for QMC mechanism (including informa-
tion exchange between the two solvers).

A. Functions for QMC mechanism: Categorization and
supplementation of molecules

At the start of each time step (the left-hand side of Fig. 1),
there are two kinds of information included in discrete cells:
the initial molecular information and the total macroscopic
information. In the previous time step, some portion of
molecules were categorized as free-transport molecules in
each cell. When they finally arrived at certain cell at the end
of this previous time step, they were recorded as molecules
belonging to this cell. Therefore, the initial molecular infor-
mation at the start of each time step is actually the individual
information of the free molecules those were categorized in
the previous time step. The individual molecular information
includes its coordinate, mass and velocity. The total macro-
scopic information at the start of each time step are the
macroscopic variables (mass, momentum and energy) for both
free molecules and hydrodynamic molecules.

Therefore, the information at the start of each time step
is incomplete, lacking of the individual information for the
hydrodynamic molecules, since the transport of hydrody-
namic molecules are modeled by their macroscopic (ag-
gregate) behavior governed by N-S equation in the QMC
mechanism, and their individual information are deleted
for computational efficiency. In this paper, the macroscopic
mass, momentum and energy in cell are defined as Q =
[ρ�, ρu�, ρ(|u|2/2 + e)�], where � is the cell volume.
The macroscopic variables of free-transport molecules, hy-
drodynamic molecules and total molecules are denoted by
Qfree, Qhydro, and Qtotal, respectively. Since Qtotal is recorded
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FIG. 1. The categorization of molecules.

in cell, and Qfree can be obtained by summing up the ini-
tial molecular information in cell, the macroscopic variables
of hydrodynamic molecules can be obtained as Qhydro =
Qtotal − Qfree. Then, the individual information of the hydro-
dynamic molecules are recovered by sampling them from
the Maxwellian distribution determined by their macroscopic
variables Qhydro in a classic DSMC way [1,2].

After all the individual information of molecules are recov-
ered, these molecules are categorized into new free-transport
and hydrodynamic ones in this time step (the right-hand side
of Fig. 1). From QMC mechanism, there is wfree portion of
molecules are free-transport ones. In Refs. [36,37], the first
collision time tc = τ ln (η) is defined, where η is a random
number in (0, 1). For each molecule, tc is used to test whether
it collides or not during the time step. If tc > �t , then the
molecule is categorized into free-transport one, else, it is

categorized into hydrodynamic one. The mathematical expec-
tations of such test are wfree and whydro. In continuum regime
and near-continuum regime, there is almost no free-transport
molecule existing in the flow field (wfree → 0) since �t � τ .
Therefore, there is no need to recover all the initial hydrody-
namic molecules and only select a very small portion from
them as the free-transport molecules in this time step. Instead,
given Qhydro and the weight whydro, free-transport molecules
in this step can be directly sampled from whydroQhydro without
tc test. The free-transport molecules in this step can also
come from the initial free-transport molecules. Therefore,
wfree portion of free-transport molecules can be obtained by
conducting the tc test to the initial free-transport molecules,
while the portion of initial free-transport molecules that are
categorized as hydrodynamic molecules in this time step, are
deleted from computer memory.
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(a) Ma = 8.0, (b) Ma = 10.0.
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FIG. 3. Profiles of Sod shock-tube at t = 0.15 with Kn = 10−1. The SUWP solution is shown in symbols and the reference UGKS solution
is shown in solid lines. (a) Density, (b) velocity, (c) temperature, (d) pressure.

After the categorization of molecules, the free-transport
molecules transport freely in the flow filed, and their individ-
ual information is updated by the collisionless DSMC. The
macroscopic flux caused by the hydrodynamic molecules are
calculated by Eq. (17). And the total macroscopic variables
are updated using the following equation:

Qn+1
total = Qn

total + (
Qn+δ

free − Qn
free

) − �t
kmax∑

k

(Fhydro)Sk, (19)

where n denotes the present time step, and n + 1 denotes
the next time step, k is the index of cell interface, kmax is
the number of interface in this cell. Qn

free is the macroscopic
variables of free-transport molecules at the present time step
after the categorization. Qn+δ

free is the molecules belong to this
cell at the end of the present time step. Without loss of
generality, the normal directions of all interfaces are pointing
outside.

Finally, the process of SUWP can be written as follows:
(1) Get Qfree by summing up the initial molecular infor-

mation from the molecules which were categorized into free-
transport ones and arrived at this cell during the last time step.
Get the macroscopic variables of the initial hydrodynamic
molecules from Qhydro = Qtotal − Qfree.

(2) Calculate wfree and whydro.
(3) Sample free-transport molecules from whydroQhydro

(one source of the free-transport molecules in this time step).
(4) Conduct the tc test on initial free-transport molecules,

and only retain those pass this test (tc > �t , another source of
the free-transport molecules in this time step).

(5) Now the information in cells includes the individual
molecular information of free-transport molecules that are
categorized in this time step, and the total macroscopic vari-
ables for all molecules in this cell (ready for transport).

(6) The motion of the free-transport molecules in this time
step are calculated using a collisionless DSMC method. The
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FIG. 4. Profiles of Sod shock-tube at t = 0.15 with Kn = 10−3. The SUWP solution is shown in symbols and the reference UGKS solution
is shown in solid lines. (a) Density, (b) velocity, (c) temperature, (d) pressure.

transport of hydrodynamic molecules in this time step are
modeled by the N-S mechanism, and their flux is calculated
from Eq. (17).

