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Solitary and periodic waves in collisionless plasmas: The Adlam-Allen model revisited
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We consider the Adlam-Allen (AA) system of partial differential equations, which, arguably, is the first model
that was introduced to describe solitary waves in the context of propagation of hydrodynamic disturbances in
collisionless plasmas. Here, we identify the solitary waves of the model by implementing a dynamical systems
approach. The latter suggests that the model also possesses periodic wave solutions—which reduce to the solitary
wave in the limiting case of an infinite period—as well as rational solutions that are obtained herein. In addition,
employing a long-wave approximation via a relevant multiscale expansion method, we establish the asymptotic
reduction of the AA system to the Korteweg–de Vries equation. Such a reduction is not only another justification
for the above solitary wave dynamics, but may also offer additional insights for the emergence of other possible
plasma waves. Direct numerical simulations are performed for the study of multiple solitary waves and their
pairwise interactions. The stability of solitary waves is discussed in terms of potentially relevant criteria, while
the robustness of spatially periodic wave solutions is touched upon via numerical experiments.
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I. INTRODUCTION

The fundamental work of Adlam and Allen in 1958 and
1960 [1,2] constituted one of the very first examples of models
that may exhibit solitary-wave dynamics, arguably the very
first one in the important field of plasma physics. Indeed, this
work preceded the hallmark efforts of Kruskal and Zabusky
in 1965 [3] concerning the study of solitary waves and their
interactions in the context of the famous Fermi-Pasta-Ulam
problem [4] and its connections with the Korteweg–de Vries
(KdV) equation [5]. In addition, the Adlam-Allen (AA) model
and its solitary wave was introduced earlier than the seminal
work of Washimi and Taniuti [6], who showed that the one-
dimensional (1D) long-time asymptotic behavior of small-
amplitude ion-acoustic waves in plasmas is described by the
KdV equation. The above works paved the way for numerous
investigations in the nonlinear physics of plasmas, which
proved to be a fertile ground for the study of solitary waves
and solitons in integrable and nearly integrable equations
[7,8]. In view of the above, the AA model seems to have
received far less than its share of interest and associated
research attention within the field of nonlinear waves and
solitons, as has been discussed, e.g., in Ref. [9]. A recent
revisiting of the relevant subject can be found in Ref. [10],
where the role of the so-called j × B force in a collisionless
plasma was discussed.

Our aim in the present work is to revisit the AA model.
In particular, upon shortly introducing the original motivation
and formulation of the AA system of partial differential equa-
tions (PDEs), we start from its reduced—and more tractable
for analysis—form presented in Ref. [2]. First we derive the
Lagrangian density of the system, as well as the Hamiltonian

density and momentum of the system. Then, we study the
linear regime and show that the AA model features the lin-
ear dispersion relation of the improved Boussinesq equation,
which is known to describe bidirectional shallow water waves
[11]. Proceeding further, we seek traveling waves that can be
supported by the model, and use techniques from the theory of
nonlinear dynamical systems to study the associated second-
order ordinary differential equation (ODE). We identify exact
and analytically expressed (as per the original efforts of [1,2])
solitary waves, corresponding to homoclinic orbits in the asso-
ciated phase plane of the conservative dynamical system. We
find that these waves have speeds between one and two times
the characteristic Alfvén speed [1]. This dynamical systems
approach also enables the identification of periodic orbits,
reminiscent of the elliptic function solutions (corresponding
to the so-called “cnoidal waves”) of the KdV equation; these
periodic orbits correspond to spatially periodic solutions of
the original AA system. Interestingly, a degenerate case of the
relevant ODE, corresponding to the case in which the traveling
wave propagates with exactly the Alfvén speed, leads to the
existence of a rational-type solution. Furthermore, by imple-
menting a suitable multiscale asymptotic expansion, based
on a long-wave approximation, we show that the original
AA system can be approximated by the KdV equation, and
that—in the small-amplitude limit—the exact solitary waves
of the AA system reduce to the KdV solitons.

The above strong justification for the potential of solitary-
wave dynamics motivates us to study the interaction of mul-
tiple solitary waves of the AA model by direct numerical
simulations. When colliding two such waves, we find the
interaction between them to be nearly (but not completely)
elastic with a clearly observable phase shift between the two
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solitary waves. While our findings suggest that the AA model
is likely not to be completely integrable, further investigation
of the relevant topic is certainly worthwhile. We also perform
a numerical study on perturbations of the identified spatially
periodic solutions, which suggests their potential robustness.
Furthermore, we show that in the small-amplitude (KdV)
limit, the stability of the traveling waves is justified by the
relevant stability criterion (of a Vakhitov-Kolokolov type [12],
namely involving the derivative of a conserved quantity such
as the momentum with respect to the corresponding Lagrange
multiplier, namely the speed, described herein) for KdV-type
equations; see, e.g., [13–16] as well as references therein.
Interestingly, the monotonicity (implying stability) of the rele-
vant momentum dependence on speed is preserved throughout
the interval of speeds for which the AA solitary waves are
physically relevant, being suggestive of a qualitatively similar
result for arbitrary speeds; nevertheless, admittedly we can
only support this on the basis of the above criterion for speeds
near the Alfvén speed. In an interesting parallel development,
we leverage recent work on quadratic operator pencils [17]
to illustrate that an analogous criterion for Klein-Gordon-
type equations also exists on the basis of the Klein-Gordon
momentum and its monotonic dependence on the speed. We
have also evaluated the relevant quantity and have shown
that the corresponding sign of the derivative is also one that
reflects stability in the Klein-Gordon case. While the present
model is neither of the KdV nor of the Klein-Gordon type, the
fulfillment of these stability criteria, together with the results
of direct numerical simulations, allows us to conjecture the
generic stability of the AA model traveling waves. Finally,
we comment on the case of rational solutions due to their
mathematical interest.

