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Discretizing Maxwell’s equations in Galilean (comoving) coordinates allows the derivation of a pseudospec-
tral solver that eliminates the numerical Cherenkov instability for electromagnetic particle-in-cell simulations
of relativistic plasmas flowing at a uniform velocity. Here we generalize this solver by incorporating spatial
derivatives of arbitrary order, thereby enabling efficient parallelization by domain decomposition. This allows
scaling of the algorithm to many distributed compute units. We derive the numerical dispersion relation of the
algorithm and present a comprehensive theoretical stability analysis. The method is applied to simulations of
plasma acceleration in a Lorentz-boosted frame of reference.
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I. INTRODUCTION

The occurrence of the numerical Cherenkov instability
(NCI) [1–4] can severely limit the applicability of the particle-
in-cell (PIC) method [5,6] for simulations of relativistic beams
or plasmas. The instability arises from the unphysical cou-
pling of relativistic particles to numerically distorted electro-
magnetic modes and aliases thereof.

To zeroth order, numerical errors in the field solver
can artificially reduce the phase velocity of electromagnetic
waves, which causes relativistic particles to emit numerical
Cherenkov radiation (NCR). NCR is most commonly ob-
served in finite-difference time-domain (FDTD) solvers [7],
which introduce spurious dispersion when approximating the
derivatives in Maxwell’s equations by taking finite differences
of the fields in space and time. In order to mitigate NCR, spe-
cialized FDTD solvers with improved numerical dispersion
have been developed [8–11].

A more general solution is given by the class of pseu-
dospectral time-domain (PSTD) solvers [12,13], which rep-
resent the spatial derivatives in the frequency domain. In
the special case of the pseudospectral analytical time-domain
(PSATD) solver [14,15], Maxwell’s equations are integrated
analytically in time under the assumption of constant currents.
The PSATD solver correctly models the dispersion of electro-
magnetic waves and thereby mitigates the problem of NCR
in simulations of relativistic beams [16,17]. It is, however, not
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generally free of the NCI and remains unstable for simulations
of relativistic plasmas [18].

In recent work [19,20], we extended the PSATD solver to
eliminate the NCI for simulations of streaming plasmas. As
shown in Fig. 1, the fundamental idea is to apply a simple
Galilean coordinate transformation to the PIC equations, such
that a moving plasma appears to be at rest with respect to the
static numerical grid. Following discretization and analytical
integration under the assumption of henceforth comoving cur-
rents, the Galilean-PSATD solver becomes intrinsically free
of the NCI for a relativistic plasma flowing at a uniform ve-
locity. Unlike previous strategies to suppress the NCI [18,21–
26], the Galilean scheme does not require artificial correc-
tions or numerical modifications of the underlying solver.
Furthermore, it is applicable in both Cartesian and cylindrical
geometry. Potential applications of the method include simu-
lations of plasma accelerators in an optimal, Lorentz-boosted
frame of reference [27–30] or relativistic collisionless shocks
[31–33] in astrophysics.

However, in its original formulation [19,20], the solver is
not scalable to many distributed compute units. In PIC codes,
scalability is typically achieved by spatially decomposing the
simulation box into smaller domains that are computed in
parallel. When using FDTD solvers, continuity of the physics
can be satisfied by exchanging particles and fields only at the
local domain boundaries. In contrast, the global field transfor-
mations in pseudospectral solvers require, in principle, costly
communication across the entire numerical grid.

However, it has been shown that domain decomposition is
still possible with the PSATD solver, by using local transforms
and large boundary layers [15]. In addition, by incorporating
a finite-difference operator into the spectral field solver equa-
tions [34], an arbitrary-order PSATD solver can be derived.
At the cost of reducing the accuracy of the spatial derivatives
to that of an FDTD solver, the evolution of the fields on the
grid becomes more local. Although this makes a simulation
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again prone to spurious dispersion and NCR, the order can
be tuned to balance accuracy and locality enabling scalability
to many compute units [35], while correctly modeling the
physics [17,36].

In this article, we show that this parallelization strategy can
also be applied to the Galilean-PSATD solver, while retaining
its unique stability properties. For a beam or plasma comoving
with the Galilean coordinates, the arbitrary-order Galilean-
PSATD solver remains free of NCR and eliminates the NCI.
We thereby remove the limitation of the original solver to
efficiently scale to many compute units and lay the foundation
for intrinsically stable and massively parallel PIC simulations
of relativistically streaming plasmas.

In Sec. II, we derive the arbitrary-order Galilean-PSATD
solver, verify its spatial locality, and discuss the vacuum dis-
persion relation. A theoretical stability analysis is presented
in Sec. III, proving the solver’s insusceptibility to the NCI
for a relativistically streaming plasma, which is verified by
two-dimensional (2D) Cartesian PIC simulations with WARPX

[37]. Finally, in Sec. IV we apply the parallelized solver
to multi-GPU Lorentz-boosted frame simulations of laser-
plasma acceleration using the quasi-3D PIC code FBPIC [16].

II. GALILEAN-PSATD SOLVER OF ARBITRARY ORDER

A. Derivation of the discretized Maxwell equations

As explained in previous work [19,20], in the Galilean
coordinates x′ = x − vgalt , Maxwell’s equations become(

∂

∂t
− vgal · ∇′

)
B = −∇′ × E, (1a)

1

c2

(
∂

∂t
− vgal · ∇′

)
E = ∇′ × B − μ0J, (1b)

where ∇′ denotes a spatial derivative with respect to the
Galilean coordinates x′. In the finite-order PSATD scheme, the
spatial derivatives ∇′ are replaced by discretized derivatives
∇̂′ on a grid, which are accurate to order norder and correspond,
in Fourier space, to a multiplication by a modified wave vector
[k] [17,34]. As explained in detail in Sec. II B, we thereby
introduce spatial locality to the evolution of the fields on the
grid, which is the prerequisite for efficient parallelization by
domain decomposition.

Maxwell’s equations are then transformed into Fourier
space and integrated analytically over one time step. More
explicitly, the representation in Fourier space of Maxwell’s
equations with discretized derivatives is(

∂

∂t
− i[k] · vgal

)
B̂ = −i[k] × Ê, (2a)

1

c2

(
∂

∂t
− i[k] · vgal

)
Ê = i[k] × B̂ − μ0Ĵ , (2b)

where the Fourier transform is defined by F̂ (k, t ) =∫
d3x′ F (x′, t ) e−ik·x′

. Just like in the case of the infinite-order
Galilean scheme [19,20], these equations can be integrated an-
alytically under the assumption that the current Ĵ is constant
over one time step, and that the fields Ê , B̂, Ĵ , and ρ̂ satisfy

the conservation equations:

i[k] · B̂ = 0, i[k] · Ê = ρ̂

ε0
,

∂ρ̂

∂t
+ i[k] · Ĵ = 0.