(7) At the end of this time step, the coordinates of free-
transport molecules are updated, and they are assigned to new
cells if they have transported across the cell interfaces. The
total macroscopic variables in cells are updated using Eq. (19)
by given the free molecular information and the macroscopic
flux from hydrodynamic molecules.

B. Collisionless DSMC solver

For the free-transport molecules in SUWP, their transport
processes are calculated by the collisionless DSMC solver.
The particle tracing method on unstructured mesh is similar
to that in Ref. [37], expect a straddle test is used for compu-
tational efficiency in the present two-dimensional case. The
tracing process is listed as follows:

(1) Given the iteration time �t , the destination of a free-
transport molecule (initially at xstart with velocity ξ) can be
directly obtained from xend = xstart + ξ�t . (forming a line
segment xstartxend).

(2) loop all faces of the cell to test whether xstartxend inter-
sects with one of them [Eq. (20)]. If there is no intersection
between xstartxend and the faces, then this molecule is in the
present cell (process ends). If intersection is detected, then
break the loop and move to step 3.

(3) Calculate the intersection point xinter and move the
molecule to it. Then, this molecule belongs to the adjacent
cell. Calculate the remaining time tremain of the molecule
(after been moved to xinter). Then move to step 4. Notice
that if the intersection face is a solid wall, the molecular
velocity is changed according to the wall boundary condition
[1,2](after hitting the wall, its velocity is denoted by ξwall), and
its destination is changed to xend = xinter + ξwalltremain. Also
notice that if the intersection face is other boundaries of the
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FIG. 5. Profiles of Sod shock-tube at t = 0.15 with Kn = 10−5. The SUWP solution is shown in symbols and the reference UGKS solution
is shown in solid lines. (a) Density, (b) velocity, (c) temperature, (d) pressure.

flow field, such inlet, outlet, farfield, the molecule can be
deleted (process ends).

(4) loop all faces (expect the intersection face with xinter

on it) of the cell to test whether xinterxend intersect with it
[Eq. (20)]. If there is no intersection between xstartxend and
the faces, then the molecule is in the cell (process ends). If
intersection is detected, then break the loop, and move back
to step 3.

To determine whether a particle transports across certain
cell interface, the following straddle test of two segments (a
particle trace and a cell interface in two-dimensional space) is
used. Two segments (denoted by AB and CD) should fulfill
the following two inequations to intersect with each other (x
is the coordinate vector)

{(xA − xC ) · (xD − xC )}{(xB − xC ) · (xD − xC )} < 0,

{(xC − xA) · (xB − xA)}{(xD − xA) · (xB − xA)} < 0,
(20)

which means points A and B are on the different sides of
segment CD (the first equation), and points C and D are on
the different sides of segment AB (the second equation).

In this paper, the unstructured quadrilateral meshes are
adopted in the two-dimensional test cases, and the emerging
particles should be spread into these quadrilateral meshes
uniformly. To avoid using the acceptance-rejection rule which
is used on quadrilateral meshes and is time consuming, the
quadrilateral is divided into two triangles, and the particles can
be spread directly into these two triangles without using any
acceptance-rejection rule. Therefore, the sampling process
into a quadrilateral mesh cell is changed into a sampling
process into two triangular mesh cells denoted by TA and
TB, whose areas are SA and SB respectively. Given η is the
random real number sample in (0, 1). If η � SA/(SA + SB),
then a molecule is sampled into TA, else it is sampled into
TB. After the target triangle is chosen, the coordinate of this
molecule is obtained by the direct sampling method [37], and
this molecule is spread into this triangle.
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FIG. 6. Ma = 5 flow around cylinder at Kn = 10. (a) Density, (b) u-velocity, (c) v-velocity, (d) temperature.

C. Navier-Stokes solver

In the SUWP, the classical N-S solver is used for
calculating the macroscopic flux of the hydrodynamic
molecules without change, except a scale-dependent
coefficient is multiplied to the viscous flux [Eq. (17)].
Notice that during the entire N-S calculations, the physical
variables (density, velocity, and temperature) are from the
total macroscopic variables Qtotal.

At the present stage, the inviscid flux in Ref. [39] is used. It
is the weighted summation of the flux of Kinetic Flux-Vector
Splitting (KFVS) method and the totally thermalized transport
(TTT) method [40]. In this paper, both the mathematical
forms of KFVS flux and the TTT process are rearranged in
a classical computational fluid dynamics (CFD) way. Here,
the normal direction of the cell interface is from its left side to
its right side. The macroscopic velocity in normal direction
and two tangential directions are denoted by u, v, and w,

respectively. The KFVS flux K is rearranged as follows:

Kmass =1

2
(ρLuL + ρRuR) + 1

2
(ρLuLηL − ρRuRηR)

+ 1

2
(ρLθL − ρRθR),

Kxmon =1

2

[(
ρLu2

L + pL
) + (

ρRu2
R + pR

)] + 1

2

[(
ρLu2

L + pL
)
ηL

− (
ρRu2

R + pR
)
ηR

] + 1

2
(ρLuLθL − ρRuRθR),

Kymon =1

2
(ρLuLvL + ρRuRvR) + 1

2
(ρLuLvLηL − ρRuRvRηR)

+ 1

2
(ρLvLθL − ρRvRθR),

Kzmon =1

2
(ρLuLwL + ρRuRwR) + 1

2
(ρLuLwLηL − ρRuRwRηR)

+ 1

2
(ρLwLθL − ρRwRθR),

Kenergy =1

2
(ρLuLhL + ρRuRhR) + 1

2
(ρLuLhLηL − ρRuRhRηR)

