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Transitions in overstable rotating magnetoconvection
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The classical Rayleigh-Bénard convection (RBC) system is known to exhibit either subcritical or supercritical
transition to convection in the presence or absence of rotation and/or magnetic field. However, the simultaneous
exhibition of subcritical and supercritical branches of convection in plane layer RBC depending on the initial
conditions, to the best of our knowledge, has not been reported so far. Here, we report the phenomenon of
simultaneous occurrence of subcritical and supercritical branches of convection in overstable RBC of electrically
conducting low Prandtl number fluids (liquid metals) in the presence of an external uniform horizontal magnetic
field and rotation about the vertical axis. Extensive three-dimensional (3D) direct numerical simulations (DNS)
and low-dimensional modeling of the system, performed in the ranges 750 � Ta � 3000 and 0 < Q � 1000 of
the Taylor number (Ta, strength of the Coriolis force) and the Chandrasekhar number (Q, strength of the Lorenz
force), respectively, establish the phenomenon convincingly. Detailed bifurcation analysis of a simple 3D model
derived from the DNS data reveals that a supercritical Hopf bifurcation and a subcritical pitchfork bifurcation of
the conduction state are responsible for this. The effect of Prandtl number on these transitions is also explored in
detail.
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I. INTRODUCTION

Overstable convection or overstability has drawn consid-
erable attention of the researchers over the years due to
its appearance in various astrophysical applications like the
convective motion in sunspot and stellar interiors [1–8]. To
understand the basic properties of overstable convection, re-
searchers often consider simplified convection models like
Rayleigh-Bénard convection (RBC) [9–13] in the presence
of rotation and/or magnetic field. The overstable convection
occurs in RBC as the “principle of exchange of stability”
becomes invalid and the instability is manifested as a time
dependent, oscillatory convective motion. The presence of
external factors like magnetic field and/or rotation causes
overstability since they provide an elastic-like behavior to the
fluid so that it can sustain appropriate modes of wave propaga-
tion [4,14]. A comprehensive treatment on overstability using
linear theory in the presence of rotation and/or magnetic field
can be found in the classical monograph by Chandrasekhar
[15].

Extensive theoretical as well as experimental investigations
have been performed on overstability in the presence of ro-
tation or external magnetic field over the last several decades
[16–21]. As a result, a reasonable understanding on both linear
and nonlinear aspects of the problem has been developed.
However, the problem of overstable oscillatory convection in
the presence of both rotation and magnetic field has received
much less attention. In a rotating magnetoconvection (RMC)
system, rotation introduces the Coriolis force, while magnetic
field generates the Lorentz force. The presence of these two
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forces along with the buoyancy force make the problem more
interesting even in its most simplified form like RBC.

Overstability in such a simplified model of RMC, where
an infinitely extended thin horizontal layer of electrically
conducting fluid is heated uniformly from below in the
presence of rotation and magnetic field was first theoreti-
cally investigated by Chandrasekhar [15]. The mathematical
description of the problem consists of five nondimensional
parameters namely the Rayleigh number (Ra, measures the
vigor of buoyancy force), the Taylor number (Ta, measures
the rotation rate), the Chandrasekhar number (Q, measures the
strength of magnetic field), the Prandtl number (Pr, the ratio
of kinematic viscosity and thermal diffusivity of the fluid)
and the magnetic Prandtl number (Pm, the ratio of kinematic
viscosity and magnetic diffusivity of the fluid). Chandrasekhar
carried out extensive linear stability analysis of the conduction
state to determine the onset of overstability by consider-
ing rotation about the vertical axis and vertical magnetic
field. He obtained the critical Rayleigh number (Rao) and
wave number (ko) for liquid metals (Pr = 0.025, Pm ≈ 0)
at the overstability onset corresponding to different Ta and
Q. Later, in two subsequent experimental works, Nakagawa
[22,23] verified the theoretical findings of Chandrasekhar.
Subsequently, Eltayeb [9] studied the overstable RMC for
various orientations of the magnetic field and rotation with
different types of boundary conditions by performing detailed
asymptotic analysis. He determined some well defined scaling
laws for the onset of overstability in the infinite Ta and Q
limits. Roberts and Jones [10,11] theoretically investigated the
RMC system in the presence of a horizontal magnetic field
and rotation about the vertical axis to determine the preferred
mode of convection for very large Prandtl number fluids. Their
linear analysis revealed the presence of different flow patterns
including overstable cross rolls and overstable oblique rolls
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at the onset. Later, Podvigina [12] studied the RMC system
theoretically with no-slip boundary conditions using linear
theory to determine the parameter space where convective
instability sets in as overstability. In a recent work, Eltayeb
[24] performed linear stability analysis of a RMC system in
the presence of a horizontal magnetic field and rotation about
the horizontal axis. The magnetic field and the axis of rotation
were considered to be inclined at an angle φ. The aim of the
study was to understand the roles of viscosity, the electrical
conductivity of the boundary and the interaction among all
possible wave motions.