(3)
The result of this analytical integration is

B̂n+1 = θ2CB̂n − θ2S

c[k]
i[k] × Ên + θχ1

ε0c2[k]2
i[k] × Ĵ n+ 1

2 ,

(4a)

Ên+1 = θ2CÊn + θ2S

[k]
ci[k] × B̂n + iνθχ1 − θ2S

ε0c[k]
Ĵ n+ 1

2

− 1

ε0[k]2
(χ2 ρ̂n+1 − θ2χ3 ρ̂n)i[k], (4b)

where we use the shorthand notations Ên ≡ Ê (k, n�t ), B̂n ≡
B̂(k, n�t ), and

[k] =
√

[k]2, C = cos(c[k]�t ), S = sin(c[k]�t ),

(5a)

ν = [k] · vgal

c[k]
, θ (∗) = e(−)i[k]·vgal�t/2, (5b)

χ1 = 1

1 − ν2
(θ∗ − Cθ + iνθS), (5c)

χ2 = χ1 − θ (1 − C)

θ∗ − θ
, χ3 = χ1 − θ∗(1 − C)

θ∗ − θ
. (5d)

In addition, the discretized continuity equation reads

−i([k] · vgal )
θ∗ρ̂n+1 − ρ̂nθ

θ∗ − θ
+ i[k] · Ĵ n+ 1

2 = 0. (6)

Because the current Jd from a direct deposition scheme (from
the particles to the grid) does not automatically satisfy the
continuity equation, this current can be corrected in Fourier
space:

Ĵ n+ 1
2 = Ĵ n+ 1

2
d + i[k]

[k]2
Ĝ, (7a)

Ĝ = −i([k] · vgal )
θ∗ρ̂n+1 − θρ̂n

θ∗ − θ
+ i[k] · Ĵ n+ 1

2
d .

(7b)

Note that the only difference to the infinite-order Galilean-
PSATD solver [19,20] is that the wave vector k has been
replaced by the modified wave vector [k] of order norder,
including in the definitions of the coefficients θ , ν, χ1, χ2, and
χ3. In fact, for norder → ∞, [k] → k and Eqs. (2a) to (7b) then
equal to the original formulation of the solver as in Ref. [20].
In addition, in the limit vgal = 0, the above expressions reduce
to the standard PSATD equations [14,15]. On the other hand,
for vgal = vplasma, the solver becomes intrinsically free of the
NCI for a relativistically drifting plasma.

For the infinite-order case, a qualitative explanation for the
absence of the instability was found to be threefold [19,20]:
First, as the solver correctly models the electromagnetic dis-
persion relation, the NCI is mitigated to zeroth order (no
NCR). Second, the immobility of the plasma with respect to
the numerical grid suppresses the coupling of spatial aliases
of the fields to the particles. Third, the analytical integration
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naturally takes into account the comoving currents in the
direction of the plasma motion and thereby eliminates remain-
ing sources of the instability. As to why those criteria—and in
particular the first one—hold true even in the finite-order case
will be explained in detail throughout this article.

Apart from its resilience against the NCI, the arbitrary-
order Galilean-PSATD solver possesses several other advanta-
geous properties. Due to the analytical integration in time, the
solver is not bound to a CFL condition—in principle allowing
for arbitrarily long time steps. The fields are centered in space
and—except for the currents J—also in time. This avoids
interpolation errors common to FDTD solvers or the simpler
PSTD solver, where the E and B fields are staggered in time.
Another advantage of the Galilean scheme is its independence
of geometry. Analogous equations in cylindrical geometry
with azimuthal mode decomposition can be readily derived
from the equations listed above [20], although in this case
finite-order derivatives are possible in the axial direction only.
The solver has been implemented in the PIC frameworks
WARP [38] and WARPX [37] in 2D and 3D Cartesian coordi-
nates and in the quasi-3D code FBPIC [16].

B. Locality of the Galilean-PSATD solver
with a finite-order stencil

To achieve locality of the field solver, we introduced the
discrete spatial derivatives ∇̂′ in Eqs. (1a) and (1b), represent-
ing finite differences of arbitrary order norder. More explicitly,
for a scheme with centered fields, the discrete derivative D of
a function F at point p and along an axis z on the spatial grid
can be written as [39]

(DzF )p =
n∑

j=1

αn, j
Fp+ j − Fp− j

2 j�z
, (8a)

αn, j = (−1) j+1 2(n!)2

(n − j)!(n + j)!
. (8b)

Because Eq. (8a) only takes into account the 2n ≡ norder

adjacent grid points for calculating the spatial derivative, the
accuracy of this operation is inversely proportional to its
locality. The equivalent spectral representation of this operator
can be defined as [17,34]

(DzF )p =
∑

kz

i[kz]F̂kz e
ikz p�z, (9)

with F̂ the spectral transform of F and where we introduced
the modified wave number

[kz] =
n∑

j=1

αn, j
sin (kz j�z)

j�z
, (10)

where [kz] → kz for norder → ∞.
From Eq. (9) we see that the derivative of finite order norder

in real space can be reproduced in spectral space by replacing
the wave vector k with its modified counterpart [k]. With such
a modification the simpler PSTD solver, which is only second-
order accurate in time, becomes mathematically equivalent to
an arbitrary-order FDTD solver [34]. As a result, the evolution
of the fields on the grid becomes strictly local.

FIG. 1. Schematic illustrating the basic principle of the Galilean-
PSATD solver. In contrast to a static plasma (a), particle-in-cell sim-
ulations of a relativistically streaming plasma (b) can suffer from the
numerical Cherenkov instability. The instability can be eliminated by
discretizing and solving Maxwell’s equations in Galilean coordinates
that are comoving with the plasma (c).

In case of the (Galilean-)PSATD solver, however, the effect
of the discrete derivatives on the locality is more complex, be-
cause the modified wave vector also appears in the additional
coefficients C and S and—if |vgal| �= 0—also in θ , ν, χ1, χ2,
and χ3 [Eqs. (5a) to (5d)]. These additional coefficients stem
from the analytical integration in time, which is equivalent to
taking infinitesimal steps with the PSTD solver. In fact, it was
shown that the PSTD solver can be derived from the PSATD
solver by performing a first-order Taylor expansion in �t [15].
As a result, the effective imprint of the (Galilean-)PSATD
solver is wider than that of a PSTD (or FDTD) solver of the
same order.

