
PHYSICAL REVIEW E 102, 013302 (2020)

Dynamic Monte Carlo simulations of inhomogeneous colloidal suspensions
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The dynamic Monte Carlo (DMC) method is an established molecular simulation technique for the analysis
of the dynamics in colloidal suspensions. An excellent alternative to Brownian dynamics or molecular dynamics
simulation, DMC is applicable to systems of spherical and/or anisotropic particles and to equilibrium or out-of-
equilibrium processes. In this work, we present a theoretical and methodological framework to extend DMC to
the study of heterogeneous systems, where the presence of an interface between coexisting phases introduces an
additional element of complexity in determining the dynamic properties. In particular, we simulate a Lennard-
Jones fluid at the liquid-vapor equilibrium and determine the diffusion coefficients in the bulk of each phase and
across the interface. To test the validity of our DMC results, we also perform Brownian Dynamics simulations
and unveil an excellent quantitative agreement between the two simulation techniques.
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I. INTRODUCTION

Colloidal suspensions are two-phase systems where dis-
persed macromolecules, supramolecular aggregates, or solid
particles, whose characteristic length and timescales are
within the nano domain, are homogeneously immersed in a
continuum medium. Colloidal suspensions, hereafter simply
referred to as colloids, exhibit a very rich phase behavior,
which is dramatically determined by the equilibrium of the
enthalpic and entropic contributions driven by the interactions
established between their constituents. Similarly to atomic
and molecular systems, colloids can form fluid and solid
phases and can display phase coexistence. For instance,
liquid-vapor coexistence has been reported in colloids of
spherical particles [1,2], while liquid crystals coexisting with
isotropic phases have been reported in colloids of anisotropic
particles under different conditions of density, temperature,
and particle architecture [3–5]. The dynamics of colloidal
particles, commonly referred to as Brownian motion, is gov-
erned by the stochastic collisions with the molecules of the
surrounding fluid and can be efficiently described by Brown-
ian dynamics (BD) and dynamic Monte Carlo (DMC) simu-
lations. In BD simulations, the dynamics is driven by thermal
fluctuations, and the temporal evolution of suspended particles
is determined from the time integration of stochastic differ-
ential equations. By contrast, in DMC simulations, particles
perform random walks in the phase space and their attempted
moves are accepted according to a transition probability that
satisfies the simple balance condition with respect to the
Boltzmann distribution [6].

Understanding the dynamics of colloids is of crucial im-
portance in a range of applications related, for instance, to the
paint and printing industry and the formulation of personal-
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care products. In most practical cases, external forces de-
termine the system deformation and flow, and more than a
single phase can be involved. For example, the presence of
an interface affects the kinetics of formation of crystalline
nuclei in metastable fluids [7]. Recent theoretical and molec-
ular simulation works have proposed innovative methods to
investigate the dynamics of colloids. These include the dy-
namic version of the single-chain mean-field theory, which
can predict and explain the exchange kinetics of pluronics
from micellar aggregates to water solutions [8,9], and the
DMC simulation technique formulated to mimic equilibrium
[6,10–12] and out-of-equilibrium [13] processes. Molecular
dynamics (MD) and BD simulations are generally considered
the techniques of choice to study the dynamics of molecu-
lar and colloidal systems. However, while the deterministic
dynamics of atoms and molecules is well grasped by MD,
the Brownian motion of colloids can only be reproduced by
MD simulations that explicitly incorporate both dispersed
and continuous phases, namely colloidal particles and solvent
molecules, obviously resulting in a significant increase of the
degrees of freedom and an extremely high computational cost.
By contrast, BD simulations are able to implicitly mimic the
presence of the solvent by incorporating drag and stochastic
forces that act on the colloidal particles. Both techniques face
a similar challenge: The time step to integrate the equations of
motion must be relatively small to guarantee accuracy at the
cost of achieving long timescales. This is a minor problem in
dilute systems whose structural relaxation decay is generally
within few nanoseconds but becomes a challenge in dense or
arrested systems, whose dynamics fully develop over much
longer timescales.

The DMC simulation technique can circumvent these lim-
itations. It basically follows the Metropolis acceptance crite-
rion and although the resulting stochastic evolution of states
would be time independent, in the limit of small displace-
ments it becomes equivalent to BD simulations, acquiring
a time-dependent identity [14–16]. Since the mid-2010s, a
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significant number of works has been published on the ap-
plication of DMC as an alternative to BD to investigate the
dynamics of dense colloids. Sanz and coworkers [10,11] stud-
ied the diffusion and nucleation of a colloidal suspension of
spherical and anisotropic particles. Jabbari-Farouji and Trizac
[17] evaluated the performance of DMC compared to BD by
relating the short-time diffusion of MC simulation with the
infinite-dilution diffusion coefficient for spherical and disklike
particles. The DMC method proposed by our group makes
use of the acceptance rate, A, of elementary moves to rescale
the MC time step and demonstrate the existence of a unique
MC timescale that allows for a direct comparison with BD
simulations [6,12]. Our results were in excellent quantitative
agreement with BD simulations of isotropic and liquid crystal
phases. More recently, we extended the DMC technique to
investigate the dynamics during transitory unsteady states,
where the thermodynamic equilibrium of a colloid is modified
by an external field resulting in an out-of-equilibrium dynam-
ics [13]. In this case, the MC time step was rescaled with a
time-dependent acceptance rate, A(t ).

Despite the increasing use of the DMC method to in-
vestigate the dynamics of complex fluids, including liquid
crystals [18–21], most of the attention has been devoted to
develop and test the DMC technique in homogeneous, single-
phase colloids. However, due to the fundamental and practical
relevance of understanding the dynamics close and across
an interface, a theoretical formulation of DMC for systems
where phase coexistence is observed needs to be explored.
The aim of the present work is providing the theoretical
framework to extend our DMC method to the study of hetero-
geneous systems. To this end, we investigate the transport of
Lennard-Jones particles at the vapor-liquid phase coexistence
[1,2,22,23] and calculate their diffusivities at different temper-
atures in the vapor and liquid phases and across their interface.
To test the validity of our method, the diffusion coefficients
have also been obtained by performing BD simulations, which
exhibit an excellent quantitative agreement with the DMC
results.