It is evident from the literature that most of the investiga-
tions carried out in the field of overstability in the presence
of rotation and magnetic field are based on linear theory.
However, the nonlinear aspects of overstable convection of
electrically conducting low Prandtl number fluids near the on-
set in the simultaneous presence of rotation and magnetic field
have not been investigated yet. In this paper, we investigate
different transitions and associated bifurcation structures that
occur close to the overstability onset by performing three-
dimensional (3D) direct numerical simulations (DNS) and
low-dimensional modeling of the RMC system in the presence
of rotation about the vertical axis and a horizontal uniform
magnetic field. We also explore the heat transfer properties
of the system in detail. The investigation has been performed
here in the parameter ranges 0 < Pr � 0.5, 750 � Ta � 3000
and 0 < Q � 1000, where overstability occurs at the onset.
On the other hand, for a weaker rotation rate, the onset of
convection is found to be always stationary. The transitions to
convection including the bifurcation structure and pattern dy-
namics for such weaker rotation rate (0 < Ta � 500), where
stationary convection occurs, have been discussed in detail in
a recent study [25]. The results of the investigation reported
in the present study are mostly on low Prandtl number fluids
(liquid metals) since they exhibit a very rich bifurcation
structure near the onset of stationary as well as overstable
convection in the absence or presence of magnetic field or
rotation [13,25–34].

II. PHYSICAL SYSTEM AND LINEAR
STABILITY ANALYSIS

We consider the classical Rayleigh-Bénard geometry in
which an infinitely extended thin horizontal layer of electri-
cally conducting fluid of thickness d , coefficient of thermal
expansion α, thermal diffusivity κ , kinematic viscosity ν, and
magnetic diffusivity λ is confined between two horizontal
plates. The plates are perfect conductors of heat and elec-
tricity. The bottom plate is heated uniformly and the top
plate is kept cooler to maintain a steady adverse tempera-
ture gradient β = �T

d = Tl −Tu
d across the fluid layer, where

Tl and Tu are temperatures of the top and bottom plates,
respectively, with Tl > Tu. The system is rotated about the
vertical axis with angular velocity 	 in the presence of a
uniform external horizontal magnetic field B0 ≡ (0, B0, 0).
The external magnetic field is attached to the system and
co-rotates with it. For low Prandtl number fluids (Pr = 0.1)
the Froude number Fr = 	2L

g is always less than 2.6×10−4 for
the rotation rates considered in this study (750 � Ta � 3000).
Thus, the effects of centrifugal force are neglected here. The

stationary conduction state subjected to an external magnetic
field in the rotating frame of reference is then considered as
the basic state. The dimensionless system of equations which
govern the convective flow of the system under the Boussinesq
approximation is given by

∂u
∂t

+ (u.∇)u = −∇π + ∇2u + Raθ ê3 +
√

Ta(u × ê3)

+ Q

[
∂b
∂y

+ Pm(b·∇)b
]
, (1)

Pm

[
∂b
∂t

+ (u·∇)b − (b·∇)u
]

= ∇2b + ∂u
∂y

, (2)

Pr

[
∂θ

∂t
+ (u.∇)θ

]
= u3 + ∇2θ, (3)

∇.u = 0, ∇.b = 0. (4)