Here, we should make a few remarks regarding the applica-
bility of our results in plasma physics. First, we should point
out that, although we establish a strong connection of the AA
model with the KdV equation, which is known to describe
nonlinear ion-acoustic waves in plasmas (see, e.g., Ref. [7]),
the waves supported by the AA model are not directly re-
lated to ion-acoustic waves. Indeed, the AA model describes
“hydrodynamic waves” in quasineutral collisionless plasmas
propagating perpendicular to a magnetic field. In comparison,
e.g., with the classic work of [6] on ion-acoustic waves, our
model bears velocity both along the x- and the y-direction
(although both are x-dependent) and features both magnetic,
as well as electric fields, as opposed to the single-speed and
solely electric-field dependence of [6]. Second, regarding the
applicability of the AA model, first we note that the early work
[1] was carried out in the early days of fusion research. Thus,
the waves supported by the AA model—which is the main
theme of this work—may find applications in fusion research,
but also in astrophysical observations. In astrophysics, such
waves may be associated with the Earth‘s bow shock [18],
coronal mass ejections [19], and plasma release experiments
[20]. More practically, at a physical level, the AA model
describes the waves associated with the evolution of charged
particles (ions and electrons under quasineutrality conditions)
emerging when assuming planar propagation of the particles
with all quantities assumed to depend only along the traveling
direction x and the magnetic field is transverse to the direc-
tion of motion. Remarkably this situation appears to feature

solitary-wave propagation due to the effective nonlinearity
of the j × B force [10], but also, as shown below, to enable
periodic traveling waves to arise.

The presentation of the paper is as follows: In Sec. II,
we describe the AA model, and we present our analytical
approaches for the identification of the exact solitary-wave so-
lutions and the connection of the model to the KdV equation.
In Sec. III, we present the results of our numerical studies.
Section IV summarizes our findings and briefly discusses
potential future studies for the AA and other related models.

II. THE MODEL AND ITS ANALYTICAL CONSIDERATION

A. Presentation of the AA model

The study of Refs. [1,2] concerned electrons and ions
in a plasma, where the magnetic field is in the z-direction,
and no variations of the pertinent fields along the y or z
directions were considered. Furthermore, it was assumed that
appreciable amounts of energy are given to the particles in the
waves (e.g., 10 keV—see Ref. [1]). The applications of that
work were intended to lie both in the field of fusion research
as well as in the study of astrophysical phenomena, such as
the solar wind [21].

Let us denote by U1,U2 the velocities along the x-direction
of two distinct masses m1 and m2 and the corresponding
velocities along the y-direction by V1 and V2. We express the
densities as n1, n2 and the charges as e1, e2, with e1 + e2 = 0.
Then, the force balance equations and Maxwell field equations
are

U1,t + U1U1,x = e1

m1

[
Ex + V1Bz

c

]
, (1)

V1,t + U1V1,x = e1

m1

[
Ey − U1Bz

c

]
, (2)

U2,t + U2U2,x = e2

m2

[
Ex + V2Bz

c

]
, (3)

V2,t + U2V2,x = e2

m2

[
Ey − U2Bz

c

]
, (4)

∂Hz

∂x
= −4π

c
[n1e1V1 + n2e2V2], (5)

∂Ey

∂x
= −1

c

∂Bz

∂t
, (6)

where c denotes the speed of light. It is now assumed that the
velocities along the x-direction are equal, i.e., U1 = U2, and
similarly the densities for the electrons and ions are also equal,
i.e., n1 = n2; thus, the relative velocity between them can be
referred to as V = V1 − V2. A key consideration here is the
quasineutrality of the plasma. This means that there is a very
small difference between n1 and n2 responsible for the electric
field, yet we may approximately assume n1 = n2 ≡ n for prac-
tical purposes, an assumption that is valid when the electron
plasma frequency is much greater than the electron gyrofre-
quency. The relevant criterion given in Ref. [1] also provides
the condition for the nonrelativistic equations to be valid.

One can then switch to a Lagrangian (moving with the
particles) coordinate system and adimensionalize over char-
acteristic scales of the magnetic field B� (i.e., B �→ B/B�)
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and density n� (i.e., n �→ n/n�). In this framework, the speed
is measured in units of the characteristic Alfvén speed,
VA = √

B2
�/[4πμn�(m1 + m2)], where μ stands for the mag-

netic permeability of free space, while the electric field is
measured in units of E� = VAB�/c, i.e., E �→ E/E�. Finally,
the space variables (x, y, z) are measured in units of d =√

m1m2c2/[4πn�μe2
2(m1 + m2)], while time is measured in

units of t� = (m1m2)1/2c/(e2B�), i.e., t �→ t/t�. As a result, we
obtain the dimensionless Adlam-Allen (AA) model, described
by the following system of PDEs:

Rtt = − 1
2 (B2)xx, (7)

Btxx = (RB)t . (8)

Here, B is the rescaled (by B�) magnetic field, while R =
n�/n1,2 is the rescaled (inverse) density of ions and electrons.
Our intention hereafter is to work with this reduced dimen-
sionless version of the AA model.

B. Fundamental properties of the AA model

1. The AA system with vanishing boundary conditions

The simplest nontrivial solution of the AA model (7) and
(8) is expressed in the form

R = R0, B = B0, (9)

where the constants R0 and B0 set the boundary conditions
(BCs) at infinity, namely R → R0 and B → B0 as x → ±∞.
Integrating Eq. (8) over time, and using the aforementioned
BCs, we can express the AA model as

Rtt = − 1
2 (B2)xx, (10)

Bxx = RB − R0B0. (11)

It is now convenient to seek solutions of the AA model on top
of the background solution, R = R0 and B = B0, namely

R(x, t ) = R0 + u(x, t ), B(x, t ) = B0 + w(x, t ), (12)

with the unknown fields u and w satisfying vanishing BCs at
infinity, namely u,w → 0 as x → ±∞. Substituting Eq. (12)
into Eqs. (10) and (11), we obtain the following system of
nonlinear PDEs for the fields u and w:

utt + B0wxx + 1
2 (w2)xx = 0, (13)

wxx − R0w − B0u − uw = 0. (14)

2. Lagrangian structure and integrals of motion

It can now be shown that the system of Eqs. (13) and
(14) can be derived by the Euler-Lagrange equations of
fields described by a certain Lagrangian density. To derive a
Lagrangian for the above system, we follow the methodology
used in Ref. [22] for the derivation of the Lagrangian of the
Zakharov equations (see, e.g., Ref. [7]), We thus introduce the
auxiliary field ρ(x, t ), such that

u ≡ ρx. (15)

Inserting Eq. (15) in Eqs. (13) and (14), and integrating (13)
once with respect to x, the AA system is cast in the form

ρtt + B0wx + 1
2 (w2)x = 0, (16)

wxx − R0w − B0ρx − ρxw = 0. (17)

Then, it can be found that Lagrangian density corresponding
to Eqs. (16) and (17) is of the form

L = 1
2ρ2

t + 1
2w2

x + 1
2 R0w

2 + 1
2ρxw

2 + B0ρxw,

with the full Lagrangian L defined as the integral of the La-
grangian density, namely L = ∫ +∞