This paper is organized as follows. In Sec. 2, the theoretical
aspects of the DMC formalism for heterogeneous systems
are presented. In Sec. 3, we provide details on the Lennard-
Jones model employed and on the DMC and BD simulation
protocols. In Sec. 4, we analyze our results highlighting the
migration of spherical particles through the two-phase system
by DMC and BD simulations. Finally, in the last section, we
discuss the most important conclusions of our study.

II. THEORETICAL FRAMEWORK

In this section, we extend the DMC formalism valid for
single-phase colloids to multiphase systems. For simplicity,
we will present our methodology for the specific case of a
biphasic liquid-vapor system. Its generalization to the case
of coexistence between multiple phases is straightforward.
We assume that the liquid and vapor phases are arranged
in an elongated cuboidal box of dimensions Lz � Lx = Ly.
The orientation of the liquid-vapor interfaces is identified
by a unit vector perpendicular to them and parallel to the z
direction. The cuboid is discretized into layers that are parallel
to each other and to the interface, and whose thickness is

δLz = Lz/nV , where nV is an arbitrary number of layers. Each
layer i contains Ni particles and occupies a volume Vi, so that
the box volume is V = ∑nV

i=1 Vi and the total number of par-
ticles is N = ∑nV

i=1 Ni. Clearly, a liquidlike layer hosts more
particles than a vaporlike layer, but this difference is less sig-
nificant for adjacent layers, especially if they are far from the
interface.

Following our previous works, we define an MC move as
an attempt to simultaneously update the f degrees of freedom
of a randomly selected particle. In particular, a particle that
belongs to layer i can be moved to a generic new position
ξ = (ξ1,i, ξ2,i, . . . , ξ f ,i ) within an f -dimensional hyperprism
of sides [−δξκ,i, δξκ,i] and volume V�,i = ∏ f

κ=1(2δξκ,i ). Be-
cause the liquid phase is denser than the vapor phase, the
vaporlike particles are more mobile than liquidlike particles.
More generally, the maximum displacements in the unit of
time, allowed to particles belonging to different layers, grad-
ually change along the z direction, from one phase to another.
This implies that the length of the hyperprism sides, 2δξκ,i,
is not the same across the nV layers. This is a key difference
with respect to homogeneous systems, where the hyperprism
volume can be assumed to be space independent [6,12].
Setting different displacements within the same simulation
box can have an implication on the reversal moves of particles
diffusing from a layer to another and might break the detailed
balance. We have made sure that this is not the case by prop-
erly setting the volumes accessible to particles moving within
the same layer or across different layers, as the probabilities
calculated in Appendix A clarify. With reference to Fig. 1, a
particle originally located in layer i can either move within the
same layer or move to an adjacent layer. In the former case,
the nearest adjacent layer to the particle might stay the same
[Fig. 1(a)] or change [Fig. 1(b)]. The probability of accepting
these trial in-layer and interlayer moves is reported in Eq. (1)
for an in-layer move with a change in the nearest adjacent
layer, in Eq. (2) for an in-layer move with no change in the
nearest adjacent layer, and in Eq. (3) for an interlayer move.

accin(1)
i = min

[
1, e−�U/kBT

(
δzik + m1

δzi j + m2

)(
δzi + m3

δzi + m4

)
δzi j

δzik

]
,

(1)

accin(2)
i = min

[
1, e−�U/kBT

(
δzi j + m0

δzi j + m2

)(
δzi + m3

δzi + m4

)]
,

(2)

accout
i = min[1, e−�U/kBT ], (3)

where δzi is the maximum displacement along the z direction
in layer i, while δzi j = (δzi + δz j )/2 and δzik = (δzi + δzk )/2.
Additionally, m0 = min[an, δzi j], m1 = min[an, δzik], m2 =
min[ao, δzi j], m3 = min[ao, δzi], and m4 = min[an, δzi]. Fi-
nally, ao and an are the distances of the particle from, re-
spectively, the closest adjacent layer before and after the
movement, �U is the energy change between the new and old
configuration, kB the Boltzmann constant and T the absolute
temperature. A detailed derivation of Eqs. (1)–(3) is available
in Appendix A. It turns out that as long as the density
change across adjacent layers is smooth or, equivalently, the
layers are relatively thin, accin(1)

i ≈ accin(2)
i ≈ accout

i ≡ acci =
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FIG. 1. Schematic representation of a particle performing an
o → n move within the same layer (frames a and b) and to an
adjacent layer (frame c). The intervals 2δzi and 2δzi j indicate the al-
lowed range of displacements for in-layer and interlayer movements,
respectively. The vertical dashed lines indicate the center of the layer.
See text for details.

min[1, exp (−�U/kBT )]. This result is exact if (i) the particle
moves from a layer to another, or (ii) original and adjacent
layers are in the same bulk phase, but it is only approximate
if the particle moves across layers that are close or within the
interface region (see Appendix A for details). The excellent
agreement between DMC and BD simulation results shown in
the next section suggests that this approximation is completely
reasonable.

In the light of these considerations, the probability, Pp
move,i,

of moving a particle p can be estimated regardless of whether
p actually remains in its original layer i or not. How-
ever, Pp

move,i is still determined by the extension of the f -
dimensional hyperprism and by the acceptance rate, which
depends on the system density and thus on the region of the
simulation box where p is located. In particular, Pp

move,i is the
product of the probability of randomly selecting one of the N
particles in the box, the probability of moving this particle
to a point within the hyperprism of volume V�,i, and the
probability of accepting the move, defined as Ai ≡ 〈acci〉 (see
Appendix B for details). Equivalently, Pp

move,i = Ai/(NV�,i ).
Therefore, the probability of moving each of the N particles

in an MC cycle, being a cycle equal to N statistically indepen-
dent attempts of moving a particle, reads:

Pmove,i = Ai

V�,i
. (4)

We can apply this probability to calculate the mean dis-
placement and the mean-square displacement of a given de-
gree of freedom κ . The former reads 〈ξκ,i〉 = 0 as expected
for the randomness of Brownian motion, while the latter takes
the form

〈
ξ 2
κ,i

〉 =
∫

V�,i

ξ 2
κ,iPmove,i dξκ,i = Aiδξ

2
κ,i

3
. (5)