In the above mathematical description u(x, y, z, t ) =
(u1, u2, u3) is the convective velocity field, θ (x, y, z, t ) is
the deviation in temperature field from steady conduction
profile, π (x, y, z, t ) is the modified pressure field,
b(x, y, z, t ) = (b1, b2, b3) is the induced magnetic field
and ê3 is the unit vector in vertical direction antiparallel to
the gravitational acceleration g. The nondimensionalization
procedure is accomplished by measuring all the length
scales in the units of fluid thickness d , time scales in the
units of viscous diffusion time scale d2

ν
, the convective

temperature field in the unit of βdν

κ
, the convective velocity

field in the unit of ν
d and the induced magnetic field in the

unit of B0ν
λ

. The nondimensionalization procedure gives
rise to five dimensionless numbers namely the Rayleigh
number Ra = αβgd4

κν
, the Taylor number Ta = 4	2d4

ν2 , the

Chandrasekhar number Q = B0
2d2

νλρ0
, the Prandtl number

Pr = ν
κ

, and the magnetic Prandtl number Pm = ν
λ

. In
this work, our objective is to uncover the instabilities
and associated bifurcation structures occurring near the
overstability onset of low Prandtl number electrically
conducting fluids (liquid metals, fluids present in the inner
core of earth) for which the magnetic Prandtl number is
very small (Pm ≈ 10−6) [15,35–37]. So, for simplicity, we
consider the asymptotic limit Pm → 0. In this limit, the
Eqs. (1) and (2) become

∂u
∂t

+ (u.∇)u = −∇π + ∇2u + Raθ ê3

+
√

Ta(u × ê3) + Q
∂b
∂y

, (5)

and ∇2b = −∂u
∂y

. (6)

The bounding surfaces located at z = 0 and 1 are considered
to be stress-free and perfect conductors of heat and electricity.
This implies

∂u1

∂z
= ∂u2

∂z
= u3 = θ = 0 and b3 = ∂b1

∂z
= ∂b2

∂z
= 0.

(7)

Periodic boundary conditions are assumed in the hori-
zontal directions for all convective fields. Therefore, the
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Eqs. (3)–(6) along with the boundary conditions Eqs. (7)
represent the above described system mathematically.

We now proceed to determine the conditions for overstabil-
ity onset using linear theory [15]. We consider the linearised
version of the above set of governing equations and follow a
similar procedure to that described in Ref. [25]. In the process,
we consider the expression of u3 in terms of normal mode as

u3 = W (z) exp[i(kxx + kyy) + σ t],

and we obtain the equation

(D2 − k2 − Prσ )
{[

(D2 − k2)(D2 − k2 − σ ) + Qk2
y

]2

+ TaD2(D2 − k2)
}
W

= −Rak2[(D2 − k2)(D2 − k2 − σ ) + Qk2
y ]W, (8)

where k =
√

kx
2 + ky

2 is the horizontal wave number with
kx and ky are the wave numbers along x and y directions,
respectively.

We choose a trial solution W (z) = Asin(πz) which is
compatible with the boundary conditions to get the following
stability condition:

(π2 + k2 + Prσ )
{[

(π2 + k2)(π2 + k2 + σ ) + Qk2
y

]2

+ Taπ2(π2 + k2)
}

= Rak2
[
(π2 + k2)(π2 + k2 + σ ) + Qk2

y

]
. (9)

To determine the conditions for overstability onset we put σ =
iσ1 in Eq. (9) and by comparing the real and imaginary parts
we get the expressions for Ra and σ1 as

Ra(Ta, Q, Pr) = 2
π2 + k2

k2

[
(π2 + k2)2 + Qk2

y

]

×
[

(π2 + k2)2 + Pr2σ 2
1

(1 − Pr)(π2 + k2)2 − Qky
2Pr

]
(10)

and

σ1(Ta, Q, Pr)

=
[(

π2Ta

π2 + k2

)(
(1 − Pr)(π2 + k2)2 − Qk2

y Pr

(1 + Pr)(π2 + k2)2 + Qk2
y Pr

)

−
(

π2 + k2 + Qk2
y

π2 + k2

)2]1/2

. (11)