−∞ Ldx. Indeed, it is straight-
forward to check that the Euler-Lagrange equations:

∂

∂t

(
∂L

∂�i,t

)
+ ∂

∂x

(
∂L

∂�i,x

)
− ∂L

∂�i
= 0,

where �i (with i = 1, 2) is a generic name for the fields
ρ(x, t ) and w(x, t ), respectively, lead to Eqs. (16) and
(17). Furthermore, we can define momentum densities πi =
∂L/∂�i,t , and also introduce the Hamiltonian density H,
through the Legendre transformation H = ∑

i πi�i,t − L.
Observing that π1 = ρt and π2 = 0, we find that H = ρ2

t − L.
Hence, the system possesses an important conserved quantity,
namely the total energy (full Hamiltonian), given by

H ≡
∫ +∞

−∞
H dx

=
∫ +∞

−∞

(
1

2
ρ2

t − 1

2
w2

x − 1

2
R0w

2 − 1

2
ρxw

2 − B0ρxw

)
dx.

On the other hand, the system (13) and (14) possesses another
important conserved quantity, namely the momentum, which
is given by

P ≡
∫ +∞

−∞
P dx = −

∫ +∞

−∞
ρtρxdx.

Indeed, dP/dt = ∫ +∞
−∞ (ρttρx + ρtρxt )dx = ∫ +∞

−∞ wx(R0w −
wxx ) + 1

2 (ρ2
t )xdx = 0, due to the fact that w and ρt are

assumed to satisfy vanishing BCs at infinity. Note that, in the
case of traveling-wave solutions that we study below, i.e., for
u = u(ξ ) with ξ = x − vt , it is straightforward to find that the
momentum P is reduced to the form

P = v

∫ +∞

−∞
u2dx. (19)

3. The linear regime and connection with the Boussinesq equation

Let us now consider elementary solutions of the AA model,
in the form of linear waves, close to the background solution
(9). To find such solutions, we assume that u,w ∼ O(ε),
where 0 < ε � 1 is a small parameter. Then, at order O(ε),
the linearization of Eqs. (13) and (14) leads to the following
linear equations:

utt + B0wxx = 0, (19)

wxx − R0w − B0u = 0. (20)

Obviously, using Eq. (20), one may substitute u = (wxx −
R0w)/B0 into Eq. (19) and arrive at the following equation
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for w:

wtt − C2wxx − 1

R0
wxxtt = 0, (21)

where

C2 ≡ B2
0

R0
(22)

is the square of the speed of small-amplitude linear waves
in the long-wavelength (small k) limit; see also Eq. (23)
below. Equation (21) has the form of a linearized improved
Boussinesq equation (iBE) [23]. Generally, the Boussinesq
model is known to describe the evolution of bidirectional
shallow water waves [11], and the dynamics of pulses in non-
linear lattices (through a continuous approximation) [24]. A
crucial difference between the standard Boussinesq equation
and its iBE variant is that the latter is not prone to unphysical
long-wavelength instabilities (see, e.g., Ref. [25]). The lin-
earized iBE (21) admits plane-wave solutions, ∼exp[i(kx −
ωt )], with the frequency ω and wave number k obeying the
dispersion relation:

ω2 = C2k2

(
1 + k2

R0

)−1

. (23)

Considering long waves and weak dispersion, such that
k2/R0 � 1, and focusing on the case of right-going waves,
we may approximate the dispersion relation (23) as ω ≈ Ck −
(C/2R0)k3, which is the dispersion relation of a Korteweg–de
Vries (KdV) equation. This indicates a strong connection of
the AA model with the KdV equation. Indeed, below we
will show that the AA model possesses exact traveling-wave
solutions in the form of solitary waves, which—in the small-
amplitude limit—transform into the KdV solitons.

C. Derivation of exact traveling waves

Let us now proceed by seeking solutions of the system (13)
and (14) in the form of traveling waves, namely

u = u(ξ ), w = w(ξ ); ξ ≡ x − vt, (24)

where v denotes the velocity of the waves. Recalling that
u,w → 0 as x → ±∞, Eq. (13) can readily be integrated
twice with respect to ξ , leading to

u = − 1

v2

(
B0w + 1

2
w2

)
. (25)

Substituting Eq. (25) into Eq. (14), we obtain the following
nonlinear ODE for the field w:

w′′ = B2
0

v2C2
(v2 − C2)w − 3B0

2v2
w2 − 1

2v2
w3, (26)

where the primes denote differentiation with respect to ξ .
Equation (26) can be viewed as an equation of motion of a
particle in the presence of the effective potential V (w) given
by

V (w) = − B2
0

2v2C2
(v2 − C2)w2 + B0

2v2
w3 + 1

8v2
w4. (27)

The total energy of this dynamical system is

E (w,w′) = 1
2w′2 + V (w) = E0, (28)

where the constant of integration E0 represents the total initial
energy of the effective oscillator, which is conserved along its
motion.

A simple analysis shows that if v < C, then there exists
a sole fixed point at w = 0 being a stable center, at which
the potential V attains its global minimum. As a result, all
solutions of Eq. (26) are periodic and can, in principle, be
expressed in terms of the Jacobi elliptic functions [26].

On the other hand, if v > C there exist for w � 0 two
fixed points: an unstable saddle point at w = 0 (corresponding
to the global maximum of the potential V for w � 0) and
a stable center at w = 8(v/C − 1)B0 (corresponding to the
global minimum of V for w � 0). The graph of the potential
V (w) (27) in this case is portrayed in Fig. 1(a). This is a
case of particular interest, since there exists a homoclinic
orbit (separatrix), namely a trajectory of infinite period, which
corresponds to a solution decaying at infinity, i.e., a solitary
wave. Figure 1(b) depicts orbits of the dynamical system (26)
corresponding to various energy values [straight horizontal
lines shown in the graph of the potential V (w), depicted
in panel (a)]. The homoclinic orbit [continuous (red) curve
forming a “loop” as shown in panel (b)] corresponds to the
energy E0 = V (0) = 0 [see the continuous (red) horizontal
line shown in panel (b)]. The closed orbits [dashed (blue)
curves] correspond to energy values E0 < 0, and they are
associated with spatially periodic solutions. These solutions
will be discussed in Sec. III D.