In the case of N particles performing CMC cycles, Eq. (5)
reads

〈
ξ 2
κ,i

〉 = CMC
Aiδξ

2
κ,i

3
. (6)

To relate the DMC simulation time step, δtMC, to the
time unit in a BD simulation, tBD, we apply the Einstein
relation, which is equivalent to the Langevin equation at long
times [24]:

δξ 2
κ,i = 2DκδtMC,i, (7)

where Dκ and δtMC,i are, respectively, the diffusion coefficient
at infinite dilution corresponding to the degree of freedom κ ,
and the time needed to perform an MC cycle in the volume
Vi in the MC timescale. Combination of Eqs. (6) and (7)
results in: 〈

ξ 2
κ,i

〉 = 2

3
AiCMCDκδtMC,i. (8)

A combination of the previous equation with the Einstein
relation for BD simulations 〈ξ 2

κ,i〉 = 2DκtBD leads to the fol-
lowing relation between the MC and BD timescales:

tBD = Ai

3
CMCδtMC,i. (9)

This result indicates that particles belonging to different
layers have an identical BD timescale but not necessarily the
same MC time step. This clearly differs from previous studies
on homogeneous colloids, where a single space-independent
time step was used for the entire volume delimiting the phys-
ical space. In multiphase systems, time step and acceptance
rate are expected to be uniform in the bulk regions of each
phase, but this uniformity does not hold in regions close or at
the interface. In particular, the acceptance rate changes such
that the condition given in Eq. (9) is fulfilled for each of the
layers. Generalizing the previous results to the finite set of
volumes {V1,V2, . . . ,VnV }, we obtain the following relation:

A1δtMC,1 = A2δtMC,2 = . . . = AnV δtMC,nV . (10)

This equation provides a relation between the MC time
steps in each layer and guarantee the existence of a unique
BD timescale δtBD, as established by Eq. (9). These results
can be extended to polydisperse or monodisperse multicom-
ponent systems [12] in equilibrium or out-of-equilibrium
processes [13].
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III. MODEL AND SIMULATION METHODOLOGY

To test our theoretical formalism, we have run DMC and
BD simulations of a system containing N = 2000 spherical
particles of diameter σ in an elongated box with periodic
boundaries and dimensions Lx = Ly = 10σ and Lz = 67.5σ .
The value of these parameters is within the range recom-
mended for the study of liquid-vapor coexistence to avoid
undesired finite size effects [25–27]. The interaction between
particles is determined by the Lennard-Jones (LJ) potential

ULJ
(
rpq

) = 4ε

[(
σ

rpq

)12

−
(

σ

rpq

)6
]
, (11)

where ε is the depth of the potential and rpq is the separation
distance between particles p and q. The potential is truncated
and shifted with a cut-off radius of rc = 2.5σ . Consequently,
the potential actually employed in the simulations takes
the form

U (rpq) =
{

ULJ(rpq) − ULJ(rc), if r < rc

0, if r � rc
. (12)

We use σ , ε, and τ = σ 3μ/ε as the units of length, energy,
and time, respectively, where μ is the solvent viscosity. To
equilibrate the systems, we performed standard MC simula-
tions, each consisting of 107 cycles, in the NVT ensemble
at the reduced temperatures T ∗ = kBT/ε = 0.7, 0.8, 0.9, and
1.0. The initial configurations were prepared by arranging all
the particles in a highly dense slab approximately located in
the center of the simulation box along the z direction. The
systems were considered at equilibrium when the total energy
and local densities reached steady values within reasonable
statistical fluctuations. At this stage, a liquid and a vapor phase
could be clearly identified, as shown in Fig. 2.

A. DMC simulations

The simulation box was divided into nV = 33 planar lay-
ers, each with a fixed volume Vi and parallel to the liquid-
vapor interface, being perpendicular to the z coordinate. In
the light of this discretization, displacements, acceptance
rates, and MC time steps in Eqs. (7)–(10) are subject to
variations along the z direction only. The DMC simulations
have been performed in the NVT ensemble, with attempts to
displace randomly selected particles according to the standard
Metropolis algorithm. To properly reproduce the Brownian
dynamics of colloidal spheres, no unphysical moves, such
as swaps, jumps, or cluster moves, have been performed.
Particle displacements, δr, are the sum of three orthogonal
contributions oriented along the simulation box directions.
More specifically, δr = Xxx̂ + Xyŷ + Xzẑ, where Xx, Xy, and
Xz are random numbers that fulfill the condition |Xl | � δrmax,i,
where δrmax,i is the maximum displacement of the particle
along a direction l in Vi. We stress that, in order to satisfy
the detailed balance, the maximum displacements in the z
direction are subject to subtle modifications depending on
whether a particle is displacing within the same layer or
from a layer to another (see Appendix A). In particular, the
maximum displacement in each layer i depends on the particle
diffusion coefficient at infinite dilution, Ds, and the arbitrarily
set MC time step, δtMC,i, as obtained from the Einstein relation

FIG. 2. Typical equilibrium configurations of LJ spheres forming
liquid and vapor phases at T ∗ = 0.7 (a), 0.8 (b), 0.9 (c), and 1.0 (d).

reported in Eq. (7):

δrmax,i = √
2DsδtMC,i, (13)

where, according to the Stokes-Einstein relation, Dsτ/σ 2 =
T ∗/(3π ). The dependence of Ds on temperature is reported
in Table I. The maximum displacement in every slab is
therefore calculated by setting δtMC,i and Ds. According to
Eq. (10), the MC time steps in all the layers are related to each
other through their respective acceptance rates, which are not
known a priori. Since the full set of maximum displacements
are not initially known, it is necessary to implement a prelim-
inary trial-and-error procedure, which follows the algorithm
described below:

(i) Discretize the simulation box in a set of volumes
{V1,V2, . . . ,VnV }.

(ii) Set an arbitrary time step and a reference layer within
the dense phase (i.e., δtMC,ref in the central slab of the liquid
phase).

(iii) Select a random particle, perform a random move and
accept or reject it via the Metropolis algorithm.

TABLE I. Dependence on temperature of diffusion coefficients
at infinite dilution for spheres of diameter σ .