From Eqs. (10) and (11), we notice that the Rayleigh
number for overstability onset has complex dependency on the
parameters Ta, Q, and Pr. Also, it is explicitly dependent on
both kx and ky. Therefore, we rely on numerical computation
to determine the critical Rayleigh number for overstability on-
set (Rao), corresponding critical wave number (ko), associated
angular frequency (σ1), and the preferred mode of convection
corresponding to a fixed value of Pr using Eqs. (10) and
(11) for given Ta and Q. Figure 1 shows the graphs of Ra
[computed using Eqs. (10) and (11)] as a function of kx for
different ky starting with ky = 0 for Pr = 0.1, Ta = 1100, and
Q = 100. From the figure, we see that the minimum value
of Ra occurs for kx = 2.27 and ky = 0. We obtain Rao =
1485.70, σ1 = 19.12, and ko =

√
k2

x + k2
y = 2.27 with ky = 0

(solid blue curve in Fig. 1). Therefore, from linear theory
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FIG. 1. Preferred mode of convection at the overstability onset
computed using linear theory for Pr = 0.1, Ta = 1100 with Q = 100
as a function of kx corresponding to different values of ky.

we see that the preferred mode of convection is overstable
two-dimensional (2D) rolls for Pr = 0.1, Ta = 1100, with
Q = 100. We have checked that in the parameter ranges 0 <

Pr � 0.5, 750 � Ta � 3000, and 0 < Q � 1000, considered
in this study, the preferred mode of convection is overstable
2D rolls for which kx �= 0 and ky = 0. Thus, the instability
is independent of Q. Also, the minimum value of Ta (Tac)
required for overstable oscillatory convection corresponding
to a fixed value of Pr is independent of Q. Further, the value
of Tac grows rapidly as Pr increases and the scenario of
overstability vanishes for Pr � 0.6766 [15]. Now, we proceed
for direct numerical simulations (DNS) of the system to verify
the results obtained from linear theory, details of which are
discussed in the following section.

III. DIRECT NUMERICAL SIMULATIONS (DNS)

An object oriented pseudospectral code TARANG [38] is
used to carry out DNS of the governing Eqs. (3)–(6) together
with the boundary conditions Eqs. (7). Equation (6) shows that
the induced magnetic field is slaved to the velocity field. In
the simulation code, the independent variables present in the
governing equations, i.e., vertical velocity, vertical vorticity
and the deviation in temperature field are expanded using a set
of orthogonal basis functions compatible with the boundary
conditions as

u3(x, y, z, t ) =
∑
l,m,n

Wlmn(t )ei(lkxx+mkyy) sin(nπz),

ω3(x, y, z, t ) =
∑
l,m,n

Zlmn(t )ei(lkxx+mkyy) cos(nπz),

θ (x, y, z, t ) =
∑
l,m,n

�lmn(t )ei(lkxx+mkyy) sin(nπz). (12)

The coefficients Wlmn, Zlmn, and �lmn are the Fourier coeffi-
cients and l , m, and n can take any nonnegative integer values
including zero. kx and ky are the wave numbers along the x
direction and y direction, respectively. We set kx = ky = ko
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FIG. 2. Critical Rayleigh number (Rao) and angular frequency
(σ1) at the onset of overstable convection are shown as a function of
Ta for Pr = 0.1. The green [for Rao in panel (a)] and cyan [for σ1 in
panel (b)] curves are obtained from the linear theory, while solid blue
diamonds [represents Rao in panel (a)] and solid dots [represents σ1

in panel (b)] are DNS data.

for the present simulations. The horizontal components of
the velocity and induced magnetic field are then derived by
using the equation of continuity and Eq. (6). Simulations are
performed in a square box of size (2π/ko) × (2π/ko) × 1 with
spatial grid resolution 323. Fourth-order Runge-Kutta method
is used for time advancement with time step δt = 0.001.
Random initial conditions are used for the simulations. We
introduce a new parameter r = Ra/Rao(Ta, Pr), called the
reduced Rayleigh number in the subsequent discussion.

Numerical investigation is carried out near the onset of
convection over the parameter ranges 750 � Ta � 3000, 0 <

Q � 1000, and 0 < Pr � 0.5. We first determine Rao from
DNS for different values of Ta in the considered parame-
ter range corresponding to Pr = 0.1 using the values of ko

obtained from the linear theory. The variation of Rao and
associated σ1 for different values of Ta obtained from linear
theory and DNS are shown in Fig. 2. From the figure, it is
clear that at the onset of overstability, the linear theory and
DNS have a good agreement. Now, using the code we have
performed extensive simulations in our considered parameter
space to unfold different flow patterns which are discussed in
Sec. IV.