Let us focus on the homoclinic orbit. To derive the cor-
responding solution, we use the first integral [see Eq. (28)]
for the value E0 = 0, which is the energy of the homoclinic
solution. Then, a second integration, i.e.,

∫
dw/

√−2V (w) =
ξ − x0 (x0 is an integration constant), leads to the implicit
form of the solution, which eventually can be expressed in
the following explicit form:

w(x, t ) = 2B0

C
(v2 − C2)

1

C + v cosh(θ )
, (29)

θ ≡ B0

vC

√
v2 − C2(x − vt − x0). (30)

In Eq. (30), the integration constant x0 represents the initial
position of the solitary wave. Notice that due to the afore-
mentioned necessary condition, v > C, for the existence of the
solitary wave (29), it turns out that this exact traveling-wave
solution is in fact traveling with a speed larger than that of
the long-wavelength linear waves. On the other hand, the con-
straint for a positive density, R > 0, yields [using Eqs. (12),
(25), and (29)] an upper bound for the speed, namely v < 2C.
Thus, in terms of the velocity v, the domain of existence of a
physically relevant solitary wave is

C < v < 2C. (31)

Summarizing our findings presented in this section, we
have derived an exact, exponentially localized, traveling-wave
solution of the AA model of the form

R(x, t ) = R0 − 1

v2
w(x, t )

[
B0 + 1

2
w(x, t )

]
:= Rs(x, t ),

(32)

B(x, t ) = B0 + w(x, t ) := Bs(x, t ), (33)
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FIG. 1. Top row: Panel (a) shows the effective potential V (w) (27), along with some typical energy levels depicted by straight horizontal
lines. Parameter values: B0 = R0 = 1, v = 1.5. The continuous (red) line corresponds to the energy E0 = V (0) = 0 corresponding to the
homoclinic orbit. The dashed lines depict energy values E0 < 0, which correspond to closed, periodic orbits. Panel (b) shows orbits in the
(w,w′) phase-plane of Eq. (26), corresponding to the energy levels of panel (a). The continuous (red) curve depicts the homoclinic orbit,
pertinent to the energy E0 = V (0) = 0. The dashed closed curves are associated with the periodic solutions corresponding to energy values
E0 < 0. Middle row: Panel (c) shows the profile of the solitary wave for R, given by Eq. (32), at t = 0. Shown also, as an inset, is the quantity
1/R, which, physically, represents the density of the charged particles. Panel (d) shows the profile of the soliton solution for B given by (33),
at t = 0. Bottom row: A spatially periodic solution corresponding to the energy E0 = −0.015. Panel (e) depicts the profile of the Rp periodic
component of the solution, at t = 0, while panel (f) depicts the profile of its Bp periodic component, at t = 0.

with w(x, t ) given by Eqs. (29) and (30). This is the same
wave as was identified in Ref. [1], yet the approach used
herein will enable us to obtain a considerably wider family
of solutions in what follows. The profiles of these solutions
at t = 0 are depicted in the middle row of Fig. 1. Figure 1(c)
shows the profile of Rs(x, 0), and Fig. 1(d) shows the profile
of Bs(x, 0) corresponding to a pulse on top of the finite
background B0 = 1. The inset of panel (c) also shows 1/R,
which is proportional to the particle density.

D. Connection to the KdV equation

The derivation of the linearized iBE (21) that describes the
linear properties of the model, as discussed in Sec. II B, sug-

gests the possibility of establishing an asymptotic connection
between the AA system and the KdV equation. To do this, it
is convenient to employ the long-wave approximation [23]. In
particular, taking into consideration that for long waves the
dispersion relation (23) can be approximated as ω ≈ Ck −
(C/2R0)k3, we may assume that the wave number k is of the
order O(ε p), where 0 < ε � 1 is a formal small parameter,
and p > 0. Notice that, as we will see, the choice of p is
not important; hence, without loss of generality, we choose
p = 1/2. Then, the substitution k �→ ε1/2k into the dispersion
relation leads to the frequency ω ≈ ε1/2Ck − ε3/2(Ck3/2R0).
Accordingly, the phase of the plane-wave solution of the
linearized iBE, Eq. (21), reads kx − ω(k)t ≈ ε1/2k(x − Ct ) +
ε3/2(Ck3/2R0)t . This suggests the introduction of the follow-
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ing slow variables:

X = ε1/2(x − Ct ), T = ε3/2t . (34)

Notice that this choice is consistent with the fact that, in the
long-wavelength limit of k → 0, the asymptotic behavior of
the solution of the iBE is [23] u(x, t ) ∼ Ai(z), where Ai(z) ≡
(1/π )

∫ +∞
0 cos(sz + 1

3 s3)ds is the Airy function, and z =
(x − Ct )/[(3C/2R0)1/3t1/3]. In other words, the asymptotic
analysis suggests a similarity behavior for a coordinate system
with z = const, which is obviously valid for the choice of the
coordinate system of Eq. (34).

Using the above slow variables, Eqs. (13) and (14) are
expressed, respectively, as follows:

ε

(
C2 − B2

0

R0

)
wXX − ε

1

R0
∂2

X

(
1

2
B0w

2 − C2uw

)

− ε2

(
2CwXT − C2

R0
wXXXX

)
= O(ε j ), j � 3, (35)

εwXX − R0w − B0u − uw = 0. (36)

It can now readily be observed that the first term on the right-
hand side of Eq. (35) vanishes—see Eq. (22). Furthermore, we
introduce the following perturbation expansions of the fields
u and w with respect to ε:

u = εu1 + ε2u2 + · · · , w = εw1 + ε2w2 + · · · , (37)

where the powers in ε are chosen so that the dominant
dispersion term and the dominant nonlinearity term are of the
same order; this choice, as we will see, gives rise to soliton
solutions. Substituting, we can obtain from Eqs. (35) and (36)
the following results. First, at order O(ε) we derive from
Eq. (36) the following equation connecting the unknown fields
u1 and w1:

u1 = −R0

B0
w1. (38)

Next, using Eq. (38), the nonlinear contribution [second
term in Eq. (36)] arising at O(ε3) in Eq. (36) becomes
−(3B0/R0)(w1w1X )X . As a result, at O(ε3), integration of
Eq. (36) over X leads to the following KdV equation:

2Cw1T + C2

R0
w1XXX + 3B0

R0
w1w1X = 0. (39)

It is well known that the KdV equation is a completely
integrable system possessing soliton solutions (see, e.g.,
Ref. [11]). In particular, the single soliton solution of Eq. (39),
when expressed in terms of the original variables x and t , gives
rise to the following approximate solution [valid up to order
O(ε)] of the system (13) and (14):

w(x, t ) = εκ2 4B0

R0
sech2(η), (40)

u(x, t ) = −4εκ2sech2(η), (41)