+ 1

2

[(
ρLhL − pL

2

)
θL −

(
ρRhR − pR

2

)
θR

]
,

(21)
where the subscript “L” and “R” represent the left- and right-
hand sides of the cell interface where the flux is calculated. η
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FIG. 7. Ma = 5 flow around the cylinder at Kn = 1. (a) Density, (b) u-velocity, (c) v-velocity, (d) temperature.

and θ are defined as

ηα = erf

(
Uα√
2RTα

)
,

θα =
√

2RTα

π
exp

(
− U 2

α

2RTα

)
,

(22)

where the subscript “α” can be “L” or “R.”
The TTT flux T is the simple Euler flux using the averaged

values

Tmass = ρ̄ū,

Txmon = ρ̄ū2 + p̄,

Tymon = ρ̄ūv̄,

Tzmon = ρ̄ūw̄,

Tenergy = ρ̄h̄,

(23)

where the averaged values can be obtained from the following
TTT process:

ρ = 1

2
(ρL + ρR) + 1

2
(ρLηL − ρRηR),

ρu = 1

2
(ρLuL + ρRuR) + 1

2
(ρLθL − ρRθR)

+ 1

2
(ρLuLηL − ρRuRηR),

ρv = 1

2
(ρLvL + ρRvR) + 1

2
(ρLvLηL − ρRvRηR),

ρw = 1

2
(ρLwL + ρRwR) + 1

2
(ρLwLηL − ρRwRηR),

ρe = 1

2
(ρLeL + ρReR) + 1

4
(ρLuLθL − ρRuRθR)

+ 1

2
(ρLeLηL − ρReRηR),

(24)
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FIG. 8. Ma = 5 flow around the cylinder at Kn = 0.1. (a) Density, (b) u-velocity, (c) v-velocity, (d) temperature.

with the aid of ū = ρu/ρ̄, v̄ = ρv/ρ̄, w̄ = ρw/ρ̄, T̄ =
ρe/Cv , and h̄ = CpT .

So far, the inviscid flux on the cell interface can be calcu-
lated using

Finv = βK + (1 − β )T, (25)

where

β = tanh

(
C

|pR − pL|
pR − pL

)
. (26)

Here tanh is the hyperbolic tangent function, and C is chosen
as 10 according to Ref. [39].

In this paper, the second-order reconstruction is
considered. The gradients of conservative variables
ρ, ρu, ρ(|u|2/2 + e) are calculated by the least square
method. The Venkatakrishnan slop limiter [41] is adopted to
the gradients.

The viscous flux Fvis is calculated by the central scheme.
The physical variables and their gradients at the cell interface
for calculating the viscous flux are obtained by conducting a
weighted average of the central values of two neighbor cells.
Up to now, the framework of flux calculation is the same with

the classical CFD way. Finally, the modified N-S flux can
be obtained from Eq. (17). In gas-kinetic theory, the BGK
model equation corresponds to a unity Prandtl (Pr) number.
The Shakhov model equation [42] has the same mathematical
form of BGK, but it has a modified equilibrium distribution
to get a right Pr number. In SUWP method, both wfree and
cvis are the same for BGK and Shakhov (since they have the
same relaxation time), and the only difference is the viscous
flux for Shakhov model has the right Pr number. In the test
cases of this paper, to be consistent with the reference results,
Pr = 1 is adopted.

When τ approaches infinity (free molecular flow limit), cvis

becomes zero, and the continuum mechanism has no contri-
bution to the dissipation (it becomes the Euler mechanism).
At the free molecular flow limit, the dissipation is totally
from the free-transport mechanism. In earlier particle methods
based on BGK-type equation, particles follow the Maxwellian
distribution after collisions, or follow other equilibrium distri-
butions depending on the chosen model equation. After colli-
sion, these particles transport freely. Since the free-transport
of particles from Maxwellian distribution leads to the Euler
mechanism without dissipation, the earlier particle methods

013304-11



SHA LIU, CHENGWEN ZHONG, AND MING FANG PHYSICAL REVIEW E 102, 013304 (2020)

X

Y

0 5 10 15

-5

0

5

Rho
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

X

Y

0 5 10 15

-5

0

5

U
4.4
4.2
4
3.8
3.6
3.4
3.2
3
2.8
2.6
2.4
2.2
2
1.8
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2

X

Y

0 5 10 15

-5

0

5

V
1.2
1
0.8
0.6
0.4
0.2
0

-0.2
-0.4
-0.6
-0.8
-1
-1.2

X

Y

0 5 10 15

-5

0

5

T
9
8.5
8
7.5
7
6.5
6
5.5
5
4.5
4
3.5
3
2.5
2
1.5

(a) (b)

(c) (d)

FIG. 9. Ma = 5 flow around the cylinder at Kn = 0.01. (a) Density, (b) u-velocity, (c) v-velocity, (d) temperature.

can predict the rarefied flows with large Knudsen (Kn) number
well. While for flows with small Kn number, where the
dissipation in continuum mechanism can not be neglected,
they often have the problem of inaccurate viscous behavior. In
USP method, this viscous problem is repaired by forcing some
particles emerging from a Grad distribution which becomes
second-order C-E distribution in continuum limit with N-S
viscous term in it. When τ approaches zero (continuum limit),
the flow is totally dominated by continuum mechanism. At
the same time, cvis is unity, and the dissipation mechanism
recovers the N-S mechanism completely.

D. Boundary condition

The boundary condition (BC) of SUWP combines the BCs
of DSMC and N-S methods, which is actually a weighted
average of them in flux calculations. Given the macro-
scopic variables on boundaries, the weight of free transport
molecules wfree and the weight of hydrodynamic molecules
1 − wfree can be obtained.

