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Inconsistency of magnetic-moment conservation with entropy increase in collisionless shocks
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Collisionless shocks are multiscale objects. Energetic ion distributions are gyrotropic at sufficiently large
distances upstream and downstream of the shock transition while at the transition itself the ion dynamics
is significantly gyrophase dependent. Magnetic-moment conservation of an ion is widely used as a viable
approximation during the shock crossing. It is shown that this approximation is inconsistent with the required
entropy increase due to the loss of the gyrophase information.
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I. INTRODUCTION

Collisionless shocks are efficient accelerators of charged
particles. Acceleration to high energies occurs via the dif-
fusive acceleration mechanism [1–8]. This is a two-stage
mechanism which includes turbulent scattering of charged
particle in the upstream and downstream regions as well
as scatter-free shock crossing [5,7,9]. The energetic parti-
cle distributions in the diffusive regions are described using
gyrophase averaging, that is, the distribution function is a
function of the perpendicular p⊥ and parallel p‖ momenta
or, alternatively, the momentum magnitude p and the pitch-
angle cosine μ [7,8]. Here perpendicular and parallel refer to
the direction of the mean magnetic field in the region under
consideration, while the pitch angle is the angle between this
mean field and the particle momentum. The above description
is appropriate in the plasma frame or in the de Hoffman–Teller
shock frame, in which the electric field vanishes upstream
and downstream of the shock, otherwise the corresponding
drifts should be added [9–13]. The scatter-free shock crossing
plays the decisive role in establishing the particle spectra via
matching conditions for the upstream and downstream gyro
tropic distributions [4,5,7,14]. Ion dynamics during the shock
crossing is essentially gyrophase-dependent [7,15–20]. An in-
cident gyrotropic distribution becomes strongly nongyrotropic
upon shock crossing. The latter may result in transmission or
reflection, and in both cases gyrotropy is broken. In order to
restore the description in terms of the gyrotropic distribution
function one has to average over the gyrophases, thus losing
this piece of information. Therefore, the coarse-grained en-
tropy (defined precisely below) should increase even if the
incident distribution is gyrotropic initially. Ion dynamics in
the shock front is governed mainly by the macroscopic fields
and to a lesser extent by fluctuations [20]. Even in this case
the motion is nonadiabatic and the equations of motion cannot
be integrated analytically. In the absence of a better solution,
matching at the shock front is traditionally used applying
the assumption of the magnetic-moment conservation and/or
continuity of the distribution function [7,15,21–25]. Neither
of these assumptions is correct except probably for strictly
parallel or strictly perpendicular shocks. Recently, it was
suggested that an appropriate description of the matching
conditions may be done using a probabilistic approach to

ion crossing of the shock front [19,20,26,27]. In this paper
we show that magnetic-moment conservation is inconsistent
with the coarse-grained entropy increase due to the loss of the
gyrophase information.

II. CONSERVATION LAWS AND ENTROPY BEHAVIOR

The microscopic (fine-grained) entropy density s and flux
S are defined using the distribution function as follows:

s = −
∫

f ln f d3 p, (1)

S = −
∫

v f ln f d3 p, (2)

where f (p) is the exact distribution function. In the collision-
less case the Vlasov equation

∂ f

∂t
+ v · ∇r f + q

(
E + v

c
× B

)
· ∇p f = 0 (3)

gives the fine-grained entropy conservation in the form

∂s

∂t
+ ∇r · S = 0. (4)

In an ideal shock the fields depend only on one coordinate
along the shock normal and do not depend on time. In this
case the fine-grained entropy conservation reads

Sn = const (5)

or Sn,i = Sn, f where i denotes the incident particles (initial
distribution), f denotes the particles after interaction with the
shock fields (final distribution), and n denotes the direction
along the shock normal. These particles may be transmitted
and reflected as well. Moreover, incident particles may come
to the shock front from downstream constituting the leaked
distribution.

In real shocks the fields in the transition layer can vary
along the shock front and with time. Yet the mean fields
in the upstream and downstream gyrotropic regions are
time-independent. For the global shock normal along n̂ the
coarse-grained entropy increase means Sn,i < Sn, f where the
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coarse-grained entropy and flux are defined as follows:

s = −
∫

F ln F d�, (6)

Sn = −
∫

vμ cos θF ln F d�, (7)

where F = F (p, μ) is the gyrophase-averaged gyrotropic dis-
tribution function and d� = 2π p2 d p dμ is the elementary
volume in the gyrotropic momentum space.

At the scale of gyrotropy the shock is uniform on average,
in both upstream and downstream regions. It is convenient to
work in the de Hoffman–Teller frame, in which the average
upstream and downstream electric fields vanish and the flow
is along the average magnetic field. The averaging removes
the small-scale fluctuations. Let the state of an ion be given
by its momentum p and pitch-angle cosine μ. The velocity
Vn = vμ cos θ is the velocity of the guiding center in the
direction of the global shock normal, while θ is the angle
between this normal and the average magnetic field [28,29].
Here v = p/mcγ , γ = (1 + p2/m2c2)1/2. If F (p, μ) is the
distribution function of ions (guiding centers), that is, the
gyrophase averaged distribution function of ions, then F d�

is the number of guiding centers in d� and

dNn = vμ cos θF d� (8)

is the particle number flux in the direction of the shock
normal. This expression is equally valid both upstream and
downstream. The number of guiding centers is conserved,
which means that the total initial and final fluxes are equal,
Nn,i = Nn, f . The corresponding differential entropy flux is

dSn = −vμ cos θF ln F d� = − ln F dNn, (9)

and the requirement of the coarse-grained entropy increase
reads

Sn, f − Sn,i = −
∫

ln

(
Ff

Fi

)
dNn > 0. (10)