η ≡ ε1/2κ

[
x − C

(
1 + εκ2 2

R0

)
t − x0

]
, (42)

where κ is an arbitrary O(1) parameter characterizing the am-
plitude, the width, and the velocity of the KdV soliton. Thus,

the original AA system (7) and (8) supports the following
approximate solution:

R(x, t ) ≈ R0

[
1 − ε

4κ2

R0
sech2(η)

]
, (43)

B(x, t ) ≈ B0

[
1 + ε

4κ2

R0
sech2(η)

]
. (44)

We will now show that in the limit of v → C, the solitary
wave (29) becomes the KdV soliton (40). To do this we
use v ≈ C, and we approximate v2 − C2 as follows: v2 −
C2 = (v + C)(v − C) ≈ 2C(v − C). Then, using the identity
1 + cosh(θ ) = 2 cosh2(θ/2), we may rewrite Eq. (29) in the
form

w(x, t ) = 2B0

C
(v − C)sech2

[
B0

2vC

√
v2 − C2(x − vt − x0)

]
.

(45)

It is now evident that much like the KdV soliton, the amplitude
and width of the solitary wave (45) are set by a single param-
eter, namely v − C. The limit v → C is in fact equivalent to
the small-amplitude limit, whereby v − C plays now the role
of a small parameter. Then, employing the small parameter ε,
and noticing that κ2(4B0/R0) = O(1) as per our analysis, we
can set v − C = εκ2C(2/R0). This automatically implies that
the amplitudes of the solitary wave (45) and the KdV soliton
(40) are equal. Furthermore, it can readily be observed that the
velocity of the solitary wave (45) becomes

v = C[1 + εκ2(2/R0)],

which is equal to the velocity of the KdV soliton (40). Finally,
the inverse width of the solitary wave (45) reads

B0

2vC

√
v2 − C2 ≈ B0

2vC

√
2C(v − C)

= B0

2vC

√
2C2εκ2(2/R0) = ε1/2κ,

where we have used the definition of the velocity C in
Eq. (22). Thus, the inverse width of the solitary wave (45)
becomes equal to that of the KdV soliton (40). Hence, we have
shown that in the limit v → C, i.e., in the small-amplitude
limit, the solitary wave (45) transforms into the KdV soliton
(40), which further highlights the asymptotic connection of
the AA model with the KdV equation.

Concluding this section, it is also relevant to make some
additional comments. The derivation of the KdV equation
and the soliton solution relies on the leading-order solution
[Eq. (38)] of Eq. (36), which is a singularly perturbed equa-
tion. In principle, this equation could support boundary-layer-
type solutions; nevertheless, the derivation of such solutions
demands a consistent treatment of the full system, i.e., both
Eqs. (35) and (36). This would lead to higher-order correc-
tions to the KdV equation and the soliton solution thereof.
This is indeed a very interesting problem, but a relevant study
is beyond the scope of this work.

E. A rational solution

As was shown in Sec. II B, the AA system supports the
exact, exponentially localized, solitary-wave solutions (32)
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FIG. 2. Contour plots showing the spatiotemporal evolution of the solitary waves. Panel (a) [panel (b)] depicts the evolution of the R-
component (the B-component) of the solution. Parameter values: velocity v = 1.5, B0 = R0 = 1 (i.e., C = 1), and L = 150.

and (33). Nevertheless, the system also possesses still another
exact, but weakly localized, solitary-wave solution, which
features an algebraic decay as the traveling-wave coordinate
ξ → ±∞. This solution exists in the limiting case in which
v = C. Indeed, in this case, the ODE (26) reduces to the form

w′′ = −3B0

2v2
w2 − 1

2v2
w3, (46)

where now the fixed point w = 0 becomes an inflection point
for the potential V (w). In such a situation, it is possible to
identify an exact, algebraically decaying, solution of Eq. (46),
of the following form:

w(x, t ) = − 4B0

1 + R0ξ 2
, ξ = x − Ct . (47)

This rational waveform gives rise to the following exact
solution of the original AA model (7) and (8):

R(x, t ) = R0

[
1 − 4

1 − n0ξ
2

(1 + R0ξ 2)2

]
:= Rr (x, t ), (48)

B(x, t ) = B0

(
1 − 4

1 + R0ξ 2

)
:= Br (x, t ). (49)

This solution, although interesting in its own right from a
mathematical point of view, suggests an unphysical situation,
namely a negative (inverse) density, as is clear from (49).

III. NUMERICAL INVESTIGATIONS

In this section, we perform numerical simulations with an
aim to investigate the dynamics of the solitary and periodic
waves identified in the previous sections. First, we explore the
dynamics of the single exact solitary wave when considered
as an initial condition for the system. Second, we explore
the dynamics of two solitary waveforms and their potential
interaction dynamics. Third, we proceed to a numerical study
examining the robustness of periodic solutions in the presence
of Fourier mode perturbations. Finally, due to their mathe-
matical interest (as they are not physically relevant in the
context of the AA model), we briefly comment on the rational
solutions.

The numerical integration is performed for the following
initial-boundary-value problem of the AA system (7) and (8),
with initial conditions

R(x, 0) = 0(x), Rt (x, 0) = 1(x), B(x, 0) = β0(x),
(50)

FIG. 3. Snapshots of the evolution of two colliding solitary waves. In each panel, the B-component of the solution is depicted. The initial
positions and velocities for the solitary waves are x1 = −110, v1 = 1.8 and x2 = −70, v2 = 1.2. Parameter values are B0 = 1, R0 = 1, and
L = 150.
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FIG. 4. Contour plots showing the spatiotemporal evolution of the two-soliton initial conditions (Rds(x, 0), Bds(x, 0)) for velocities
v1 = 1.8 and v2 = 1.2. The rest of the parameters are fixed as in Fig. 3. Panel (a) [panel (b)] shows the R-component (B-component) of
the solution.

and periodic boundary conditions on the interval [−L, L], for
B and its first derivative Bx,

B(−L, t ) = B(L, t ), Bx(−L, t ) = Bx(L, t ). (51)

The initial-boundary-value problem [(7), (8), (50), and (51)]
is integrated numerically by implementation of the method
of lines [27]; a tensor product grid discretization scheme is
considered for the spatial integration, while for the integration
with respect to time a fourth- through fifth-order adaptive-step
Runge-Kutta method is used.