1. Inlet and outlet boundary conditions

In SUWP, the mass flux of free transport molecules across
the inlet or outlet boundary is

FDSMC = wfree

{
ρ exp

(
− u2

n

2RT

)√
RT

2π

+ un

2

[
1 + erf

(
un√
2RT

)]}
, (27)

where the subscript n stands for the normal direction.
The mass of free molecules moving into the flow field is
FDSMC�tS. If wfree is set unity, then FDSMC becomes the
ordinary DSMC one [1,2]. The later procedure is identical
to the conventional DSMC: The normal particle velocity ξn

is sampled from the distribution ξng1D using the acceptance-
rejection rule, and the tangential velocities are sampled di-
rectly from g2D, where g1D and g2D are 1D and 2D Maxwellian
distributions, respectively. The location of a particle at the
boundary interface (denoted by AB) is xA + r(xB − xA) (r is
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FIG. 10. The density distribution along the stagnation lines of Ma = 5 cylinder, (a) Kn = 10, (b) Kn = 1, (c) Kn = 0.1, (d) Kn = 0.01.

a random real number between 0 and 1), and its remaining
time after going into the flow field is r�t . For hydrodynamic
particles, the N-S flux at boundary interface can be directly
used where the inviscid flux is multiplied by (1 − wfree), and
the viscous flux is multiplied by cvis(1 − wfree).

2. Wall boundary condition

Being same with the DSMC, at the wall boundary, the
free molecules hit the wall and bounce back. Since the full
accommodation wall is used in this paper, the particles reflect
according to the Maxwellian distribution and are sampled
from

ξn =
√

2RTwall

√
− log (r1),

ξt1 =
√

2RTwall

√
− log (r2) cos (2πr3),

ξt2 =
√

2RTwall

√
− log (r2) sin (2πr3),

(28)

where r1, r2, and r3 are random real numbers between 0 and
1, the subscript t1 and t2 are two tangential directions, and
Twall is the wall temperature. For hydrodynamic particles, the
nonslip BC in N-S method can be directly used, where the
inviscid flux and viscous flux are multiplied by their weights
(wfree and 1 − wfree). This treatment is the same with that of
the inlet and outlet BCs.

E. Difference to the UGKWP method

UGKWP is strictly based on the model equations, and its
algorithm is designed that it can strictly recover the UGKS
method which have been proved to be validate for flows
in all flow regimes. Specifically, the time integral solution
[Eq. (6)] of the BGK equation is further integrated over the
numerical iteration time to get the fluxes of distribution and
the macroscopic conservation variables. In the present SUWP
method, the QMC is directly obtained from the time integral
solution [Eq. (6)] with the time scale being represented by
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FIG. 11. The u-velocity distribution along the stagnation lines of Ma = 5 cylinder, (a) Kn = 10, (b) Kn = 1, (c) Kn = 0.1, (d) Kn = 0.01.

the numerical iteration time. Using the simple weights, the
collisionless DSMC solver and the ordinary N-S solver can
be coupled together in every discrete cell to predict multiscale
flows without changing their algorithms.

The flux in UGKWP is caused by the motions of three
types of molecules: (1) free transport molecules, (2) the col-
liding (hydrodynamic) molecules that transport freely across
the cell interface before their first collisions, (3) the other
molecules which collide first and then transport across the
cell interface. In SUWP, molecules are categorized into only
the free transport ones and the colliding (hydrodynamic) ones,
which are solved by the DSMC and the N-S solvers, respec-
tively. Being compared to the UGKWP, the particle transport
process in SUWP is coarse and simple.

V. NUMERICAL EXPERIMENTS

A. Shock wave structure

The shock wave structure case is a benchmark case for
the validity and accuracy of multiscale numerical methods
in nonequilibrium flow simulations. A normal shock wave

is a discontinuity from macroscopic point of view, across
which the physical properties change precipitously. While the
profiles of a normal shock wave are actually smooth from
microscopic point of view. Molecules in the shock wave are
a mixture of the ones before the shock wave, where flow is su-
personic or hypersonic with a relatively low temperature and
the molecules after the shock wave, where the flow is subsonic
with a high temperature. Since the molecular collisions in the
thin shock wave (about twenty m.f.p.) are insufficient, the
distribution function will be far from the equilibrium for large
Mach (Ma) numbers. Given the heat index ω and molecular
scattering factor α, the m.f.p. of variable soft sphere (VSS)
model can be written as

m.f.p. = 1

β

√
RT

2π

μ

p
, (29)

where β is a gas-model depended coefficient defined as

β = 5(α+1)(α+2)

4α(5 − 2ω)(7 − 2ω)
. (30)

013304-14



SIMPLIFIED UNIFIED WAVE-PARTICLE METHOD WITH … PHYSICAL REVIEW E 102, 013304 (2020)

x coordinate

T
em

p
er

at
u

re

-16 -14 -12 -10 -8 -6 -4 -2 0
1

2

3

4

5

6

7

UGKS
SUWP

Kn=10

x coordinate

T
em

p
er

at
u

re

-16 -14 -12 -10 -8 -6 -4 -2 0
0

1

2

3

4

5

6

7

8

UGKS
SUWP

Kn=1

x coordinate

T
em

p
er

at
u

re

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1
0

1

2

3

4

5

6

7

8

9

10

UGKS
SUWP

Kn=0.1

x coordinate

T
em

p
er

at
u

re

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1
0

1

2

3

4

5

6

7

8

9

10

UGKS
SUWP

Kn=0.01

(a) (b)

(c) (d)

FIG. 12. The temperature distribution along the stagnation lines of Ma = 5 cylinder, (a) Kn = 10, (b) Kn = 1, (c) Kn = 0.1, (d) Kn = 0.01.