IV. RESULTS AND DISCUSSION

A. Effect of large magnetic field (Q � 100)

1. DNS results

We perform extensive DNS in the considered ranges of Ta
and Q for Pr = 0.1. We first explore the effect of large mag-
netic field (Q � 100) near the onset of overstable rotating con-
vection. We observe multiple solutions at the onset of convec-
tion (r = 1.001) corresponding to different sets of initial con-
ditions. Figure 3 shows the existence of two different classes
of solutions at the onset of convection for Ta = 1100 and Q =
100. A high-amplitude 2D rolls solution for which W101 �= 0
and W011 = 0 [see Fig. 3(a)] appears at the onset correspond-
ing to a different set of initial conditions along with the
usual periodic oscillatory rolls solution for which W101 �= 0,
W011 = 0 and W101 oscillates over time [see Fig. 3(b)].
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FIG. 3. Temporal variation of the Fourier modes W101 and W011

near the onset of primary instability (r = 1.001) for Ta = 1100,
Q = 100, and Pr = 0.1 as obtained from DNS corresponding to
(a) 2D rolls and (b) oscillatory rolls solutions.

Changes in Ta do not alter the scenario at the onset in our
considered parameter range. However, changes in Pr have
nontrivial effects which we will discuss later.

The existence of multiple solutions at the onset of con-
vection motivates us to study the heat transport properties
associated with different solutions. Therefore, we compute
the Nusselt number (Nu, ratio of total heat flux to conductive
heat flux) at the onset of convection corresponding to different
solutions. The variation of convective heat flux (Nu − 1) at
the onset corresponding to two different types of solutions for
Q = 100 is shown in Fig. 4. Interestingly, from the figure,
we observe a sharp jump in Nu for the 2D rolls solution
indicating a sudden enhancement in heat transfer. However,

750 1250 1750 2250 2750
Ta

0

0.5

1

1.25

1.5

N
u

-1

750 1750 2750

0

2.5

5 10 -4

FIG. 4. Variation of convective heat flux (Nu − 1) near the onset
of primary instability (r = 1.001) for Q = 100 and Pr = 0.1 corre-
sponding to the 2D rolls solution (blue) and periodic solution (red)
as a function of Ta. The variation of (Nu − 1) corresponding to
the periodic solution (red) is clearly visible at the inset. The cyan
curve represents the straight line Nu = 1 corresponding to the steady
conduction state.
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FIG. 5. Convective heat flux computed from DNS as a function
of r for Q = 100, Pr = 0.1 and two different values of Ta. Filled cir-
cles (black for Ta = 1100 and blue for Ta = 2700) and stars (green
for Ta = 1100 and pink for Ta = 2700), respectively, represent the
convective heat flux during forward and backward continuation for
2D rolls solutions in (a) and oscillatory rolls solutions in (b).

the Nu corresponding to the periodic oscillatory rolls solution
shows a smooth transition. We also notice that variation in Q
for fixed Ta has only a trivial effect on heat transport at the
onset though heat transport at the onset depends on Ta for
fixed Q. Figure 4 also shows that Nu at the onset correspond-
ing to 2D rolls solution decreases and that corresponding to
periodic oscillatory rolls increases with Ta. This surprising
behavior of Nu hints at the possibility of different transitions
to convection.

To explore the possible occurrence of different transitions
to convection at the onset we perform forward and backward
numerical continuation of the solutions observed in DNS for
given Ta and Q. We start with r = 0.55 and increase r in small
steps (�r = 0.03) to r = 1.2 for the forward continuation. We
use random initial conditions each time. On the contrary, for
the backward continuation, we first simulate the system for
r = 1.2 using random initial conditions. Then using the final
results of last simulation as the current initial conditions we
proceed for the present simulation by reducing r in small steps
(�r = 0.03) up to r = 0.55.