As shown in previous work [17], we can study the locality
by applying an inverse Fourier transform to the set of coeffi-
cients for advancing the fields. By that we get an equivalent
to the stencil of an FDTD solver, that is the weightings of the
finite differences on the spatial grid. In cylindrical coordinates
and where we use finite-order derivatives in z only, the stencil
coefficients

α∗ =
√

|F−1(θ2C)|2 +
∣∣∣F−1

(θ2S

[k]
k⊥

)∣∣∣2
+

∣∣∣F−1
(θ2S

[k]
[kz]

)∣∣∣2

(11)
can be numerically calculated for arbitrary values of the
transverse wave number k⊥, �t , and vgal = vgaluz from a
sum of inverse Fourier transforms F−1 along z. Here [k] =√

[kz]2 + k2
⊥. Alternatively, the stencil can be retrieved directly

from a simulation. We use FBPIC to initialize a δ-peak in the E
and B fields and propagate it for a single time step �t = �z/c.
The resulting amplitude and reach of the fields across the grid
is a direct measure for the stencil function. (Note that the
propagation of this δ-peak should not be confused with that of
a real physical signal, since it does not satisfy ∇ · E = 0 and
∇ · B = 0 at t = 0. Instead, this is a simple empirical way to
obtain the stencil from a simulation.)

Figure 2 compares the stencils from the numerical evalua-
tion [Eq. (11)] and the simulation. As expected, the infinite-
order stencil affects the fields globally and therefore extents
over the entire grid. Contrarily, a stencil of norder = 32 quickly
falls off to machine precision at a distance �Nz�z from the
point of origin. While symmetric for vgal = 0, the stencil leans
toward the direction of the grid velocity for vgal = c. Hence,
the stencil becomes slightly wider but the solver remains local
for |vgal| > 0.
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FIG. 2. (a) Numerically estimated [from Eq. (11)] and sim-
ulated stencil. The fields extent globally for the standard case
(Galilean-PSATD∞) but remain localized for a finite order (Galilean-
PSATD32). (b) Maximum stencil reach �Nz for different values of
norder and vgal.

In practice, when spatially decomposing the simulation
box into domains that are computed in parallel, each subgrid
is extended by the stencil extent �Nz. These additional cells
serve as a boundary layer to exchange the fields between
neighboring domains at each time step, thereby ensuring
continuity of the physics across the global grid. Using signif-
icantly fewer boundary cells would cause spurious distortions
in the electromagnetic fields. Efficient scaling is only possible
if �Nz is small compared to the total grid size, thus norder

should be low, which decreases the accuracy. While high-
order stencils are needed for some applications [36], it has
been shown before [17], and we show again in Sec. IV, that
relatively low orders are already sufficient to correctly model
other applications such as plasma acceleration.

It should be noted that the charge conserving correction
of the currents J, Eq. (7a), remains nonlocal even for a finite
order. However, and in stark contrast to the E and B fields,
truncating its effective stencil function at �Nz typically has
no negative effect as it only causes very small variations
in the currents. By preference, it is also possible to use a
charge conserving current deposition that preserves locality.
Although initially derived for 3D Cartesian coordinates only
[15], this deposition scheme has recently been extended to
cylindrical coordinates and will be published elsewhere. For
the results in this article, we restrict ourselves to using the
simple current correction from Eq. (7a).

C. Asymmetry of the numerical vacuum dispersion relation
in Galilean coordinates

In the previous section we showed that the finite-order
Galilean-PSATD solver is more local than its infinite-order
counterpart, but its accuracy is lower (by construction)
which causes the vacuum dispersion relation to be altered.

Considering Eqs. (4a) and (4b) in vacuum (i.e., Ĵ = 0 and
ρ̂ = 0), with electromagnetic modes of the form eik·x−iωt =
eik·x′−i(ω−k·vgal )t leads, after some algebra, to the numerical
dispersion relation in vacuum

ω = ±c[k] + vgal · (k − [k]), (12)

describing the propagation (in both directions) of electromag-
netic waves on the discretized grid.

Figure 3 shows the one-dimensional dispersion relation
for different values of vgal in a single direction z (i.e., along
kz). As expected, in the trivial case with vgal = 0, and for
analytic dispersion (norder = ∞), it is a linear relation with
slope c for both forward- and backward-propagating waves.
As the solver becomes more local (norder = 8, 32, 128), high-
frequency waves slow down and travel at a phase velocity
v� = ω/k that is smaller than the vacuum speed of light.

In simulations, these slow electromagnetic modes can cou-
ple resonantly to relativistic particles, leading to the excitation
of unphysical radiation known as numerical Cherenkov radi-
ation (NCR). Frequencies supported by relativistic particles
traveling at a velocity v0 along z can be described by an
artificial beam mode kzv0. NCR occurs at intersections of this
beam mode with the distorted electromagnetic mode ω [Eq.
(12)], i.e., if the main NCI resonance condition

ω − kzv0 = 0 (13)

is fulfilled. Naturally, electromagnetic waves in vacuum
would obey ω = ck > kzv0 and thus never cross this beam
mode. For finite stencils, however, the unphysical resonance
condition is fulfilled whenever c[k] = kzv0.

However, once the comoving velocity vgal is increased,
the numerical dispersion relation of the Galilean-PSATD
solver becomes asymmetric. Increasing vgal improves the
dispersion of forward-propagating waves (i.e., those having
ω and kz of the same sign) but worsens the dispersion of
backward-propagating waves. For vgal = v0, there will be no
intersection between the electromagnetic mode and the beam
mode. Inserting the vacuum dispersion relation, Eq. (12), into
the resonance condition, Eq. (13), gives c[k] − [kz]v0 = 0, a
condition which is never met. Moreover, at the limit vgal = c,
waves propagating in the direction of the comoving frame
exhibit perfect physical dispersion regardless of the solver’s
order.

This unique property of the numerical dispersion relation
is a direct consequence of the Galilean transformation and
a fundamental prerequisite for the stability of the solver. For
vgal = v0, the asymmetry of the dispersion relation effectively
suppresses any NCR in the direction of the beam or plasma
and—in combination with the other stability properties—
eliminates the NCI even in the finite-order case, as shown
in Sec. III. The dispersion of backward-propagating waves,
on the other hand, worsens compared to the reference case
(vgal = 0), which has to be taken into account in practice. For
example, it could be necessary to use a higher order norder of
the solver to mitigate problems from NCR in simulations that
include a backward-propagating relativistic beam. Neverthe-
less, we show in Sec. IV that relatively low orders are still
sufficient to not degrade such a counterpropagating beam in
Lorentz-boosted frame simulations of plasma acceleration.
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FIG. 3. Asymmetry of the numerical vacuum dispersion relation in one dimension. (a) The electromagnetic mode becomes distorted for
finite orders of the field solver. (b) Increasing vgal improves (deteriorates) the dispersion of copropagating (counterpropagating) waves. (c) At
the limit vgal = c, any spurious numerical dispersion is compensated in the direction of the Galilean frame.