In this section, the Argon gas is chosen as the working
gas. The benchmark solutions from UGKS [36] chooses the
Variable Hard Sphere (VHS) molecular model for Argon, so
it is adopted in the present SUWP calculation. Since α = 1
will reduce the general VSS model to the VHS model, ω =
0.81 and α = 1.0 are chosen. The upstream and downstream
boundaries are determined by Rankine-Hugoniot condition.
The cell Kn number Kncell (the reference length is chosen as
the cell length) is set 2.0 to resolve the profiles, and the CFL
number is set 0.5. The iteration time in the test cases of this
paper is calculated by

�t = CFL
Lmin

(u + 3
√

γ RT )max

, (31)

where Lmin is the minimum cell length in computational
domain, u + 3

√
γ RT is chosen from the initial condition, and

the maximum value is used.
Figure 2 illustrates the profiles of the shock waves with

Ma numbers 8 and 10, where the density, velocity, and

temperature are normalized as follows:

ρ̂ = ρ − ρup

ρdown − ρup
,

û = u − udown

uup − udown
,

T̂ = T − Tup

Tdown − Tup
,

(32)

where the subscript “up” and “down” stand for the upstream
and downstream, respectively. The x coordinate in the shock
wave is normalized by the m.f.p. of upstream boundary. It
can be seen from Fig. 2 that the numerical solutions obtained
from SUWP match well with the benchmark solution from the
UGKS method.

B. Sod shock-tube

The sod shock-tube case with different Kn numbers (10−1,
10−3, and 10−5) are used to examine the validity of SUWP
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FIG. 13. The model molecule number in cell for Ma = 5 cylin-
der flow at Kn = 0.01.

in unsteady multiscale flow simulations covering the transi-
tional, slip and continuum flow regimes. The computational
domain is [−0.5, 0.5]. Being same with the benchmark solu-
tion from Ref. [36], the VHS model with ω = 0.81 is used.
The reference length is chosen as the length of flow domain.
The m.f.p. for Kn number is from the initial condition on the
left half of the domain. The computational domain is discrete
into 100 cells, and the CFL number is set 0.5. The initial
condition is

(ρ, u, p) =
{

(1, 0, 1), x � 0,

(0.125, 0, 0.1), x > 0.
(33)

The density, velocity, temperature, and pressure profiles with
different Kn numbers at t = 0.15 are illustrated in Figs. 3, 4,
and 5. The profiles calculated by the SUWP match well with
those from the benchmark solution. In this case, the number
of free-transport molecules emerging from the macroscopic
variables is adjusted to make the total number of particles
in the cell is around 300. For Kn = 0.1 case, the weight
of the particle method is large, and stochastic fluctuation
can be seen in the profiles (Fig. 3). For Kn = 10−5 case (in
continuum regime), the weight of the particle method can be
neglected, and no obvious stochastic fluctuation can be seen
in the profiles.

C. Hypersonic flow around cylinder

The hypersonic flow around cylinder with four Kn numbers
(10, 1, 0.1, 0.01) is calculated using SUWP in this section.
Since the Kn number is from 10 to 0.01, the free molecular,
transitional, and slip flow regimes are covered by this test
case.

The working gas is Argon with ω = 0.81 and γ = 5/3.
The Mach number is 5.0. VHS model for intermolecular
potential is used (VSS model with α = 1). The radius of the
cylinder L is chosen as the reference length (Lref = L). The
reference temperature is Tref = T∞. Subscript ∞ represents
the inflow physical variables in this case. The reference den-

sity and velocity are ρref = ρ∞ and uref = √
2RTref, respec-

tively. The computational domain is enclosed by a circle with
a radius of 15L. The domain is decomposed into 75 × 62 cells,
where 75 cells are used in the radial direction and 62 cells
are arranged along the wall of cylinder. The height of the cell
adjacent to the wall boundary is 0.05, and its length is 0.1.
The CFL number is chosen as 0.5 for all Kn numbers. The
number of free molecules emerging from the hydrodynamic
macroscopic variables is set 100 multiplied by the rate of their
mass to the total mass in cell. (To limit the particles number
in a single mesh cell, it is set that the total mass in a mesh
cell can be split into 100 particles at most. Therefore, when
emerging some particles from macroscopic variables, their
number should be 100 multiplied by their mass portion.)

The flow fields (the contours of density, u-velocity, v-
velocity, and temperature) at Kn number 10, 1, 0.1, and 0.01
are illustrated in Figs. 6, 7, 8, and 9, respectively. In the
Kn = 10 case where the flow is governed by free-transport
mechanism, the flow is smooth and shock wave can not be
identified in the flow field. When Kn number decreases, the
bow shock becomes obvious, and its structure becomes clear.
At Kn = 0.01, the structure of bow shock is already the same
with that in the continuum regime. Since as the Kn number in-
creases, the free-transport mechanism prevails gradually, then
molecules can take their information to a large distance with-
out collision. This leads to a large regime influenced by the
solid wall (cylinder). This phenomenon can be seen from the
temperature contours easily [Figs. 9(d), 8(d), 7(d), and 6(d)].

The density, velocity, and temperature profiles along the
stagnation line are plotted in Figs. 10, 11, and 12, respectively.
The results calculated by the present method are compared
to those from the DUGKS code in Ref. [43]. The SUWP
results match well with those from the DUGKS. At Kn =
0.01, the profiles calculated by SUWP deviate slightly from
the DUGKS results. That may because that the transient
statistical fluctuation amplify the effect of the slop limiter
and more numerical viscosity is added into the scheme.
As the Kn number decreases, the profiles of the physical
variables becomes thin, and same sharp structures appears in
the profiles at Kn = 0.01. This phenomenon is consistent with
the observation of the flow field.