A. Dynamics of the single-soliton solutions

Numerical integration of the system (7), (8), (50), and (51)
using as initial conditions the analytical solutions (32) and
(33) at t = 0, i.e., 0(x) = Rs(x, 0), 1(x) = Rs

t (x, 0), β0(x) =
Bs(x, 0), verified the stability of their time propagation (and
as a by-product, the accuracy of the numerical method). Their
spatiotemporal evolution is depicted in the contour plots of
Fig. 2. Panel (a) portrays the dynamics of the R-component of
the numerical solution, while panel (b) portrays the dynamics
of the B-component of the same solution. The system is
integrated for L = 150, and for this choice the initial error
at the boundaries is far smaller than the accuracy used in
the calculations. The parameter values are B0 = 1, R0 = 1,
x0 = 0, while the velocity is v = 1.5 > C = 1, as C is defined
by (22). The initial data evolve as the exact soliton solutions
(32) and (33), preserving their initial profile and speed.

B. Interaction dynamics of two solitons

The second numerical experiment investigates the dynam-
ics of two solitary waveforms, initialized by a superposi-

tion of the analytically derived soliton solutions presented in
Sec. II B, i.e., (32) and (33). More precisely, we shall consider
the dynamics of initial conditions of the form

R(x, 0) = R0 − 1

v2
1

w1(x, 0)

[
B0 + 1

2
w1(x, 0)

]

− 1

v2
2

w2(x, 0)

[
B0 + 1

2
w2(x, 0)

]
:= Rds(x, 0),

(52)

B(x, 0) = B0 + w1(x, 0) + w2(x, 0) := Bds(x, 0), (53)

with wi(x, t ) = w(x, t )|(x0=xi,v=vi )), i = 1, 2, and w(x, t ) given
by Eq. (29).

The expressions (52) and (53) describe the interaction
between two solitons defined by the analytical solutions (32)
and (33), with velocities v1 and v2, respectively. Here, it
should be recalled that the permitted and physically relevant
velocities should be such that vi ∈ (C, 2C] = (vmin, vmax].

We consider that the parameter values are B0 = 1 and
R0 = 1, and thus C = 1. First, we examine the case in which
the velocity of the first soliton v1 = 1.8 is close to the upper
boundary point vmax = 2 of the permitted interval (1,2), and
the velocity of the second soliton v2 = 1.2 is close to the
lower boundary point vmin = 1. The system (7), (8), (50), and
(51) is integrated for the initial conditions 0(x) = Rds(x, 0),
1(x) = Rds

t (x, 0), β0(x) = Bds(x, 0) for the above velocities
v1 and v2. The first soliton is initially located at x1 = −110
and the second soliton is at x2 = −70. This choice ensures that
the waves are well-separated, and at an adequate distance from
the boundaries in order not to introduce any numerical arti-

FIG. 5. Snapshots of the evolution of the two solitary waves with velocities v1 = 1.8 and v2 = 1.2. A magnification around the tail (during
and after the collision of the solitons) of the B-component of the solution is shown. The rest of the parameters are fixed as in Fig. 3.
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FIG. 6. Similar to Fig. 3, but now for solitons’ initial positions and velocities x1 = −110, v1 = 1.9 and x2 = −70, v2 = 1.8. Parameter
values are B0 = 1, R0 = 1, and L = 150.

facts. The system is integrated for t ∈ [0, 200] and L = 150,
which is a sufficient setting for the study of the interaction
dynamics of the two solitons.

Figure 3 presents snapshots of the evolution of the B-
component of the described two-wave initial condition (52)
and (53) for t ∈ [0, 120]. The snapshots justify the collision
of the two solitons and the near preservation (see the discus-
sion below) of their initial profiles and velocities after their
collision; the faster and taller soliton of velocity v1 = 1.8
catches up with the slower and shorter soliton and eventually
overtakes it.

The collision is alternatively visualized by the contour
plots of the dynamics of the two-soliton initial conditions
Rds(x, 0) and Bds(x, 0), depicted in Fig. 4. Panel (a) depicts
the evolution of the R-component of the numerical solution,
while panel (b) depicts the corresponding B-component.

An important finding is that the collision of the two soli-
tons is nearly—but not genuinely—elastic. This fact suggests
the nonintegrability of the system (7) and (8). This can be
seen in Fig. 5, depicting snapshots of the dynamics of the
B-component of the solution at t = 85 [panel (a)] and t =
135 [panel (b)], respectively, for the two solitary-wave initial
conditions. The snapshots offer a magnified view around the
tail of the solution, during and after the collision of the two
waves. In both snapshots, we observe the emission of small-
amplitude wave packets.

Next, we again fix B0 = 1 and R0 = 1, but now we will ex-
amine the dynamics of two waves initialized through Rds(x, 0)
and Bds(x, 0), with velocities close to each other, but also
being close to the upper boundary point vmax = 2 of the
permitted interval (1,2]. In particular, we use the values v1 =
1.9 and v2 = 1.8 and integrate the system for t ∈ [0, 600] and
L = 150. In this case, since the relative velocity of the two
solitons is smaller, a larger time interval is required in order to
study the corresponding interaction dynamics.

Figure 6 presents snapshots of the evolution of the two-
wave initial condition (Rds(x, 0), Bds(x, 0)); each panel de-
picts the B-component of the solution. In this case, we ob-
serve an interaction of repulsive type: the two waves exchange
their velocities, and afterward they continue their motion in
the same direction. This interaction is also illustrated in the
contour plots of Fig. 7; panels (a) and (b) show the dynamics
of the R- and B-component of the solution, respectively.

In this case, the emission of small-amplitude waves is
weaker if compared with that of the previous example for
the velocities v1 = 1.8 and v2 = 1.2 (where we observed the
collision). This is evident in Fig. 8, presenting snapshots of the
evolution of the B-component of the solution, with a magni-
fied view around its tail; the emerging wave packets are weak
yet discernible in the snapshot for t = 430 [panel (c)]. Effec-
tively, it can be observed here that the weak relative kinetic en-
ergy of the structures is not sufficient to overcome the poten-
tial energy barrier of the waves’ repulsive interaction. As a re-
sult, a minimal dispersive wake is only emitted in the process.