III. STABILITY ANALYSIS

A. Numerical dispersion relation of a cold relativistic plasma

In Sec. II, we defined the finite-order Galilean-PSATD
solver and showed that the locality of the field evo-
lution makes it suitable for parallelization. In addition,
based on the asymmetrical features of the vacuum dis-
persion relation, we derived a first, intuitive understand-
ing for why the Galilean scheme retains its stability
properties under such a finite-order approximation of the
fields. To get the whole picture, however, we can de-
rive a theoretical dispersion relation that includes the

particle feedback of a moving plasma on the electromagnetic
fields and that considers all of the approximations of the
numerical scheme [2–4,18].

We therefore extend the derivation of the dispersion rela-
tion that we originally presented in Ref. [20] to include the
modified wave vector [k] and summarize the main differences
in Appendix. The resulting expressions, Eq. (14) with Eqs.
(15a) to (16b) represent the numerical dispersion relation of
the arbitrary-order Galilean-PSATD solver, relating ω and
k, in the presence of a neutral, uniform plasma flowing at
v0 = v0uz (with Lorentz factor γ0) on a periodic 2D Cartesian
grid,

(
s2
ω′′ − t2

c[k]c
2
ω′′

){
1 − 1

[k]

(
[kx]ξ3x + [kz]ξ3z

γ 2
0

)}
− ξ1

{
χ5

[k]2

(
[kz]

2 + [kx]2

γ 2
0

)
+ χ ′

5
[kz]v0

c[k]

}

+ [kx]v0

c[k]

{
χ5

[k]

(
[kz]ξ2x − [kx]ξ2z

γ 2
0

)
+ χ ′

5
ξ2xv0

c

}
+ 1

γ 2
0

(
χ5 + [kz]v0

c[k]
χ ′

5

){
ξ1

[kx]ξ3x + [kz]ξ3z

[k]
+ [kx]v0

c[k]
(ξ3xξ2z − ξ3zξ2x )

}
= 0,

(14)

ξ1 = T̂ (k)
ω2

p

γ0c[k]

∞∑
mx,mz=−∞

1
2
�t sin

{
�t
2

[
ω − kzv0 − mz

2π
�z (v0 − vgal )

]} Ŝ2(km), (15a)

ξ2 = T̂ (k)
ω2

p

γ0[k]

∞∑
mx,mz=−∞

cos
{

�t
2

[
ω − kzv0 − mz

2π
�z (v0 − vgal )

]}
(

2
�t

)2
sin2

{
�t
2

[
ω − kzv0 − mz

2π
�z (v0 − vgal )

]} Ŝ2(km)km, (15b)

ξ3 = T̂ (k)
ω2

p

γ0[k]

∞∑
mx,mz=−∞

1(
2
�t

)2
sin2

{
�t
2

[
ω − kzv0 − mz

2π
�z (v0 − vgal )

]} Ŝ2(km)km, (15c)

χ5 = cω′′cνc[k]

1 − ν2
{tω′′ (tc[k] − νtνc[k] ) − tc[k](tνc[k] − νtc[k] )}, (16a)

χ ′
5 = cω′′cνc[k]

1 − ν2
{tω′′ (tνc[k] − νtc[k] ) − tc[k](tc[k] − νtνc[k] )}. (16b)

Note that we only consider the case where the Galilean transformation is along the direction of the moving plasma, i.e.,
vgal = vgaluz, and that we use the following shorthand notations:

sx = sin

(
x�t

2

)
, cx = cos

(
x�t

2

)
, tx = tan

(
x�t

2

)
,

ω′′ ≡ ω − vgal(kz − [kz]) , ν = [kz]vgal

c[k]
. (17)
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TABLE I. Variants of the solver and parameters of the NCI
growth rate simulations, scaled by kp,r ≡ kp/γ

1/2
0 , with k2

p =
n0e2/meε0c2.

PSATD∞ norder = ∞, vgal = 0
PSATD8 norder = 8, vgal = 0
Galilean-PSATD8 norder = 8, vgal = v0

Plasma density n0 (scales the simulation)
Lorentz factor γ0 = 130
Cell size �z = �x = 0.3868 k−1

p,r

Time step �t = 1.2�z/c
Number of gridpoints Nx = Nz = 200
Particle shape factor 3 (cubic)

In fact, and as we have discussed in detail in Ref. [20],
this rather complicated equation takes into account all nu-
merical properties of the underlying algorithm, such as the
finite temporal and spatial resolution, the discretization on
the grid, and the particularities of the PIC cycle (e.g., the
particle field gathering, charge and current deposition, current
correction, etc.). In the limit of infinite resolution and for
any value of vgal, Eq. (14) supports two physical modes, the
relativistic electromagnetic mode ω2 = c2k2 + ω2

p/γ0 and the

relativistic plasma mode ω = kzv0 ± ωpγ
−3/2
0 [20]. For finite

resolutions, on the other hand, it recovers all of the unphysical
couplings between distorted numerical modes that can lead to
the numerical Cherenkov instability.

Especially the coefficients ξ are of interest, as they rep-
resent the numerical plasma response, taking into account
the particle shape factor Ŝ (k), the spatial field smoothing
T̂ (k), and a sum over all spatial aliases Km (Km = mx

2π
�x ux +

mz
2π
�z uz and km = k + Km). The latter arise from the mis-

match of sampling the continuous particle distribution on a
discrete grid and play a key role in the occurrence of the
NCI. It should again be noted that for infinite order [k] → k
and Eq. (14) then equals to the original dispersion relation as
derived in Ref. [20]. Furthermore, setting vgal = 0 recovers the
dispersion relation of the standard PSATD solver that would
be equivalent to the one formerly derived in Ref. [18].

B. Evaluation of the numerical Cherenkov
instability growth rate

In the following section, we begin with an analytical eval-
uation of the dispersion relation, which closely follows [18]
and reveals some of the sources of NCI growth. This analysis,
however, is limited and Eq. (14) has to be solved numerically
to obtain the NCI growth rate across all frequencies. Conse-
quently, the results of this numerical evaluation are compared
to actual 2D PIC simulations with WARPX. In the following,
we consider three variants of the solver and use the same test
case as in Refs. [3,18,20] with the exact parameters listed
in Table I. For the sake of simplicity, we restrict ourselves
to using a finite stencil in z only, thus [k] = √

[kz]2 + k2
x .

Nevertheless, the main findings, such as the elimination of the
NCI, are equally valid when using finite-order stencils along
multiple axes.