Being the same with UGKWP, as cell Kn number de-
creases, the model molecules in cell will decrease. It is good
property for computational efficiency. In Fig. 13, the number
of model molecules in cell are illustrated at the transient time
after the flow achieving the steady state. It can been seen that
the number of model molecules in the cells close to the front
of cylinder are only within the range from 20 to 40.

The computational time of the SUWP and explicit UGKS
are compared in Table I. The speedup ratios in these cases
with Kn = 0.01, 0.1, 1, and 10 are from 37.4 to 21.7. As Kn
number increases, the free transport particle numbers in the
flow field increases. Since the computational cost of SUWP is
mainly spent on the sampling, deleting and tracing operations
for particles, the increasing number of free transport particles
leads to a decreasing speedup ratio.

D. Viscous boundary layer

Since the SUWP is designed that it is can be reduced to
the N-S solver with a correct dissipation, the continuum flow
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TABLE I. Computational time of UGKS and SUWP for hyper-
sonic cylinder flow.

Case UGKSa SUWPb Speedup Ratio

Kn = 0.01 52.3 hours 1.4 hours 37.4
Kn = 0.1 52.3 hours 1.5 hours 34.8
Kn = 1 52.3 hours 2.1 hours 24.9
Kn = 10 52.3 hours 2.4 hours 21.7

aUGKS adopts 5000 steps first-order calculation for stable perfor-
mance and 35 000 steps second-order calculation for numerical
accuracy, and adopts 100 × 100 discrete velocity space.
bSUWP adopts 30 000 steps for flow evolution and 10 000 steps for
averaging, and sets the number of emerging particles in cells as their
mass portion multiplied by 100.

passing a flat plate is simulated in this section. The com-
putational domain is [−50, 100] × [0, 100], and rectangular

mesh with 150 × 65 cells are utilized. The height of the cell
adjacent to the plate is 0.02, and its length is 0.1. The CFL
number is set 0.5. The inflow Ma number and Reynolds (Re)
number are 0.1 and 105, respectively. According to the inflow
condition, �t/τ � 1. Therefore, wfree approaches zero and
whydro approaches unity. The smallest value of the total mass
for the model molecules sampled from the hydrodynamic
macroscopic variables is set as 10−4 of the total mass in
cell. Below this value, no molecule need to be sampled (flow
is in continuum regime, it does not need the free-transport
mechanism). Therefore, at the initial time, there is no model
molecule in the flow field. Since the density field is almost
a constant in this case, there is also no model molecule
needed to be sampled in the evolution process. In this case,
the SUWP is reduced to a classic N-S solver. The mesh,
density contours, u-velocity contours, and v-velocity are il-
lustrated in Fig. 14. As illustrated in Fig. 15, the u-velocity
and v-velocity profiles match well with that from the Blasius
solution.
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FIG. 14. The mesh and flow field of the viscous boundary layer at Ma = 0.1 and Re = 105. (a) Mesh, (b) Density, (c) u-velocity, (d)
v-velocity.
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FIG. 15. The velocity profiles in the viscous boundary layer at Ma = 0.1 and Re = 105. (a) Normalized u-velocity, (b) normalized v-
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VI. DISCUSSION AND CONCLUSIONS

In this paper, a quantified model-competition (QMC)
mechanism is extracted from the integral solution of the
Boltzmann-BGK model equation, and a simplified unified
wave-particle method (SUWP) is proposed with the aid of this
QMC mechanism. The validity and accuracy of the present
SUWP method are verified through a series of multiscale test
cases. The SUWP combines the stochastic particle method
and the continuum N-S method in the algorithm level. Both
stochastic particle and N-S calculations are conducted in a
single discrete cell, while their weights are quantified by the
QMC mechanism. At the free-molecular limit, the SUWP is
reduced to the stochastic particle method. Because the number
of free molecules in a single cell is very small in the near
continuum regime, the SUWP needs only a few amount of
model molecules in such situations. At the continuum limit,
the SUWP is reduced to the pure N-S solver completely.

Compared to the deterministic methods which use discrete
velocity space and are very efficient for low speed flows in all
flow regimes when implicit schemes are adopted, the wave-
particle-based methods, such as UGKWP and the present
SUWP, use the particles to represent the distribution of free
transporting particles in the velocity space. This treatment
helps the schemes to avoid the dimensional crisis and can

be viewed as a kind of automatic adaptive velocity space.
Therefore, like DSMC and stochastic particle methods, they
are very efficient in high-speed and high-dimensional flow
simulations. Furthermore, since the number of free transport
molecules in SUWP and UGKWP decreases as Kn number
decreases, their computational efficiencies are high for small
(or locally small) Kn number flows.

ACKNOWLEDGMENTS

The authors thank Prof. Kun Xu in Hong Kong University
of Science and Technology for discussions of the UGKS
method, the UGKWP method, and the direct modeling of
multiscale flows. S.L. thanks Prof. Jun Zhang in Beihang
University and Dr. Fei Fei in Huazhong University of Science
and Technology for discussion of the Particle FP methods and
the USP method. S.L. thanks Dr. Chang Liu and Dr. Yajun
Zhu in Hong Kong University of Science and Technology for
useful suggestions in constructing the present SUWP method.
The present work is supported by National Natural Science
Foundation of China (Grants No. 11702223, No. 11902266,
and No. 11902264), National Numerical Wind-Tunnel Project
of China (Grant No. NNW2019ZT3-A09), and 111 Project of
China (Grant No. B17037).