T ∗ 0.7 0.8 0.9 1.0

Dsτ/σ 2 0.0743 0.0849 0.0955 0.1061
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(iv) Repeat this process N times.
(v) Calculate the the set {Ai} of the acceptance rates.
(vi) Keep δtMC,ref fixed and update {δtMC,i} via δtMC,i =

ArefδtMC,ref/Ai.
(vii) Update the maximum displacement (more generally,

the dimensions of the hyperprism) in each layer according to
δrmax,i = √

2DsδtMC,i.
(viii) Repeat from step (iii) until A1δtMC,1 = A2δtMC,2 =

. . . = AnV δtMC,nV .
In this work, the volumes {Vi} are defined by rectan-

gular parallelepipeds with sides Lx, Ly, and δLz. Addition-
ally, we have considered three values for δtMC,ref, namely
10−3τ, 10−2τ , and 10−1τ . The above algorithm exhibits a
relatively fast convergence, which only takes a few thousand
MC cycles, in agreement with previous DMC simulations
of mixtures of spherical and rodlike particles interacting via
repulsive soft potentials [12]. The so-obtained set of values
of the maximum displacements, {δrmax,i}, are finally used in
the DMC production runs to generate the dynamic trajectories
consistently with the particle mobility imposed by the local
density.

B. BD simulations

In BD simulations, a stochastic differential equation, the
so-called Langevin equation, is integrated forward in time
and trajectories of particles are created [28]. For spherical
particles, the position of the center of mass of particle p is
defined as rp and is updated in each BD step by the following
equation:

rp(t + �t ) = rp(t ) + Ds

kBT
Fp(t )�t + (2Ds�t )1/2R0(t ).

(14)
Here Fp is the total force on particle p exerted by the

surrounding particles and R0 = (Rx, Ry, Rz ) is a vector of
Gaussian random numbers with unit variance and zero mean.
In all BD simulations, the time step was set to �t = 10−5τ .

C. Comparison of simulation methodologies

To compare DMC and BD simulation results, we analysed
the particle dynamics in individual layers by measuring the
long-time diffusion coefficients in each volume Vi. Since the
presence of the liquid-vapor interface breaks the symmetry
of the system, the diffusion of the system can be described
by the Einstein-Smoluchowski equation, where diffusion is
expected to change along z. However, if the thickness of
the layers is thin enough, then one can assume the diffusion
coefficients along z (Dz) to remain constant within each
layer and only vary from layer to layer, especially near the
interface. Consequently, the Einstein-Smoluchowski equation
can be decoupled in the x, y, and z directions and a relatively
straightforward calculation of the diffusion coefficients in
the parallel direction (x, y) can be achieved [29]. In the
bulk phases one can expect that Dxy = Dz. By contrast, in
the vicinity of the interface the diffusion of the particles in
the z direction requires solving the Einstein-Smoluchowski
equation subject to an external force, caused by the the
heterogeneity of density. To this end, complex dual simulation
techniques have been implemented [29,30]. In this work, we

calculated two-dimensional diffusion coefficients that refer to
the motion of particles in xy planes parallel to the liquid-vapor
interface. These diffusion coefficients read

Dxy(Vi ) =
〈
�r2

xy(t )
〉
Vi

4t
, (15)

where 〈�r2
xy(t )〉Vi is the local mean-square displacement

(MSD) in the volume Vi defined as [29]

〈
�r2

xy(t )
〉
Vi

= 1

P(t )

〈
1

N (0)

∑
i ∈ λ(0,t )

[rxy,i(t ) − rxy,i(0)]2

〉
, (16)

where λ(0, t ) is defined as the set of particles that reside in
Vi within the time interval [0, t], N (0) the number of such
particles at time 0 and N (0, t ) the number of particles that re-
main in Vi up to time t . Particles leaving the volume Vi during
this time interval are not counted. From these definitions, the
survival probability can be calculated as:

P(t ) =
〈

N (0, t )

N (0)

〉
. (17)

These properties have been measured to investigate the inter-
face dynamics in a wide variety of systems, including water
[29], sodium chloride aqueous solutions [30], supercritical
CO2 in ionic liquids [31], liquid hydrocarbon molecules
(n-octane) confined in inorganic α-SiO2 nanopores [32], and
more recently glycerol confined in γ -Al2O3 nanopores [33].
In principle, one would need long time intervals to increase
the accuracy of Eq. (15), but the number of survival particles
in a given layer dramatically decreases over time. If the layers
were thicker, then the survival probability would increase, but
this would affect the ability of capturing the dynamics in the
interface region. In addition, if the number of layers was dras-
tically decreased, then not only would the information at the
interface boundaries be lost but also the DMC methodology
would no longer be valid. Namely, the hyperprism volumes
would not experience smooth changes from phase to phase,
and the local mean displacements may not fulfill the condition
for Brownian motion in the absence of external forces, that is,
〈ξκ,i〉 = 0. In general, a sensible selection of the sampling time
and layer volume is key to obtain good statistics and achieve
accurate results.

IV. RESULTS AND DISCUSSION

To test the validity of our theoretical formalism, we have
studied the dynamics of a system of 2000 spherical particles
at T ∗ = 0.7, 0.8, 0.9, and 1.0 by DMC and BD simulations.
These temperatures are known to be lower than the critical
temperature, which, for spheres interacting via a truncated
and shifted LJ potential with the same cut-off radius as that
employed in this work, ranges between 1.073 and 1.086
[1,2,22,23,34–36]. The typical equilibrium configuration at
these temperatures consists of a central liquid phase separated
from a vapor phase by two roughly planar interfaces, as shown
in Fig. 2. The thickness of the liquid region is approximately
25σ at T ∗ = 0.7 and 28σ at T ∗ = 1.0. Such a thickness,
slightly larger than 10rc, guarantees that the central region
of the liquid phase is not influenced by the interfaces. On
increasing temperature, the phase diagram indicates that the

013302-5



GARCÍA DAZA, CUETOS, AND PATTI PHYSICAL REVIEW E 102, 013302 (2020)
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0.8

ρ(
z)

/σ
-3

T* = 0.7
T* = 0.8
T* = 0.9
T* = 1.0

FIG. 3. Density profiles along the z direction of the simulation
box at T ∗ = 0.7 (©), 0.8 (�), 0.9 (♦), and 1.0 (�). Symbols indicate
DMC simulation results, whereas the solid lines are hyperbolic fits
of the type given in Eq. (18).

density of the liquid and vapor phases must, respectively,
decrease and increase. This is indeed what we observe at the
end of our equilibration runs. In addition, we also notice a
change in the thickness and density of the interfaces as the
density profiles of Fig. 3 suggest.