To begin with the analytical evaluation, it is useful to
discard the plasma related terms of the dispersion relation and

thereby recover the vacuum dispersion relation, i.e., the very
first term of Eq. (14),

tan2

( {ω − vgal(kz − [kz])}�t

2

)
= tan2

(
c[k]�t

2

)
. (18)

Although the vacuum dispersion relation was already given by
Eq. (12) and discussed in Sec. II, it now becomes evident that
the above equation supports an infinite number of temporal
aliases as seen by the particles,

ωn = ω + n
2π

�t
, (19)

with n the temporal alias number. Even for the standard
PSATD solver with infinite-order accuracy (PSATD∞), this
causes a distortion of the electromagnetic mode at large k if
the time step �t is too large. This is because particles sample
the fields at discrete times and at maximum see a frequency
of ±π/�t . If the actual frequency of the fields supported by
the grid exceeds this value, then particles see a temporal alias
of the electromagnetic mode. This can be seen in Fig. 4(a),
where the electromagnetic mode (solid lines) of the PSATD∞
solver is shown for a fixed transverse wave number kx =
(π/2)�x−1. In our example, c�t = 1.2�z > π/kmax, where
kmax = π (�z−2 + �x−2)1/2 is the maximum wave number of
the grid. Hence, particles see a temporal alias of the fields
(gray lines) and ω decreases once the frequencies supported
by the grid, c[k] exceed the maximum frequency supported by
the time step, πc/(1.2�z). Conversely, in the finite-order case
(PSATD8), the main electromagnetic mode is always distorted
and eventually starts decreasing at high kz.

These distorted electromagnetic modes can couple to spu-
rious plasma or beam modes that emerge from the resonance
condition in the plasma coefficients ξ ,

ω + n
2π

�t
− kzv0 − mz

2π

�z
(v0 − vgal ) = 0, (20)

i.e., whenever the sine-term in the denominator of these
expressions becomes zero. Here mz is the spatial alias number
in the direction of the moving plasma, and n is the index of the
temporal alias. Not surprisingly, for mz = 0 and n = 0 we get
the NCR resonance condition that was already mentioned in
Sec. II C, Eq. (13). The mz = 0 beam mode and the first two
spatial aliases mz = [−1,+1] are shown in Fig. 4. Intersec-
tions of these beam modes—or their temporal aliases—with
the electromagnetic mode can support resonant growth of the
NCI.

As expected, the mz, n = (0, 0) resonance only occurs for
finite orders (PSATD8), while the standard PSATD solver
(PSATD∞) solely suffers from aliased resonances. By setting
vgal = v0 in Eq. (20) all resonances with spatial aliases mz �= 0
vanish [Fig. 4(c)], which is a direct consequence of the numer-
ical grid following the moving plasma in the Galilean frame.
In addition, the asymmetrical dispersion relation prevents the
mz = 0 beam mode to intersect with the main electromag-
netic mode in case of the finite-order Galilean-PSATD solver
(Galilean-PSATD8).

Despite that, Eq. (20) suggests that an NCI resonance
with mz = 0 and a temporal alias n �= 0 of the fields could
still occur for any order of the Galilean-PSATD solver. For
example, the mz, n = (0, 1) intersection in Fig. 4(a) does not
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FIG. 4. Distorted electromagnetic modes (black solid lines) and
temporal aliases (gray solid lines) for forward- and backward-
(±ω�t) propagating waves and spurious beam modes (dashed lines)
for different variants of the solver (see Table I) at kx = (π/2)�x−1.
(a) PSATD∞; (b) PSATD8; (c) Galilean-PSATD8. The relativistic
beam (or plasma) and the Galilean frame [panel (c) only] move in the
forward (+ω�t) direction. Resonant growth of the NCI can occur at
intersections of these modes and their spatial (mz) and temporal (n)
aliases.

vanish for vgal = v0. However, as we will learn from the
numerical analysis in the following, the ν-dependent terms
in the coefficients χ5 and χ ′

5 seem to cancel this resonance
for vgal = v0 and also prevent the occurrence of an otherwise
typical nonresonant growth of the NCI for mz = 0. These
additional terms are a direct consequence of the analytical
integration when deriving the PSATD equations and come
from the fact that the currents are assumed to be constant over
one time step in the comoving frame, which is equivalent to
assume the currents to be comoving with the plasma in the
original frame.

Again, those final observations have been made by nu-
merically solving Eq. (14), because it is not easily possible
to extract more information from the analytical expressions.
Figure 5 shows the theoretical NCI growth rates Im(ω) for
the three solver cases and compares them to WARPX simu-
lations. The possible curves of resonant growth are shown
for the different beam modes and are labeled according to

their spatial and temporal alias number. The kx locations of
intersecting modes can be derived as a function of kz by
inserting the vacuum dispersion relation Eq. (12) into the
resonance condition Eq. (20) and solve it for kx [18]:

kx,res =
({

kz
v0

c
− (kz − [kz])

vgal

c

+ mz
2π

�z

(v0 − vgal )

c
− n

2π

c�t

}2

− [kz]
2

)1/2

. (21)

The standard PSATD∞ case suffers from nonresonant
growth of the NCI over a wide range of frequencies and in
addition shows resonant growth along the mz, n = (0, 1) and
mz, n = (−1, 0) resonance lines. A very similar pattern of
growth can be seen for the finite-order PSATD8 case, although
here three lines of resonant growth, mz, n = (0, 0), (0,1),
and (−1,−1) are visible, with the mz, n = (0, 0) resonance
being the dominant one. In contrast, numerically solving the
dispersion relation for the Galilean-PSATD8 case predicts
absolutely no growth across all frequencies, proving the ab-
sence of the NCI for a uniformly streaming plasma. The
estimated growth rates from the PIC simulations validate the
above results and show excellent quantitative agreement for
all three cases. Note that the visible residual background can
be attributed to numerical noise in the simulation.

Although not shown here, another useful conclusion can
be drawn by slightly modifying the dispersion relation before
numerically solving it. Explicitly replacing [kz] by kz in ω′′
and ν removes the asymmetric properties of the dispersion
relation and thereby reintroduces the mz, n = (0, 0) resonance
for the otherwise stable case with vgal = v0. Indeed, when
numerically solving this modified dispersion relation, NCI
growth appears only along the mz, n = (0, 0) resonance line.
This again highlights the self-consistency of the Galilean ap-
proach. Despite being a fundamental ingredient to cancel the
resonance, the asymmetry of the vacuum dispersion relation
was not artificially introduced to the scheme but rather it is
a natural consequence of deriving the PIC equations in the
comoving coordinates.

In summary, the stability analysis unfolded the different
sources of NCI growth and we demonstrated how the Galilean
coordinate transformation introduces unique properties that
lead to their compensation. Consequently, we proved the
elimination of the numerical Cherenkov instability for a finite,
localized stencil in the case of a cold relativistic plasma
moving uniformly in one direction. In the next section, the
practical usefulness of the solver is validated by applying it
to simulations of laser-plasma acceleration using the Lorentz-
boosted frame technique.