[1] G. A. Bird, The DSMC Method (CreateSpace Independent
Publishing Platform, Scotts Valley, CA, 2013).

[2] G. A. Bird, Molecular Gas Dynamics and the Direct Simulation
of Gas Flows (Clarendon Press, Oxford, 2003).

[3] V. Kolobov, R. R. Arslanbekov, V. V. Aristov, A. A. Frolova,
and S. A. Zabelok, Unified solver for rarefied and continuum
flows with adaptive mesh and algorithm refinement, J. Comput.
Phys. 223, 589 (2007).

[4] L. Wu, J. M. Reese, and Y. Zhang, Solving the Boltzmann equa-
tion deterministically by the fast spectral method: Application
to gas microflows, J. Fluid Mech. 746, 53 (2014).

[5] Q. Sun, I. D. Boyd, and G. V. Candler, A hybrid contin-
uum/particle approach for modeling subsonic, rarefied gas
flows, J. Comput. Phys. 194, 256 (2004).

[6] T. E. Schwartzentruber, L. Scalabrin, and I. Boyd, A mod-
ular particleccontinuum numerical method for hypersonic

013304-18

https://doi.org/10.1016/j.jcp.2006.09.021
https://doi.org/10.1017/jfm.2014.79
https://doi.org/10.1016/j.jcp.2003.09.005


SIMPLIFIED UNIFIED WAVE-PARTICLE METHOD WITH … PHYSICAL REVIEW E 102, 013304 (2020)

nonequilibrium gas flows, J. Comput. Phys. 225, 1159
(2007).

[7] J. Fan and C. Shen, Statistical simulation of low-speed rarefied
gas flows, J. Comput. Phys. 167, 393 (2001).

[8] K. Xu, A gas-kinetic BGK scheme for the Navier-Stokes equa-
tions and its connection with artificial dissipation and Godunov
method, J. Comput. Phys. 171, 289 (2001).

[9] M. N. Macrossan, Nu-dsmc: A fast simulation method for
rarefied flow, J. Comput. Phys. 173, 600 (2001).

[10] M. A. Gallis and J. R. Torczynski, Investigation of the
ellipsoidal-statistical Bhatnagar-Gross-Krook kinetic model ap-
plied to gas-phase transport of heat and tangential momentum
between parallel walls, Phys. Fluids 23, 030601 (2011).

[11] M. Pfeiffer, Particle-based fluid dynamics: Comparison of dif-
ferent Bhatnagar-Gross-Krook models and the direct simulation
Monte Carlo method for hypersonic flows, Phys. Fluids 30,
106106 (2018).

[12] O. Tumuklu, Z. Li, and D. A. Levin, Particle ellipsoidal statis-
tical Bhatnagar-Gross-Krook approach for simulation of hyper-
sonic shocks, AIAA J. 54, 3701 (2016).

[13] M. Pfeiffer, Extending the particle ellipsoidal statistical
Bhatnagar-Gross-Krook method to diatomic molecules includ-
ing quantized vibrational energies, J. Phys. Fluids 30, 116103
(2018).

[14] J. Zhang, B. John, M. Pfeiffer, F. Fei, and D. Wen, Particle-
based hybrid and multiscale methods for nonequilibrium gas
flows, Adv. Aerodyn. 1, 1 (2019).

[15] F. Fei, J. Zhang, J. Li, and Z. Liu, A unified stochastic particle
Bhatnagar-Gross-Krook method for multiscale gas flows, J.
Comput. Phys. 400, 108972 (2020).

[16] P. Jenny, M. Torrilhon, and S. Heinz, A solution algo-
rithm for the fluid dynamic equations based on a stochastic
model for molecular motion, J. Comput. Phys. 229, 1077
(2010).

[17] M. H. Gorji, M. Torrilhon, and P. Jenny, Fokker-Planck model
for computational studies of monatomic rarefied gas flows, J.
Fluid Mech. 680, 574 (2011).

[18] H. Gorji and P. Jenny, A kinetic model for gas mixtures based
on a fokker-planck equation, J. Phys. Conf. Ser. 362, 012042
(2012).

[19] M. Sadr and M. H. Gorji, A continuous stochastic model
for nonequilibrium dense gases, Phys. Fluids 29, 122007
(2017).

[20] J. Mathiaud and L. Mieussens, A Fokker-Planck model of the
Boltzmann equation with correct prandtl number, J. Stat. Phys.
162, 397 (2016).

[21] F. Fei, Z. Liu, J. Zhang, and C. Zheng, A particle Fokker-Planck
algorithm with multiscale temporal discretization for rarefied
and continuum gas flows, Commun. Comput. Phys. 22, 338
(2017).

[22] K. Xu and J. Huang, A unified gas-kinetic scheme for contin-
uum and rarefied flows, J. Comput. Phys. 229, 7747 (2010).

[23] S. Li, Q. Li, S. Fu, and K. Xu, A unified gas-kinetic scheme for
axisymmetric flow in all Knudsen number regimes, J. Comput.
Phys. 1628, 976 (2018).

[24] S. Chen, K. Xu, C. Lee, and Q. Cai, A unified gas kinetic
scheme with moving mesh and velocity space adaptation, J.
Comput. Phys. 231, 6643 (2012).

[25] Z. Guo, K. Xu, and R. Wang, Discrete unified gas kinetic
scheme for all Knudsen number flows: Low-speed isothermal
case, Phys. Rev. E 88, 033305 (2013).