To obtain these profiles, we calculated the average number
of particles, 〈Nz〉, in each layer along the box z direction and
divided it by the layer volume Vz, that is, ρ(z) = 〈Nz〉/Vz. In
Fig. 3, we only report the density profiles as obtained with
DMC simulations, being the corresponding BD simulation
results basically identical and not shown here. In particular,
the density of the bulk liquid phase, ρl,bulk, decreases from
0.788σ−3 at T ∗ = 0.7 to 0.576σ−3 at T ∗ = 1.0, whereas
the density of the bulk vapor phase, ρv,bulk, increases from
0.708 × 10−4σ−3 to 0.092σ−3 at the same temperatures, in
excellent agreement with former results [1,2,23,34–39]. The
density profiles shown in Fig. 3 have been fitted with a
linear combination of hyperbolic tangent functions of the form
[25,40]:

ρ(z) = 1

2
(ρl + ρv ) + 1

2
(ρl − ρv ) tanh

[
2(z − z0)

d

]
, (18)

where z0 is the approximate location that is equidistant from
the liquid and vapor phase, and d is the interface thickness.
In particular, d/σ = 1.94, 2.43, 3.25, and 5.21 at T ∗ = 0.7,
0.8, 0.9, and 1.0, respectively, in very good agreement with
MD simulation results [1,39]. The calculated values of the
interface thickness are relevant to set a suitable thickness δLz

of the layers of volume Vi that are needed for the discretization
of the simulation box and the analysis of the dynamics. After
some preliminary tests, we set δLz = 2.04σ , which is 0.1σ

larger than the smallest interface thickness at the temperatures
studied. Following this discretization, we applied the proce-
dure described in Sec. 3.1 to calculate the acceptance rate in
each layer, being reported in Fig. 4 for three different values
of the reference time step: δtMC,ref/τ = 10−3, 10−2, and 10−1.
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FIG. 4. Acceptance rates along the z direction of the simulation
box at three different values of the reference MC time step: (a)
δtMC,ref/τ = 10−3, (b) δtMC,ref/τ = 10−2, and (c) δtMC,ref/τ = 10−1.
The solid lines are hyperbolic fits of the type given in Eq. (18).

In general, we observe an increase in the acceptance rate
from the liquid, through the interface, to the vapor phase.
The local acceptance rate is tightly related to the free volume
available to the particles. Because this free volume is rela-
tively small in the liquid phase, the probability of successfully
moving liquidlike particles is lower than that of successfully
moving vaporlike particles. This effect is especially evident
at low temperatures, where the density difference between
the liquid and vapor phases is larger (see Fig. 3). Particles
at the interface display an intermediate behavior, with an
acceptance-rate profile that links the values of the bulk of each
phase. More evident is the effect of the reference time step,
δtMC,ref. While the acceptance-rate difference between bulk
liquid and vapor phase is up to 10% at δtMC,ref/τ = 10−3 (0.92
vs. 1.0 at T ∗ = 0.7), it increases to 60% at δtMC,ref/τ = 10−1

(0.37 vs. 0.99 at T ∗ = 0.7). This substantial disparity results
from δrmax ∝ √

δtMC as increasing the MC time step leads to
a remarkable increase of the maximum particle displacement
and to a decrease in the acceptance rate. The rescaled MC time
step in each layer, δtMC,i, is shown in Fig. 5.

According to Eq. (10), each of these time steps is pro-
portional to the ratio Aref/Ai. For layers that are especially
close to the reference layer, which was arbitrarily set in the
bulk liquid phase, Aref/Ai ≈ 1.0 and thus the associated MC
time step is expected to be very similar to the reference time
step. By contrast, for layers progressively farther from the
reference layer, Fig. 4 indicates that Ai > Aref, resulting in
a lower MC time step as one can observe in Fig. 5. For
this reason, δtMC,i especially changes for δtMC,ref/τ = 10−1

[Fig. 5(a)], but less significantly as δtMC,ref/τ decreases to
10−2 and 10−3 [Figs. 5(b) and 5(c)]. Not surprisingly, the
MC time step does not change with temperature in the liquid
layers for each separate reference time step. This is simply due
to the fact that δtMC,i = δtMC,refAref/Ai ≈ δtMC,ref in the bulk
liquid and the value of δtMC,ref is the same for Figs. 5(a), 5(b)
and 5(c). By contrast, δtMC,i �= δtMC,ref in the interface or in
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FIG. 5. MC time step along the z direction of the simulation
box for three different values of the reference MC time step:
(a) δtMC,ref/τ = 10−1, (b) δtMC,ref/τ = 10−2, and (c) δtMC,ref/τ =
10−3. The solid lines are hyperbolic fits of the type given in Eq. (18).

the vapor phase, because Ai �= Aref . The corresponding max-
imum displacements, calculated from Eq. (13), are reported
in Fig. 6 for each layer along the longitudinal box direction.
At a given δtMC,ref, the maximum displacement increases with
the particle diffusion coefficient at infinite dilution, which in
turn increases with temperature (see Table I). We also notice
that, on decreasing δtMC,ref, the difference between the max-
imum displacements across the layers reduces considerably,
eventually disappearing at δtMC,ref/τ < 10−3.

In the light of these preliminary results, which are essen-
tial to correctly mimic the Brownian dynamics and produce
meaningful trajectories across the liquid-vapor interface, we
now present the MSD and the diffusion coefficients in the
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FIG. 6. Maximum displacements along the longitudinal direc-
tion of the simulation box for δtMC,ref/τ equal to (a) 10−1, (b) 10−2,
and (c) 10−3. The solid lines are hyperbolic fits of the type given
in Eq. (18).