IV. APPLICATION TO PLASMA ACCELERATION

In a plasma wakefield accelerator [40], an intense driver,
either a short laser or particle beam, excites a trailing plasma-
density wave, sustaining electric fields that are orders of
magnitude higher than in radiofrequency-based accelerators.
Particle-in-cell simulations of plasma accelerators are costly,
because spatially resolving the small scale objects, such as the
laser wavelength, limits the propagation distance within one
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FIG. 5. [(a)–(c)] Theoretically predicted and [(d)–(f)] simulated NCI growth rates Im(ω)/ωp,r with the parameters as defined in Table I.
[(a) and (d)] PSATD∞; [(b) and (e)] PSATD8; [(c) and (f)] Galilean-PSATD8. Theoretical growth rates are predicted by numerically solving
Eq. (14) and simulated growth rates are estimated from the difference of the Fourier transformed fields between ωp,rt 	 90 and 120. Mode
intersections that support resonant growth of the NCI are calculated from Eq. (21) and are overlaid as solid lines and labeled according to their
spatial (mz) and temporal (n) alias number.

time step. Hence, many iterations are required to follow the
interaction through the longer plasma.

A much more efficient ratio of scales can be achieved by
transforming the entire simulation from the laboratory frame
to a relativistic frame of reference moving in the direction of
the driver [27], i.e.,

ct ′ = γ (ct − βz),

z′ = γ (z − βct ),
(22)

where γ = (1 − β2)−1/2 and β = vboost/c is the speed of the
relativistic frame in the z direction. In this Lorentz-boosted
frame, the length scales of copropagating relativistic objects,
such as the laser pulse or the plasma wave, are elongated
by a factor 	 γ (1 + β ). In contrast, objects that have been
initially at rest, i.e., the plasma, are contracted by a factor
γ and counterpropagate at a relativistic velocity vplasma =
−βc in the opposite direction. As a consequence, the total
simulation length decreases and the propagation distance per
time step increases, reducing the overall number of iterations
by 	(1 + β )2γ 2 [28].

Although the Lorentz-boosted frame technique enables
orders of magnitude speedups, its applicability is limited be-
cause the counterstreaming plasma eventually gives rise to an
NCI. However, as we have originally shown in Ref. [19], we
can use the infinite-order Galilean-PSATD solver to perform
the simulation in a coordinate system that is comoving with
the relativistic plasma, hence vgal = −βc, and thereby elimi-
nate the NCI. In this section, we extend this result to the finite-
order Galilean-PSATD solver. This extension significantly
increases the practical relevance of the Galilean scheme as
it allows to perform large-scale, parallelized Lorentz-boosted

frame simulations of plasma accelerators while still eliminat-
ing the NCI.

In the following, we show FBPIC simulations of a nonlinear
plasma wakefield in the blow-out regime that is used to double
the energy of a 1-GeV electron beam with 100 pC of charge
over a distance of 	30 mm. The plasma wave is resonantly
driven by a laser pulse that is kept in focus by a matched
plasma guiding channel. The setup has been simulated in the
laboratory frame and in a Lorentz-boosted frame with γboost =
10. Simulation parameters are summarized in Table II.
Except for the infinite-order simulation, the computation is
parallelized to eight graphics processing units by spatial do-
main decomposition in the axial direction.

TABLE II. Parameters of the laser-plasma acceleration sim-
ulation in cylindrical coordinates, decomposed into two az-
imuthal modes. Laser and electron beam quantities have Gaussian
distributions.

On-axis plasma density n = 5 × 1017 cm−3

Laser wavelength and intensitya λ = 800 nm, a0 = 2
Laser waistb and pulse lengthb w0 = 20 μm, cτ = 12 μm
e--beam energy γ = 2000, σγ = 10
e--beam charge Q = 100 pC
e--beam size σz = 1.5 μm, σr = 0.5 μm
e--beam norm. emittance εn = 1 mm mrad
Resolution �z = λ/64, �r = 0.25 μm
Time step �t = �z/c
Particles per cell and shape 2×4×4 (r, z, θ ), 3 (cubic)

aPeak normalized vector potential.
b2σ of intensity distribution.
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FIG. 6. Stability of the laser-plasma acceleration simulation in a
relativistic frame with γboost = 10. The charge density ρ ′ is shown
at t ′ = 7800 �z′/c for different variants of the solver (see Table
I). (a) Galilean-PSATD8; (b) PSATD∞; (c) PSATD8. Simulation
parameters are listed in Table II. A destructive NCI develops unless
setting vgal = vplasma.

Figure 6 compares the stability of the Lorentz-boosted
frame simulation for the three different variants of the solver
in accordance with Sec. III. At the time shown, the laser
pulse, propagating to the right, has already reached the end of
the counterstreaming plasma. The trailing plasma wave and
the accelerated electron beam are visible as modulations of
the charge density ρ ′. While the onset of an NCI is visible
in case of the standard PSATD∞ solver, a strong NCI has
already developed for the finite-order PSATD8 solver. The
distorted dispersion relation leads to a higher growth rate of
the instability in this case. In contrast, the Galilean-PSATD8

solver remains completely stable for the entire simulation
distance, while the only difference here is the use of vgal =
vplasma. Although the excitation of a strong nonlinear plasma
wave causes deviations from the initially uniform plasma
flow, no signs of an NCI become apparent. The high-density
electron bunch that moves opposite to the Galilean frame is
not degraded by NCR or other detrimental numerical effects.
Despite the presence of a distorted vacuum dispersion relation
in this direction, the accuracy of the solver for the relatively
low order norder = 8 is already sufficient to mitigate NCR [17]
in this use case.

The results of this finite-order Lorentz-boosted frame sim-
ulation are back-transformed to the laboratory frame and
benchmarked against a high accuracy (norder = 128) reference
simulation with γboost = 1, i.e., a laboratory-frame simula-
tion. Figure 7 shows a direct comparison of the longitudinal
wakefield Ez and the charge density ρ toward the end of
the simulation after 	25 mm of propagation. The guided
laser expels almost all electrons from the axis and forms a
trailing plasma cavity sustaining tens of GeV/m accelerating

FIG. 7. Accelerating wakefields Ez (zx plane at y = 0 and on-
axis lineout) and overlaid charge density ρ after 	25 mm of propaga-
tion. Results from the laboratory frame simulation (norder = 128 and
γboost = 1) are shown in the upper half (solid line) and results from
the Lorentz-boosted frame simulation (norder = 8 and γboost = 10) are
shown in the lower half (dashed line), respectively.

gradients. Within the blow-out, the high charge electron bunch
drives its own wakefield and absorbs energy from the wake.
The beam loading flattens the accelerating fields along the
bunch and thereby minimizes the accumulation of linearly
correlated energy spread. The on-axis accelerating field agrees
well between both simulations with only small deviations near
the region of highest density at the back of the first plasma
oscillation where the electron trajectories collapse.