C. On the stability of the traveling solitary waves

Here, we comment on the stability of traveling solitary
waves, relying on established stability criteria (see below).
We start with the limit of v → C, where the traveling solitary
waves reduce to the KdV soliton [see Eq. (40)], as shown in
the previous section. In this case, the relevant criterion, known
for numerous decades [14–16], states the following: the KdV
soliton is stable if dN/dv > 0, where N[w] = ∫ ∞

−∞ w2dx is a
conserved quantity—namely the “momentum”—of the KdV
equation. Figure 9(a) shows the dependence of N[w] on the
velocity v for the KdV soliton of Eq. (45) [dashed (blue)
curve]. In addition, shown also is the dependence of N[w] on
the velocity v of the exact solitary-wave solution of Eq. (29)
[solid (red) curve]; naturally, the latter curve approaches the
former one (in line with our reduction) in the limit of v → C.
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FIG. 7. Contour plots of the spatiotemporal evolution of the two solitary wave initial conditions (Rds(x, 0), Bds(x, 0)) for v1 = 1.9 and
v2 = 1.8. The rest of the parameter values are fixed as in Fig. 6. (a) The R-component of the solution is shown. (b) The same as before but for
the B-component.

It is readily seen that the KdV stability criterion is satisfied,
definitively illustrating that our waves with speeds near the
Alfvén speed are dynamically stable.

Another interesting aspect worth mentioning involves the
recent work of [17] on quadratic operator pencils and asso-
ciated stability criteria. Examining the condition of Eq. (4.8)
therein in the case of a Klein-Gordon model, a short calcula-
tion shows that the relevant quantity controlling the stability
amounts to the derivative of the Klein-Gordon momentum
P as defined by Eq. (18). Once again, the positivity of the
relevant momentum derivative implies stability for the Klein-
Gordon model, while the negativity thereof implies instability.
Having derived the momentum of the AA system in Sec. II B
[see Eq. (18)], and given its structural similarity with that of
Klein-Gordon models, we have illustrated its dependence on
the speed in Fig. 9(b). Here it is shown that P is an increasing
function of v both in the KdV limit [dashed (blue) curve]
and for the exact solitary-wave solution of the AA model
[solid (red) curve]. Naturally, we appreciate that our model is
neither of the KdV nor of the Klein-Gordon variety directly,
hence while these criteria are suggestive (in that our model
has a KdV limit and a Klein-Gordon type momentum), it
remains an open question to rigorously illustrate the stability
of traveling solitary waves of the present model. Nevertheless,
all of the above observations, as well as our direct numerical
computations for all relevant speeds, provide multiple pointers
toward the generic stability of the Adlam-Allen traveling
solitary waves and lead us to conjecture that this feature
holds in the full range of (physical) solitary-wave velocities
(C < v < 2C).

D. Periodic solutions

As was analyzed in Sec. II B, and visualized in Fig. 1, for
energy values E0 < 0, we detect spatially periodic, traveling-
wave solutions, associated with the closed curves inside the
homoclinic loop of the (w,w′) phase-plane. Let us recall
that the bottom row of Fig. 1 shows the profiles of the
Rp(x, t )-component [panel (a)] and of the Bp(x, t )-component
[panel (b)] at t = 0 for such a spatially periodic solution (as
denoted by the superscript p), corresponding to the energy
E0 = −0.015. We investigated numerically the stability of
these spatially periodic solutions in the presence of small-
amplitude, Fourier mode perturbations, considered as ini-
tial conditions of the dimensionless problem. Instead of the
symmetric interval [−L, L], the periodic boundary conditions
(51) are implemented on the interval [0, mλ], where λ stands
for the wavelength of the solution. The wavelength λ can
be calculated for a given set of parameters by integration
of Eq. (28). In all of the examples considered herein, we
assumed B0 = R0 = 1 and v = 1.5. The results are shown for
t ∈ [0, 200] for the sake of clarity of the presented graphics;
however, we confirmed that the relevant solutions persist for
at least twice the time horizon shown.

In Fig. 10, the spatiotemporal evolution of a perturbed
spatially periodic initial condition is shown. The unperturbed
initial condition (Rp(x, 0), Bp(x, 0)) explored is the one with
energy E0 = −0.03, where we have considered m = 5. In this
condition, we perturb the B-component by adding a Fourier
mode, and the initial condition becomes (Rp(x, 0), Bp(x, 0) +
0.01 sin(3Kx)), where K = 2π/λ denotes the wave number
associated with the wavelength λ of the solution. More-

FIG. 8. Snapshots of the evolution of the two wave initial condition (Rds(x, 0), Bds(x, 0)), with velocities v1 = 1.9 and v2 = 1.8. A
magnification around the tail, during the repulsive interaction of the solitons, of the B-component of the solution is shown. The rest of the
parameter values are fixed as in Fig. 6.
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FIG. 9. (a) The dependence of N on the velocity v. Here, N (v) has been calculated in the small velocity (KdV) limit, using Eq. (45) [dashed
(blue) curve], and for all permitted velocities, using Eqs. (13) and (14) [solid (red) curve]. It is observed that, in both cases, dN/dv > 0, which
implies stability of the traveling solitary waves according to the KdV stability criterion (see the text). (b) The dependence of the momentum
P [Eq. (18)] on the velocity v. As in (a), the dashed (blue) curve and the solid (red) curve correspond to the KdV limit and the exact traveling
wave [Eqs. (13) and (14)]. Observe that, in both cases, dP/dv > 0, which also suggests stability, per the discussion in the text.

over, Fig. 11 depicts the dynamics of another perturbed
spatially periodic initial condition of the form (Rp(x, 0) +
0.01 sin(10Kx), Bp(x, 0)) for the example of m = 3. The
unperturbed initial condition corresponds to energy E0 =
−0.01.

In both of the above examples, the evolution of the per-
turbed spatially periodic initial condition appears to robustly
preserve the relevant waveform without giving rise to any
growth modes, suggesting its dynamical stability. This is in
line with what has been found in the case of cnoidal waves in
the KdV equation; see, e.g., the work of [30].

E. Rational solution

As was shown in Sec. II E, the case v = C gives rise to a de-
generate scenario for the dynamical system (46). Figure 12(a)
shows the graph of the effective potential in this case: the
potential V has an inflection point at w = 0, and the energy
V (0) = E0 = 0 [continuous (green) horizontal line] defines
the energy of a cusplike homoclinic connection in the (w,w′)
phase plane; it is depicted by the continuous (green) curve in
panel (b) (see also [31]). The corresponding analytical rational
solutions Rr (x, t ) and Br (x, t ) of the system are given by (48)
and (49). The energy values E0 < 0 [dashed horizontal curves
in the panel (a)] are associated with the periodic orbits in the
phase plane [dashed closed curves in panel (b)].