FIG. 7. MSDs of LJ particles calculated in liquidlike (�,♦),
vaporlike (�,�), and interface-like (•,©) layers at T ∗ = 0.7.
Solid and empty symbols represent the MSDs obtained from BD and
DMC simulations of heterogeneous systems, respectively. Solid and
dashed lines refer to MSDs obtained from independent BD and DMC
simulations of single phases, respectively. Note the double linear
scale of the inset.

bulk and at the interface. We stress that, within each layer,
only the MSDs in the directions perpendicular to z have been
calculated here. Such two-dimensional MSDs are shown in
Fig. 7 for δtMC,ref/τ = 10−3 and T ∗ = 0.7 (similar tendencies
are observed at larger temperatures). The filled and empty
symbols refer to the MSDs obtained from BD and DMC
simulations, respectively, in liquidlike (diamonds), vaporlike
(squares), and interface-like (circles) layers, whereas the solid
and dashed lines are MSDs obtained from BD and DMC in
single-phase systems. In particular, the DMC simulations of
single-phase systems have followed the procedure reported
in our previous work on monocomponent systems, with
δtMC/τ = 10−4 [6].

The inset of Fig. 7 presents the MSDs in double-linear
scale to better appreciate the degree of agreement of BD and
DMC simulations of homogeneous systems with their corre-
sponding simulations of heterogeneous systems. The quanti-
tative agreement is very good, with some deviations detected
in the MSD of vaporlike particles, which are especially mobile
and thus less prone to remain in the same layer for a long time,
so reducing the statistical precision. Due to the necessarily
small time step and the limited number of particles observed
especially in vapourlike layers, the MSDs obtained with BD
simulations in discretized systems have been calculated up to
t ≈ 25τ . Beyond this time, much longer simulations would be
needed to compensate the statistical uncertainty. In any case,
the diffusive regime is reached well before this time, with
no effect on our analysis. More specifically, particles in the
vapor phase enter the long-time diffuse regime very quickly,
while those in the liquid phase experience an intermediate
subdiffusive regime, approximately three decades long, before
entering the long-time diffusive regime at t/τ ≈ 10. Particles
at the interface exhibit an in-between MSD, seemingly closer
to that of the liquid phase for the specific case of Fig. 7,
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FIG. 8. Diffusion coefficients in the bulk of liquid (©) and vapor
(�) phases. Solid and dashed lines refer to BD and DMC simulations,
respectively. Error bars are smaller than the symbols’ size.

although vaporlike MSDs have been observed in interface-like
layers closer to the vapor phase. From the long-time slope of
the MSD, we obtained the diffusion coefficients, Dbulk, in the
bulk vapor and liquid phases, which are reported in Fig. 8 as
a function of temperature. Again, the agreement between BD
and DMC simulations is very good.

Having established that the DMC method is able to repro-
duce the Brownian dynamics in the bulk of the two coexisting
phases, we now investigate the dynamics at the interface
in more detail. To this end, we applied Eqs. (16) and (17)
to calculate the diffusion coefficient, Dxy(z), in the layers
parallel to the liquid-vapor interface. Figure 9 reports Dxy(z)
at different temperatures as calculated by BD and DMC sim-
ulations. Three different reference time steps have been con-
sidered in the DMC simulations, namely δtMC,ref/τ = 10−3,
10−2, and 10−1. The diffusion coefficients in the liquid phase
are consistently lower than those in the vapor phase, while
those at the interface follow a trend that is well described
by an hyperbolic function of the type given in Eq. (18).
As temperature increases, the diffusion coefficients in both
liquid and vapor phases increase too, closely following the
DMC simulation results obtained in single-phase systems and
reported as horizontal dashed lines.

In general, the diffusive behavior is well captured by the
DMC method at all the reference MC time steps. We notice
that small fluctuations are observed for Dxy(z) in the vapor
phase, most likely due to the relatively small layer volume,
{Vi}, where the diffusion coefficients are calculated. A small
{Vi} implies a short in-layer residence time, which determines
the extent of the statistical noise in our results. By contrast,
the statistical uncertainty associated to the Dxy(z) measured
in the liquid phase is negligible, since the in-layer residence
time, in this case, is larger. We also notice that the DMC
results are not influenced by the choice of δtMC,ref as all the
rescaled results collapse on a single master curve. A modest
discrepancy (10% to 14%) between the Dxy(z) obtained by
heterogeneous DMC and that obtained by single-phase DMC
and BD simulations has been detected in the bulk liquid

10
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-1
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10
-1

D
xy

(z
)/

σ2 τ-1 (b)

10
-2

10
-1

(c)
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z/σ
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FIG. 9. Diffusion coefficients along the z direction at (a) T ∗ =
0.7, (b) T ∗ = 0.8, (c) T ∗ = 0.9 and (d) T ∗ = 1.0, for δtMC,ref/τ =
10−3 (©), 10−2 (�), and 10−1 (♦). Solid circles (•) refer to
the diffusion coefficients obtained by BD simulations. Upper and
lower dashed lines indicate the value of the diffusion coefficients
calculated, respectively, in the vapor and liquid phase from DMC
simulations in single-phase systems. The solid lines are a fit to
a linear combination of hyperbolic functions of the type given in
Eq. (18).

for δtMC,ref/τ = 10−1. This difference is most likely due to
the approximation accin ≈ accout = min[1, exp (−�U/kBT )]
discussed in Sec. II and Appendix A. This assumption is
fully satisfied at small δtMC,ref, but becomes less reliable
as δtMC,ref increases. For instance, in a liquidlike layer at
T ∗ = 0.8, Ain = 0.936, and Aout = 0.930 for δtMC,ref/τ =
10−3 (≈1% difference), but Ain = 0.468 and Aout = 0.417
for δtMC,ref/τ = 10−1 (≈11% difference). Assuming that Ain

is smaller than its actual value leads to a shorter maximum
displacement, which in turn limits the particle diffusion.
Additionally, as discussed in Appendix A, the volume of
the f -dimensional hyperprism near the layer border might
change moderately in order to fulfill the reverse MC moves
and preserve the detailed balance condition. If the hyperprism
volume decreases, then more particles will displace inside the
layer and less to the adjacent layers. This can slightly increase
the density of the liquid phase and thus slow down diffusion.
The range of applicability of the DMC simulation technique is
then set by the value of the reference time step: a small δtMC,ref

would imply demanding simulations to achieve the long-time
dynamics, but exact results; while a large δtMC,ref would imply
shorter simulations, but approximate results. In the light of
these findings, a remarkably good agreement between DMC
and BD simulations is observed with moderate discrepancies
at large DMC time steps. This indicates that the efficiency
of DMC compared to BD simulations lies in the possibility
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of reaching longer timescales by increasing the elementary
time step, as previously observed in equilibrium [6,12] and
out-of-equilibrium [13] homogeneous systems. In particular,
the latter work showed that DMC simulations were at least one
order of magnitude faster than BD simulations for a system or
rodlike particles in the presence of an external field.