A comparison of the evolution of characteristic laser and
electron beam properties is shown in Fig. 8. The laser is
initially focused 250 μm behind the entrance of the plasma

FIG. 8. Comparison of the results between the laboratory frame
simulation with norder = 128 and γboost = 1 (solid lines) and the
Lorentz-boosted frame simulation with norder = 8 and γboost = 10
(dashed lines). Evolution of (a) the laser waist w and pulse length
τ and (b) the electron beam energy Ekin ± 3σE and emittance εn.
Comparison of the [(c) and (d)] longitudinal (ζ , Ekin) and [(e) and
(f)] transverse phase space (x, px/mec) of the electron bunch at the
end of the acceleration distance, zprop = 30 mm.
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channel into a 1-mm-long sinusoidal density upramp. As it
reaches relativistic intensities the nonlinear interaction with
the plasma causes the pulse to self-modulate. As a conse-
quence, the pulse length τ decreases and the transverse waist
w oscillates along the propagation distance. The electron
bunch is initially focused at the end of the upramp and
situated at the back of the first plasma oscillation, 32.5 μm
behind the centroid of the laser. While slowly dephasing in the
direction of the driver, it gets accelerated to Ekin 	 2.1 GeV
and accumulates a relative energy spread of σE 	 1.4%. A
mismatch between the transverse beam phase space and the
strong focusing forces leads to betatron decoherence causing
a slight growth of the emittance that eventually saturates to
εn 	 1.3 mm mrad. Both the nonlinear laser plasma interac-
tion and the electron beam dynamics are correctly reproduced
in the Lorentz-boosted frame. At the end of the propagation
distance, the shown quantities deviate by less than a percent
between both simulations. The agreement is confirmed by a
direct comparison of the longitudinal and transverse phase
spaces at zprop = 30 mm.

In summary, the results prove the applicability of the
finite-order Galilean-PSATD solver for typical simulations of
plasma acceleration in the Lorentz-boosted frame. For the
example case considered here, the required number of PIC
iterations is reduced by two orders of magnitude, while the
use of a local stencil of order norder = 8 allows for efficient
parallelization by domain decomposition.

V. CONCLUSION AND DISCUSSION

In this article, we extended the formulation of the Galilean-
PSATD solver [19,20] by incorporating spatial derivatives of
finite order for the electromagnetic fields. This adds locality
to the field solver [17,34] and allows to scale the algorithm
to many distributed compute units via domain decomposition
[15,35]. While the modification leads to errors in the vacuum
dispersion, the solver retains its unique stability properties that
lead to the elimination of the numerical Cherenkov instability
for a relativistically streaming plasma. The natural discretiza-
tion in Galilean coordinates introduces an asymmetry to the
numerically distorted dispersion relation which cancels the
main NCI resonance for a beam or plasma propagating at the
comoving grid velocity.

The benefits of this asymmetry come at the cost of reducing
the accuracy in the direction opposite to the Galilean frame.
However, the tunability of the solver always allows to balance
accuracy and locality to preserve the correct physics [17,36].
The proposed solver leads to no increase in computational cost
compared to the standard PSATD solver, apart from a minor
increase in communication overhead when parallelized. Varia-
tions of the finite-order Galilean-PSATD solver will be subject
of future studies. For example, adding spatial staggering of the
electromagnetic fields could further improve the scalability.

The solver was applied to practically relevant simulations
of plasma acceleration in an optimal Lorentz-boosted frame
of reference [27]. Although the excitation of a plasma wave
leads to deviations from the uniform streaming velocity, we
demonstrated that the solver remains stable and accurate.
Furthermore, even when using low orders, a relativistic high-
density beam that counterpropagated with respect to the

Galilean frame did not show any signs of an NCI and was
not degraded by NCR.

Nevertheless, large deviations from the bulk plasma ve-
locity or simulations of counterstreaming plasmas, such as
studied in astrophysics, can again lead to an instability. Like-
wise, a dense relativistic beam that counterpropagates with
respect to the Galilean frame can still degrade from NCR
when using very low orders and grid resolutions. In these
situations, however, the simultaneous combination of multiple
comoving frames in more than one direction is a possible
solution.

Apart from suppressing NCR, simulations including rel-
ativistic beams could further benefit from a Galilean frame.
Recent work [41] showed that even for an ideal numerical
dispersion and in the absence of Cherenkov like fields, sim-
ulations of relativistic beams can suffer from erroneous space
charge fields. However, by modeling such systems in a frame
comoving with the beam, it should be possible to recover the
correct physical self-fields with the arbitrary-order Galilean-
PSATD solver.
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APPENDIX: DERIVATION OF THE DISPERSION
RELATION FOR THE FINITE-ORDER GALILEAN-PSATD

SCHEME

In this section, we derive the theoretical dispersion relation
for a relativistic flowing plasma, with the finite-order Galilean
scheme. The derivation closely follows that of Appendix B
in Ref. [20], which derived the theoretical dispersion relation
for the infinite-order case. Thus, in this section, we only
emphasize the differences due to the finite-order scheme.

As a reminder, Appendix B in Ref. [20] considered the
discretized Vlasov-Maxwell system for a uniform, flowing
plasma, with small perturbations (in the fields E and B,
and in the distribution function f ). The perturbations were
then decomposed into Fourier eigenmodes, and a dispersion
relation connecting ω and k for each eigenmode was ob-
tained. Importantly, all numerical effects (e.g., particle shape,
discretization on a grid, etc.) were taken into account in the
derivation.
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1. Discretized Vlasov equation

Since the finite-order scheme only affects the discretized
Maxwell equations but does not affect the field gathering
and particle push, the discretized Vlasov equation (as derived
in Sec. B.2 of Ref. [20]) is unchanged by the finite-order
operators. Thus, the linearized Vlasov equation for the Fourier
components of the perturbations δ f reads (see Eq. (B15) in
Ref. [20]):

δ f̂ n+ 1
2 (km, p) eikm·(v−vgal )�t/2

− δ f̂ n− 1
2 (km, p) e−ikm·(v−vgal )�t/2

+ q�t Ŝ (km)[Ên
(k) + v × B̂n

(k)] · ∂ f0

∂ p
= 0, (A1)

where Ŝ (km) is the Fourier transform of the particle shape
factor, k is the unmodified wave vector and is in the first
Brillouin zone of the reciprocal lattice, and km = k + Km

with Km a vector of periodicity of the reciprocal lattice (see
Appendix B in Ref. [20] for more details).