Observing the results of forward and backward continu-
ation, we discover the simultaneous occurrence of subcrit-
ical and supercritical branches of convection at the onset.
Figures 5(a) and 5(b) show the variation of Nu − 1, close

to the onset of convection as a function of r obtained from
DNS for forward and backward continuation. The variation
of Nu − 1 for 2D rolls solution shows a finite jump at r = 1
and follows different paths during forward and backward
continuation [see Fig. 5(a)]. Subsequently, a hysteresis loop
appears and convection continues to exist in the conduction
region (r < 1). A typical scenario of subcritical transition pre-
vails at the onset which is common to liquid-gas transitions,
solid-liquid transitions, superconductors, percolation theory
and many other fields [39–45]. Note that, this scenario of
subcritical transition is independent of Q and solely depends
on Ta for fixed Pr. Also, from Fig. 5(a), we notice that the
width of the hysteresis loop decreases as the value of Ta
is increased. A scenario of supercritical transition appears
close to the onset of convection for periodic oscillatory rolls
solution [see Fig. 5(b)]. We neither observe a jump in Nu − 1
nor a hysteresis in this case.

We also perform DNS by varying r for fixed Ta, Q, and
Pr to uncover the subsequent transitions after convection sets
in. Figure 6 shows the time evolution of the largest Fourier
mode W101 along with the power spectral density (PSD)
corresponding to the subsequent transitions for Ta = 1100,
Q = 100, with Pr = 0.1 as r is increased. From the figure,
we see that very close to the onset small amplitude periodic
oscillatory rolls persist [see Fig. 6(a)]. It vanishes as r is raised
and high-amplitude 2D rolls appear [see Fig. 6(b)]. Further
increment in r brings the high-amplitude quasiperiodic oscil-
latory rolls [see Fig. 6(c)], followed by the chaotic oscillatory
rolls [see Fig. 6(d)]. Changes in Ta for fixed Q and Pr do not
alter the scenario qualitatively. However, for fixed Ta and Pr,
modification in Q influences the flow patterns deeply. Table I
shows the effect of Q on the flow structures for Ta = 1100
and Pr = 0.1. From the table we notice the high-amplitude
periodic solutions which appear following 2D rolls, now exist
for much higher values of r with the increment in Q. As a
result, the stability region of 2D rolls is increased and flow
becomes two-dimensional there.

From the above study, we see that DNS exhibits nu-
merous stationary and time dependent solutions near the
onset including simultaneous occurrence of subcritical and
supercritical branches of convection. Also, the appearance of
subcritical transition causes a substantial enhancement in heat
transport near the onset. However, describing the underlying
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FIG. 6. First panel (a)–(d) displays time evolution of W101 corresponding to the subsequent transitions of convective flow originated by
overstable convection for Ta = 1100, Q = 100, and Pr = 0.1. Second panel (e)–(h) displays corresponding power spectral density.
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TABLE I. Effect of Q on convective flow patterns for Ta = 1100
and Pr = 0.1. These are the observations from DNS with the incre-
ment in r starting with r = 1. Ranges are given for the instabilities
having prime interest. Onset of the higher-order instabilities are also
included here.

Q Oscillatory rolls 2D rolls Quasiperiodic rolls Chaotic rolls

100 1–1.159 1–2.311 2.312 3.015
500 1–1.206 1–7.891 7.892 –
1000 1–1.174 1–18.079 18.08 –

bifurcations and origins of these transitions using DNS is
quite laborious. Therefore, we follow the low-dimensional
modeling technique and try to uncover the origin of different
solutions and transitions observed in DNS by performing de-
tailed bifurcation analysis. Next, we discuss the construction
of the low-dimensional model.

2. A low-dimensional model

We now derive a low-dimensional model containing the
minimum number of equations which can capture the simul-
taneous occurrence of subcritical and supercritical branches
of convection at the onset following the procedure described
in Ref. [31]. The key concept underlying the procedure is
to identify the large scale modes present in DNS data by
calculating the contribution of an individual mode to the total
energy. Following the method, we identify only one vertical
velocity mode: W101, two vertical vorticity modes: Z101, Z200,
and two modes in the temperature fluctuation: �101, �002.
Therefore, the truncated expressions for u3, ω3 and θ become

u3 = W101(t ) cos kox sin πz,

ω3 = Z101(t ) cos kox cos πz + Z200(t ) cos 2kox,

θ = �101(t ) cos kox sin πz + �002(t ) sin 2πz. (13)