The spatial profiles of the coherent structure that is asso-
ciated with the rational solution are illustrated in the bottom
panels of Fig. 12. Panel (c) shows the Rr (x, t ) component at
t = 0, and panel (d) shows the Br (x, t ) component at t = 0.

We have attempted to integrate the system with initial
conditions Rr (x, 0) and Br (x, 0), but we have found that
the dynamics is extremely sensitive to small perturbations
giving rise to numerical instabilities. We have noted also that
the kind of numerical instability appearing is dependent on
the choice of the half-length L. This is to be expected given the
algebraic decay-rate of the initial conditions. Thus, even for a
choice of L = 1000 the initial error at the boundaries is of the
order of O(10−6), which can introduce numerical problems.
In particular, considering these as small perturbations, the
dynamical behavior of the solution turns out to be highly
unstable.

This is a strong indication of the dynamical instability of
this state. Thus, due also to its featuring negative density in
part of the domain (hence being of rather limited physical
relevance), we have not pursued it further.

IV. CONCLUSIONS

We studied the Adlam-Allen (AA) system of partial dif-
ferential equations, one of the prototypical and fundamental

FIG. 10. Contour plot of the spatiotemporal evolution of the perturbed spatially periodic solution (Rp(x, 0), Bp(x, 0) + 0.01 sin(3Kx)).
(a) The R-component of the solution. (b) The B-component of the solution. Parameter values: B0 = R0 = 1, v = 1.5. The spatial interval is
[0, mλ] with m = 5; λ is the spatial period of the solution, and K = 2π/λ is the wave number associated with the wavelength λ. The energy
associated with the unperturbed initial conditions is E0 = −0.03.
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FIG. 11. Contour plot of the spatiotemporal evolution of the perturbed spatially periodic solution (Rp(x, 0) + 0.01 sin(10Kx), Bp(x, 0))
with m = 3. (a) The R-component of the solution. (b) The B-component of the solution. Parameter values: B0 = R0 = 1, v = 1.5. Energy of
the unperturbed initial conditions E0 = −0.01.

models for the description of hydrodynamic disturbances in
collisionless plasmas. The phase-plane analysis for the rel-
evant, effective second-order conservative dynamical system
(associated with the description of traveling waves) enabled
us to identify exact soliton solutions for the original system.
In line with the original work of [1], we have found that these
waves have velocities between one and two times that of the
characteristic Alfvén speed.

Another important finding was that the Adlam-Allen sys-
tem is strongly connected to the Korteweg–de Vries (KdV)
equation: we have shown that, in the small-amplitude limit,
the solitary waves of the original AA system transform into
the soliton solutions of the Korteweg–de Vries equation. This

connection was already highlighted when studying the lin-
earization of the Adlam-Allen system: we found that this can
be described by a linearized improved Boussinesq equation,
which, in the long wave approximation and in the weak
dispersion regime, features the same dispersion relation as the
Korteweg–de Vries equation.

The above justifications motivated us to study by direct
numerical simulations not only the dynamics of the exact
soliton solutions but also the interaction dynamics of two
soliton waveforms, initialized through a superposition of the
analytical solitary waves. First, the stable evolution of individ-
ual exact pulses was observed in agreement with the analytical
arguments for their derivation. In the more interesting case

FIG. 12. (a) The graph of the effective potential when v = C, the case of the degenerate ODE, Eq. (46). The (green) horizontal line
defines the energy V (0) = E0 = 0 of the homoclinic connection associated with the analytical rational solutions (48) and (49). (b) The (green)
continuous curve is the homoclinic connection of energy V (0) = E0 = 0. The closed (dashed) periodic orbits correspond to energy values
E0 < 0 [dashed horizontal lines in (a)]. (c) The profile of the rational solution Rr (x, t ), given by Eq. (48), at t = 0. (d) The profile of the
rational solution Br (x, t ), given by Eq. (49), at t = 0.
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of soliton interactions, we examined two scenarios. In the
first scenario, in which the velocity of one soliton is close
to the Alfvén speed and the velocity of the second is con-
siderably higher, we found a quasielastic collision: the fast
soliton overtakes the slow one, and both almost preserve their
velocities and shape. The weak inelasticity of the collision was
detected by the emission of small-amplitude linear waves. The
occurrence of the latter is further suggestion that the Adlam-
Allen system might be nonintegrable. In the second scenario,
in which both soliton velocities take values close to twice
the Alfvén speed, we observed an interaction of repulsive
type; after an exchange of their velocities, the solitary waves
continued their propagation in the same direction, emitting far
weaker wave packets (in comparison to the previous case).
Concerning the stability of the presented traveling solitary
waves, we have brought to bear stability criteria both from the
realm of KdV equations as well as from that of Klein-Gordon
models. Pertinent results suggest that the solitary waves are
stable (definitively so in the vicinity of the characteristic
Alfvén speed), a conjecture that is also generically supported
by our direct simulations that were performed in the full range
of permitted velocities.

The dynamical systems analysis verified also the existence
of spatially periodic solutions. A numerical study examining
the dynamics of such solutions in the presence of small
perturbations suggests that these spatially periodic traveling
waves might be robust as well. Finally, the same dynamical
analysis was used to reveal the existence of rational solu-
tions, possessing an algebraic decaying rate in the limiting
case of propagation at the Alfvén speed. It is worthwhile
to note that such solutions are of growing interest due to
their argued relevance within the context of rogue waves
[28,29]. While such solutions are not of physical interest here

(since they feature negative densities in part of the spatial
domain), they are certainly of interest from a mathematical
point of view. Remarkably, they are associated with a de-
generate case of the effective conservative dynamical sys-
tem. Yet, they are unfortunately found to be quite unstable
numerically.

This study is only a first step toward an attempted revival
of interest in the Adlam-Allen model. While we have explored
special solutions and their full PDE dynamics, numerous
questions remain. Among them, from a mathematical analysis
point of view, well-posed properties (local and global) appear
to us to be worthwhile to study, in analogy to the well-
established counterpart of the KdV model. A more definitive
view of the potential integrability of the problem (or, more
likely, the lack thereof) could be an interesting direction to
pursue in its own right. Finally, we note that this model
concerns the analysis of a transverse magnetic field, while
recently [32] the longitudinal, far more complex case has
also been considered. Expanding the lines of thinking of
the present work regarding multiple solitary waves and their
interactions as well as generalized periodic solutions is also of
interest. Work along these directions is currently in progress
and will be reported in future studies.
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