V. CONCLUSIONS

In summary, we extended the DMC simulation technique
in order to investigate the dynamics of colloids that display
phase coexistence. To this end, we first showed how to con-
sistently displace particles that are in the bulk of each phase
or in the interface region between them. More specifically,
we discretized the space in thin layers i, assigned an arbitrary
MC time step to a reference layer, and then calculated the MC
time steps in the remaining layers by imposing the condition
AiδtMC,i = ArefδtMC,ref. This condition produces a specific
maximum displacement for each layer that sets the limit of
the actual particle displacement and ensures a consistent dy-
namics across the system. The probability of generating a new
configuration, according to the detailed balance condition,
follows an acceptance rule that depends on whether a particle
attempts an in-layer or an interlayer move. Nevertheless, in the
limit of layers as thin as the interface, we have shown that the
general Metropolis scheme with acci = min [1, e−�U/kBT ] can
be applied regardless the specific movement being attempted.
Finally, by rescaling the MC time step with the acceptance
rate, the results based on any arbitrary reference time-step
collapse on a single master curve that reproduces the effective
Brownian dynamics of the system.

To test the validity of our theoretical framework, we stud-
ied a system of colloidal spheres interacting via a shifted and
truncated LJ potential and displaying liquid-vapor coexistence
in a range of temperatures. In particular, we calculated the
MSD in the bulk liquid and vapor phases by running BD and
DMC simulations in single-phase systems and compared it
with the MSD obtained with the discretized BD and DMC
methods in two-phase systems. The quantitative agreement
between the four simulation methods was excellent, with the
discretized DMC technique giving additional insight into the
long-time dynamics at the interface between liquid and vapor.
We also calculated the diffusion coefficients in the bulk and
at the interface. Also in this case the agreement was very
good, especially for shorter MC time steps. On increasing
the time step, the acceptance rules for in-layer and interlayer
moves become more and more different. In this case, separate
distribution probabilities should be applied or, to keep the
efficiency of the method, the time step should be reduced.

The DMC methodology presented in this work is ap-
plicable to anisotropic particles with a higher number of
degrees of freedom that display a rich phase coexistence
behavior. Nonetheless, there are some limitations that we
would like to highlight here. First, the method can be ap-
plied to study steady-state processes, where the acceptance
rate only changes in space, but it is constant over time.
For out-of-equilibrium heterogeneous systems, space-time-
dependent acceptance rate distributions should be defined.
Second, the DMC neglects the long-range solvent-mediated
hydrodynamic interactions, which can have an impact in the

dynamics of dense colloids. We also note that, in the current
form, the present DMC methodology has been formulated
for monodisperse systems, but it can be extended to multi-
component systems following the approach suggested in our
previous work [21].
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APPENDIX A: DETAILED BALANCE IN DYNAMIC
MONTE CARLO OF HETEROGENEOUS SYSTEMS

Let us consider an elongated cuboidal box with square
cross section in a (x, y, z) Cartesian coordinate system, with
its longest side oriented along z. This box can be assumed
to be formed by parallel layers, piling on top of each other
along z and all with the same volume. Each layer contains
a given number of particles that can perform in-layer or
interlayer displacements. Figure 10 shows a particle initially
located at position o in layer i and at a distance ao from its
nearest adjacent layer j. This particle can move within an
f -dimensional hyperprism delimited by f degrees of freedom.
For spherical particles, there are three degrees of freedom that
define the hyperprism volume, which is V�,i = 8δxiδyiδzi, but
only one is relevant in our discussion, namely the maximum
displacement along z. If a particle originally in o attempts
an in-layer move, then its displacement is within the interval
[−a0, δzi]. By contrast, if the particle attempts to move from
layer i to layer j, then the interval is [−δzi j,−a0], where
δzi j = (δzi + δz j )/2 is defined as the average of the maximum
displacements that can be performed in contiguous layers. To
meet the detailed-balance condition, the accessible volume
must be defined in such a way that moves across layers are
equally probable in both directions. To this end, we identified
the nearest adjacent layer to which the particle can move
(layer j, in Fig. 10) and distinguished three possible scenarios:
(1) a particle moves inside the same layer and its nearest
adjacent layer changes, (2) a particle moves inside the same

FIG. 10. A particle in layer i can move within i or to the adjacent
layer j. In the former case, it will move within the interval [−a0, δzi],
in the latter case within the interval [−δzi j, −a0].
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FIG. 11. A particle moving inside the same layer i and changing
its nearest adjacent layer from j to k.

layer and its nearest adjacent layer does not change, and (3) a
particle moves from a layer to another. In these three cases, the
probability of performing a move is the product of four terms:
the probability of finding a particle in a given configuration,
the probability of moving this particle within the same layer
or to an adjacent layer, the probability of selecting a new
configuration, and the probability of accepting the move.
In order to satisfy the detailed balance condition, we have
defined the probability of moving a particle within the same
layer as (δzi j + ao)/2δzi j . Consequently, the probability of
moving it to an adjacent layer reads 1 − (δzi j + ao)/2δzi j =
(δzi j − ao)/2δzi j . The other terms are case specific and are
discussed below.

1. In-layer displacements: The nearest adjacent layer changes

This scenario is displayed in Fig. 11. Initially, the particle
is at position o and at a distance ao from its nearest adjacent
layer j. Following an MC move, its new nearest adjacent layer
is k and the distance from it is an.