2. Discretized Maxwell equations

Just like in Sec. B.3 of Ref. [20], the discretized Maxwell
equations [Eqs. (4a) and (4b)] and the current correction
equation [Eq. (7a)] can be combined and written in a time-
symmetrical form:

θ∗cB̂n+1 − θcB̂n = −tc[k]
i[k] × (θ∗Ên+1 + θ Ên

)

[k]

+ 2χ ′
4
T̂ (k)

ε0c[k]

[k] × Ĵ n+ 1
2

d

[k]
, (A2)

θ∗Ên+1 − θ Ên = tc[k]
i[k] × (θ∗cB̂n+1 + θcB̂n

)

[k]

− T̂ (k)i[k]

ε0[k]2
(θ∗ρ̂n+1 − θρ̂n)

− 2χ4
T̂ (k)

ε0c[k]

⎧⎨
⎩Ĵ n+ 1

2
d −

(
[k] · Ĵ n+ 1

2
d

)
[k]

[k]2

⎫⎬
⎭,

(A3)

where

χ4 = cνc[k](tc[k] − νtνc[k] )

(1 − ν2)
, χ ′

4 = cνc[k](tνc[k] − νtc[k] )

(1 − ν2)
,

(A4)

tc[k] ≡ tan

(
c[k]�t

2

)
, cc[k] ≡ cos

(
c[k]�t

2

)
, (A5)

tνc[k] ≡ tan

(
νc[k]�t

2

)
, cνc[k] ≡ cos

(
νc[k]�t

2

)
, (A6)

and where T̂ represents smoothing on a discrete grid. For
instance, for a one-pass binomial smoother:

T̂ (k) = [1 − sin2(kx�x/2)]

× [1 − sin2(ky�y/2)][1 − sin2(kz�z/2)]. (A7)

The above equations are the counterparts of Eqs. (B17)
to (B21) in Ref. [20], where the wave vectors k have been
replaced by their finite-difference approximation [k] of order
norder—except in the smoothing coefficient T̂ . (This is because
smoothing does not involve discretized differential operators,
or their finite-order approximation.)

In addition, the source charge and current in the above
equations (ρ̂ and Ĵ d ) can be expressed from the perturbations
of the density function δ f . Because the finite-order scheme
does not affect the charge and current deposition, these ex-
pressions are unmodified and read (see Eqs. (B25), (B27), and
(B28) in Ref. [20]):

Ĵ n+ 1
2

d (k) =
∑

m

Ŝ (km)
∫

d p qv δ f̂ n+ 1
2 (km, p), (A8a)

ρ̂n(k) =
∑

m

Ŝ (km)
∫

d p q δ f̂ n+ 1
2 (km, p)e

ikm ·(v−vgal )�t

2 ,

(A8b)

ρ̂n+1(k) =
∑

m

Ŝ (km)
∫

d p q δ f̂ n+ 1
2 (km, p)e− ikm ·(v−vgal )�t

2 .

(A8c)

3. Eigenmodes and eigensystem

Following the same steps as in Ref. [20], we can search for
the eigenmodes of the coupled Vlasov-Maxwell system in the
form

Ên
(k) = Ê (k)e−i(ω−k·vgal )n�t , (A9a)

B̂n
(k) = B̂(k)e−i(ω−k·vgal )n�t , (A9b)

δ f̂ n+ 1
2(km, p) = δ f̂ (km, p)e−i(ω−k·vgal )(n+ 1

2 )�t . (A9c)

In this case, inserting the perturbed Vlasov equation
Eq. (A1) into Eqs. (A8a) to (A8c) yields (after some algebra):

Ĵ n+ 1
2

d = i
ε0ω

2
p

γ0
e−i(ω−k·vgal )(n+ 1

2 )�t

×
∑

m

Ŝ2(km)

{ F̂
2
�t sω′

+ cω′ (km · F̂ )v0[
2
�t sω′

]2

}
, (A10)

θ∗ρ̂n+1 − θρ̂n = 2ε0ω
2
p

γ0
sω′′e−i(ω−k·vgal )(n+ 1

2 )�t

×
∑

m

Ŝ2(km)
(F̂ · km)[

2
�t sω′

]2 , (A11)

where

F̂ ≡ Ê (k) + v0 × B̂(k) − [v0 · Ê (k)]v0

c2
, (A12)

ω2
p = n0q2

mε0
, (A13)

sω′ = sin

{
[ω − k · v0 − Km · (v0 − vgal )]�t

2

}
, (A14)

cω′ = cos

{
[ω − k · v0 − Km · (v0 − vgal )]�t

2

}
, (A15)

013202-11



MANUEL KIRCHEN et al. PHYSICAL REVIEW E 102, 013202 (2020)

sω′′ = sin

{
(ω − k · vgal + [k] · vgal )�t

2

}
. (A16)

In the above equations, the only difference with respect to the
infinite-order scheme is the factor sω′′ in Eq. (A11).

Finally, by combining the discretized Maxwell equations
Eqs. (A2) and (A3) with the above expressions of the source
charge and current, we get

sω′′cB̂ − tc[k]cω′′
[k] × Ê

[k]

= −χ ′
4ξ1

[k] × F̂
[k]

− χ ′
4(ξ2 · F̂ )

[k] × v0

c[k]
(A17a)

sω′′ Ê + tc[k]cω′′
[k] × cB̂

[k]
= sω′′ (ξ3 · F̂ )

[k]

[k]

+ χ4ξ1
[k] × F̂

[k]
× [k]

[k]
+ χ4(ξ2 · F̂ )

[k] × v0

c[k]
× [k]

[k]
,

(A17b)

where the ξ coefficients characterize the response of the
plasma:

ξ1 = T̂ ω2
p

γ0c[k]

[∑
m

Ŝ2(km)
2
�t sω′

]
, (A18a)

ξ2 = T̂ ω2
p

γ0[k]

{∑
m

cω′ Ŝ2(km)[
2
�t sω′

]2 km

}
, (A18b)

ξ3 = T̂ ω2
p

γ0[k]

{∑
m

Ŝ2(km)[
2
�t sω′

]2 km

}
. (A18c)

In the above equations, the changes due to the finite-difference
scheme are the use of ω′′ ≡ ω − k · vgal + [k] · vgal

instead of ω, [k] instead of k in Eqs. (A17a) and
(A17b) and [k] instead of k in the denominator of the ξ

coefficients.

4. Dispersion relation

We can then simplify the system Eqs. (A17a) and (A17b)
by considering a 2D grid, and a plasma that flows purely along
z (i.e., v0 and vgal are along z). After some algebra (following
the same methods as in Sec. B.5 of Refs. [20]), the system can
be reduced to the dispersion relation, Eq. (14), as defined in
Sec. III A.
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