Let the initial state of an ion be given as (pi, μi ). Upon
scattering at the shock front the ion will be found in the
state (p f , μ f ) with the probability wi f (pi, μi; p f , μ f ) d� f ,∫

f wi f d� f = 1. The flux conservation means

Vn, f F (p f , μ f ) =
∫

i
wi f Vn,iF (pi, μi ) d�i, (11)

F (p f , μ f ) =
∫

i
wi f

(
viμi cos θi

v f μ f cos θ f

)
F (pi, μi ) d�i. (12)

This is a generalization of the approach described by Gedalin
et al. [20,26]. The probability wi f (pi, μi; p f , μ f ) can describe
any shock transition including rippling, reformation, large
amplitude waves, and small-scale turbulence as well. The
possible initial and final states are defined relative to the uni-
form background and may be as follows: (a) initial upstream
incident ions, μi > 0, and final downstream transmitted ions,
μ f > 0, or upstream backstreaming ions, μ f < 0, or (b)
downstream ions moving toward the shock front, μi < 0, and
final leaked ions, μ f < 0. Thus, wi f completely determines
F (p f , μ f ) for any given F (pi, μi ). The scattering probability
replaces the detailed information on ion dynamics inside the
shock front. Since it is a statistical property, it can describe

ion scattering at any shock, however complicated its structure
is. Thus, F (pi, μi ) �→ F (p f , μ f ) is a coarse-grained Liouville
mapping with gyrophase information removed.

In the de Hoffman–Teller frame the final momentum is a
single-valued function of the initial momentum, p f = p f (pi ).
In the present paper we shall also assume that final pitch
angle is a single-valued function of the initial pitch angle,
μ f = μ f (μi ). Then the conservation of the number of guiding
centers may be written as equality of initial and final differen-
tial fluxes dNn,i = dNn, f :

viμi cos θiFi p
2
i d pi dμi = v f μ f cos θ f Ff p2

f d p f dμ f , (13)

which immediately provides the distribution function in the
final state as follows:

Ff =
(

viμi cos θi p2
i

v f μ f cos θ f p2
f

)(
d pi

d p f

)(
dμi

dμ f

)
Fi. (14)

Here γ f = γi for reflected ions and γ f = γi − eφ/mc2 for
transmitted ions, where φ is the de Hoffman–Teller cross-
shock potential. In addition, one has

v f d p f = vid pi → d pi

d p f
= v f

vi
(15)

and therefore

Ff =
(

cos θi p2
i

cos θ f p2
f

)(
dμ2

i

dμ2
f

)
Fi. (16)

The magnetic moment (up to the constant multiplier) is

m = p2
⊥

B
= p2(1 − μ2) cos θ

Bn
, (17)

where B is the magnetic field magnitude, which changes upon
the shock crossing, and Bn is the normal component of the
magnetic field, Bn = B cos θ , which is constant throughout the
shock. Therefore,

mi = p2
i cos θi

(
1 − μ2

i

)
Bn

, (18)

m f = p2
f cos θ f

(
1 − μ2

f

)
Bn

. (19)

For a given pi the final momentum p f does not depend on
μi, μ f and

dμ2
i

dμ2
f

= p2
f cos θ f

p2
i cos θi

, (20)

dm f

dmi
=

(
cos θi p2

i

cos θ f p2
f

)(
dμ2

i

dμ2
f

)
(21)

so that

Ff = Fi

(
dm f

dmi

)
. (22)

Thus, one has

dSn, f − dSn,i = −
[

ln

(
dm f

dmi

)]
dNn. (23)

If an adiabatic invariant (magnetic moment) is conserved
m f = mi, then Ff = Fi and dSn, f = dSn,i which means that
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the coarse-grained entropy is conserved. For gyrotropic dis-
tributions gyrophase information is lost, and therefore the
coarse-grained entropy should increase upon shock crossing.
Thus, adiabatic invariant cannot be conserved.

Since gyrophase information is lost for all particles, en-
tropy increase should occur differentially for one-to-one map-
ping, which requires dm f /dmi < 1, that is, the magnetic
moment should decrease. However, this is not possible for
mi = 0, that is, μi = 1. Thus, one-to-one mapping mi ↔ m f

is inconsistent with the entropy increase due to the gyrophase
information loss.

III. DISCUSSION AND CONCLUSIONS

The above analysis is valid for each separate combination
of initial and final states. Namely, coarse-grained entropy
should increase separately: (a) for incident upstream particles
which are transmitted to proceed further downstream, (b) for
upstream incident particles which are reflected at the shock
and stream back upstream, and (c) for downstream incident
particles which leak to the upstream. In all these cases the
initial distribution is gyrotropic but the particle dynamics in
the shock front is gyrophase-dependent. Therefore, the final
gyrotropic distribution is obtained by averaging the exact
gyrophase-dependent distribution over gyrophases. The loss
of gyrophase information must result in the entropy increase.
Thus, one-to-one mapping μi �→ μ f is not valid for any of

these population conversions, although in certain cases it
may appear a reasonable approximation. It has been shown
[20] that the magnetic moment is approximately conserved
for transmitted ions in nearly perpendicular shock and for
backstreaming ions.

In a more general way, entropy increase would place
restrictions on the probabilities. Let us denote, for brevity,

Ai f = wi f

(
viμi cos θi

v f μ f cos θ f

)
, (24)

then

Ff =
∫

Ai f Fi d�i, (25)

and the entropy increase means

�Sn = −
∫

ln

∫
Ai f Fid�i

Fi
dNn. (26)

Finding implications for wi f requires a separate study. It has
been shown that nonconservation of the magnetic moment
affects the spectrum of accelerated ions even in the simplest
case [26]. One can also expect that the pitch-angle distribution
would be substantially affected.
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