To find the acceptance rule for this movement, we impose
that the probability to move a particle from o to n is the same
as that of moving it from n to o. More specifically,

Pon = Po

(
δzi j + ao

2δzi j

)(
1

δzi + ao

)
accin(1)

i,on , (A1)

where Po is the probability of finding a particle in o,
(δzi j + ao)/2δzi j is the probability of moving that particle
within layer i, 1/(δzi + ao) is the probability of displacing the
particle to a point in layer i, and accin(1)

i,on is the probability of
accepting the movement. Similarly,

Pno = Pn

(
δzik + an

2δzik

)(
1

δzi + an

)
accin(1)

i,no . (A2)

To satisfy the detailed-balance condition, it is crucial to
calculate the probability of moving a particle within the
same layer using the average maximum displacements across
contiguous layers, that is δzi j = (δzi + δz j )/2 for Pon and
δzik = (δzi + δzk )/2 for Pno. As mentioned above, the two
probabilities must be equal:

Po

(
δzi j + ao

2δzi j

)(
1

δzi + ao

)
accin(1)

i,on

= Pn

(
δzik + an

2δzik

)(
1

δzi + an

)
accin(1)

i,no . (A3)

FIG. 12. Representation of a particle moving from an initial layer
i to and adjacent layer j.

Therefore, the acceptance rule reads

accin(1)
i = min

[
1, e−�U/kBT

(
δzik + an

δzi j + ao

)(
δzi + ao

δzi + an

)
δzi j

δzik

]
.

(A4)

If ao and an are larger than the maximum displacement
allowed, in order to ensure the correct normalization of the
above probabilities, then the acceptance rule should take the
following general form

accin(1)
i = min

[
1, e−�U/kBT

(
δzik + m1

δzi j + m2

)(
δzi + m3

δzi + m4

)
δzi j

δzik

]
,

(A5)

where m1 = min[an, δzik], m2 = min[ao, δzi j], m3 =
min[ao, δzi], and m4 = min[an, δzi] and the difference �U
is the change in energy between the new and old states as a
result of the MC move.

2. In-layer displacements: The nearest
adjacent layer does not change

In this case, δzik = δzi j and an is the distance of the particle
from the same nearest adjacent layer j after the movement.
Hence, the acceptance rule reads

accin(2)
i = min

[
1, e−�U/kBT

(
δzi j + m0

δzi j + m2

)(
δzi + m3

δzi + m4

)]
,

(A6)

where m0 = min[an, δzi j].

3. Interlayer displacements

This case is illustrated in Fig. 12. Using the previous defi-
nitions and similar arguments, the detailed balance condition
now reads

Po

(
δzi j − ao

2δzi j

)(
1

δzi j − ao

)
accout

i,on

= Pn

(
δzi j − an

2δzi j

)(
1

δzi j − an

)
accout

i,no, (A7)

which, by using the Boltzmann distribution for the state
probabilities, reduces to the general Metropolis criterion:

accout
i = min[1, e−�U/kBT ]. (A8)
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Finally, to test the validity of the three acceptance crite-
ria, we consider the case of homogeneous systems. In this
case, the maximum displacements remain constant regardless
the layer, i.e., δz = δzi = δz j = δzk , therefore, δz = δzi j =
δzik . In view of these considerations, the acceptance criteria
accin(1)

i = accin(2)
i = accout

i , and thus the general Metropolis
rule of Eq. (A8) is recovered. For heterogeneous systems,
if the layers are sufficiently small such that the changes in
density are smooth in space, namely, the hyperprism volume
does not change significantly across the layers, it is plau-
sible to assume that the average maximum displacement in
adjacent layers is basically constant, i.e., δzi ≈ δzi j ≈ δzik

and the acceptance probabilities accin(1)
i ≈ accin(2)

i ≈ accout
i =

min [1, e−�U/kBT ]. We have employed this approximation in
the DMC simulations discussed in this work.

APPENDIX B: MEAN-SQUARED DISPLACEMENT

If the layer thickness is only slightly larger than the max-
imum particle displacement δzmax, the latter should change
very smoothly from one phase to the other. Therefore, one
can assume δzi j ≈ δzik , and accin(1)

i = accin(2)
i = accin

i from
Eqs. (A5) and (A6). Under such an assumption, the in-
layer displacements can be computed with probability Ain

i ≡
〈accin

i 〉, whereas the interlayer displacements with probability
Aout

i ≡ 〈accout
i 〉. In the light of these considerations and fol-

lowing the sketch of Fig. 10, the mean displacement can be
calculated as:

〈zi〉 =
∫ δzi

−ao

z Pin
move,i dz +

∫ −ao

−δzi j

z Pout
move,i dz, (B1)

where Pin
move,i and Pout

move,i are the probabilities of moving inside
and outside the layer i within the hyperprism of volume
V in

�,i ∝ [−ao, δzi] and V out
�,i ∝ [−δzi j,−ao], respectively. As

defined in Sec. II, these probabilities include the probability
for the particle to stay or leave the layer, the probability of

moving the particle in the region defined by V in
�,i or V out

�,i ,
and the probability of accepting the move. Thereby, the mean
displacement now reads

〈zi〉 =
∫ δzi

−ao

δzi j + ao

2δzi j

Ain
i

δzi + ao
z dz

+
∫ −ao

−δzi j

δzi j − ao

2δzi j

Aout
i

δzi j − ao
z dz. (B2)

Contrary to what observed in homogeneous systems, this
results indicates that 〈zi〉 �= 0. However, if δzi j ≈ δzi and
accin

i ≈ accout
i , then Ain

i ≈ Aout
i and thus 〈zi〉 ≈ 0. These con-

ditions are fully accomplished in the bulk layers and also
in the interface layers if these are sufficiently small. Analo-
gously, the MSD can be calculated from

〈
z2

i

〉 =
∫ δzi

−ao

z2Pin
move,idz +

∫ −ao

−δzi j

z2Pout
move,idz. (B3)

If the particle is restricted to move exclusively in the layer
(ao > δzi j), then only the first term in the right-hand side
of Eq. (B3) becomes relevant and the MSD is equivalent to
the one calculated in the case of single-phase systems. On
the other hand, if the probability for the particle to move to
its nearest layer is nonzero and if we consider sufficiently
small layers, such that δzi j ≈ δzi, then the MSD can be
approximated by

〈
z2

i

〉 = Ain
i

2δzi

δz3
i + a3

0

3
+ Aout

i

2δzi

δz3
i − a3

0

3
. (B4)

If we now incorporate the result of Appendix A, that is,
Ain

i ≈ Aout
i , then

〈
z2

i

〉 = Aiδz2
i

3
. (B5)
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