[26] P. Wang, L. Zhu, Z. Guo, and K. Xu, A comparative study of
LBE and DUGKS methods for nearly incompressible flows,
Commun. Comput. Phys. 17, 657 (2015).

[27] L. Zhu, Z. Guo, and K. Xu, Discrete unified gas kinetic scheme
on unstructured meshes, Comput. Fluids 127, 211 (2016).

[28] Z. Li and H. Zhang, Gas-kinetic numerical studies of three-
dimensional complex flows on spacecraft re-entry, J. Comput.
Phys. 228, 1116 (2009).

[29] A. Peng, Z. Li, J. Wu, and X. Jiang, Implicit gas-kinetic unified
algorithm based on multiblock docking grid for multibody
reentry flows covering all flow regimes, J. Comput. Phys. 327,
919 (2016).

[30] L. M. Yang, Z. Chen, C. Shu, W. M. Yang, J. Wu, and L. Q.
Zhang, Improved fully implicit discrete-velocity method for
efficient simulation of flows in all flow regimes, Phys. Rev. E
98, 063313 (2018).

[31] L. M. Yang, C. Shu, W. Yang, and J. Wu, An improved three-
dimensional implicit discrete velocity method on unstructured
meshes for all Knudsen number flows, J. Comput. Phys. 396,
738 (2019).

[32] S. Liu, P. Yu, K. Xu, and C. Zhong, Unified gas-kinetic scheme
for diatomic molecular simulations in all flow regimes, J.
Comput. Phys. 259, 96 (2014).

[33] C. Liu and K. Xu, A unified gas kinetic scheme for continuum
and rarefied flows: V. Multiscale and multicomponent plasma
transport, Commun. Comput. Phys. 22, 1175 (2017).

[34] Z. Guo and K. Xu, Discrete unified gas kinetic scheme for mul-
tiscale heat transfer based on the phonon Boltzmann transport
equation, Int. J. Heat Mass Transf. 102, 944 (2016).

[35] W. Sun, S. Jiang, and K. Xu, A multidimensional unified gas-
kinetic scheme for radiative transfer equations on unstructured
mesh, J. Comput. Phys. 351, 455 (2017).

[36] C. Liu, Y. Zhu, and K. Xu, Unified gas-kinetic wave-particle
methods I: Continuum and rarefied gas flow, J. Comput. Phys.
401, 108977 (2020).

[37] Y. Zhu, C. Liu, C. Zhong, and K. Xu, Unified gas-kinetic wave-
particle methods: II. Multiscale simulation on unstructured
mesh, Phys. Fluids 31, 067105 (2019).

[38] G. M. Kremer, An Introduction to the Boltzmann Equation
and Transport Processes in Gases (Springer, Berlin/Heidelberg,
2010).

[39] Y. Sun, C. Shu, L. Yang, and C. J. Teo, A switch function-
based gas-kinetic scheme for simulation of inviscid and viscous
compressible flows, Adv. Appl. Math. Mech. 8, 703 (2016).

[40] K. Xu, Gas-kinetic schemes for unsteady compressible flow
simulations, Technical report, von Karman Institute (1998).

[41] V. Venkatakrishnan, On the accuracy of limiters and con-
vergence to steady-state solutions, Proceedings of the 31st
Aerospace Sciences Meeting and Exhibit, Reno, NV (1993), pp.
AlAA 93–0880.

[42] E. M. Shakhov, Generalization of the Krook kinetic relaxation
equation, Fluid Dyn. 3, 95 (1968).

[43] J. Chen, S. Liu, Y. Wang, and C. Zhong, Conserved discrete
unified gas-kinetic scheme with unstructured discrete velocity
space, Phys. Rev. E 100, 043305 (2019).

013304-19

https://doi.org/10.1016/j.jcp.2007.01.022
https://doi.org/10.1006/jcph.2000.6681
https://doi.org/10.1006/jcph.2001.6790
https://doi.org/10.1006/jcph.2001.6898
https://doi.org/10.1063/1.3558869
https://doi.org/10.1063/1.5042016
https://doi.org/10.2514/1.J054837
https://doi.org/10.1063/1.5054961
https://doi.org/10.1186/s42774-019-0001-z
https://doi.org/10.1016/j.jcp.2019.108972
https://doi.org/10.1016/j.jcp.2009.10.008
https://doi.org/10.1017/jfm.2011.188
https://doi.org/10.1088/1742-6596/362/1/012042
https://doi.org/10.1063/1.5004409
https://doi.org/10.1007/s10955-015-1404-9
https://doi.org/10.4208/cicp.OA-2016-0134
https://doi.org/10.1016/j.jcp.2010.06.032
https://doi.org/10.1016/j.jcp.2012.05.019
https://doi.org/10.1103/PhysRevE.88.033305
https://doi.org/10.4208/cicp.240614.171014a
https://doi.org/10.1016/j.compfluid.2016.01.006
https://doi.org/10.1016/j.jcp.2008.10.013
https://doi.org/10.1016/j.jcp.2016.09.050
https://doi.org/10.1103/PhysRevE.98.063313
https://doi.org/10.1016/j.jcp.2019.07.002
https://doi.org/10.1016/j.jcp.2013.11.030
https://doi.org/10.4208/cicp.OA-2017-0102
https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.088
https://doi.org/10.1016/j.jcp.2017.09.036
https://doi.org/10.1016/j.jcp.2019.108977
https://doi.org/10.1063/1.5097645
https://doi.org/10.4208/aamm.2015.m1071
https://doi.org/10.1007/BF01029546
https://doi.org/10.1103/PhysRevE.100.043305