Selection of the above five large scale modes from the
DNS data can also be well understood from a theoretical
perspective. Linear theory suggests that it is the mode W101

in vertical velocity whose temporal growth rate first becomes
zero at the onset of convection (r = 1.001). All the other
modes present in vertical velocity have negative temporal
growth rate there. Therefore, we choose only W101 in the
truncated expression of u3. From Eq. (5) we see that the
vertical vorticity couples linearly with the vertical velocity in
presence of rotation (Ta �= 0). Hence we consider the mode
Z101 in the truncated expression of ω3. Also, from Eq. (3)
we observe that θ and u3 are linearly coupled which demands
inclusion of the mode �101 in the truncated expression for θ .

Note that the W101 mode physically represents the 2D rolls
pattern along y axis and the amplitude of W101 starts to grow
in time after convection sets in. However, as soon as the am-
plitude of W101 becomes significant, the nonlinearity present
in the system starts to influence the flow and generates higher
Fourier modes. Due to this, many things appear in the system
such as saturation in the growth rate of the primary mode,
occurrence of stationary and time dependent patterns, chaos,
etc. Since from DNS, we have already seen the existence of
both stationary and time dependent solutions at the onset, we

now look for the minimal nonlinear interaction to include the
effect of nonlinearity present in the system.

Therefore, we proceed to the simplest nonlinear correction
in the expressions of u3, ω3 and θ effected by the non-
linear terms (u.∇)u and (u.∇)θ present in the momentum
and energy equations, respectively. The nonlinear correction
generates the modes Z200 in ω3 and �002 in θ through the triad
interaction. Finally, we get the above truncated expressions
for u3, ω3, and θ .

Horizontal components of the velocity then can be easily
found by using the expressions of u3, ω3, and the continuity
equation. We project the hydrodynamic system Eqs. (3)–(6)
on these modes to get five coupled nonlinear ordinary dif-
ferential equations. We observe that the linear decay rate of
Z200 and �002 is much larger than that of Z101 and �101.
Therefore, the slow modes Z101 and �101 together with W101

drive the evolution of fast modes Z200 and �002. In other
words, the stable modes Z200 and �002 become slaved to the
unstable modes W101, Z101, and �101. We then eliminate the
equations for the modes Z200 and �002 adiabatically [46].
Finally, we arrive at a small system consisting of only three
nonlinear ordinary differential equations, which is our desired
low-dimensional model given by

Ẋ = aX + bY + cZ,

Ẏ = abX + aY − dX 2Y,

Ż = a

Pr
Z + 1

Pr
X − Pr

8
X 2Z. (14)

In the above system, X = W101, Y = Z101, Z = �101 and the

coefficients are a = −(π2 + k2
o ), b = − π

√
Ta

π2+k2
o
, c = Rak2

o
π2+k2

o
, and

d = π2

8k2
o
, where ko is the critical wave number for the onset of

overstability.

3. Bifurcation analysis

We perform detailed bifurcation analysis of the model
Eq. (14) using MATLAB based continuation software named
MATCONT [47]. From the discussion in Sec. IV A 1 we note
that the simultaneous appearance of subcritical and super-
critical branches does not depend on Ta and Q (� 100) for
fixed Pr. Therefore, we prepare only one bifurcation diagram
to explore the origin of simultaneous transitions occurring at
the onset. Figure 7 shows the bifurcation diagram constructed
using the model for Ta = 1100, Q = 100 with Pr = 0.1.
Extremum values of W101 corresponding to different solutions
are displayed in the figure as a function of r in the range
0.54 � r � 1.88. Solid and dashed green curves represent the
stable and unstable conduction solutions, respectively. The
stable conduction solution loses its stability at r = 1 via a
supercritical Hopf bifurcation.

The Hopf bifurcation point is shown with a filled red circle
in the figure. Stable limit cycles appear due to this Hopf
bifurcation. Note that the eigenvectors at the Hopf bifurcation
are for certain values of W101, Z101, �101, with Z200=�002=0.
Extremum values of these limit cycles are displayed with
solid red curves in the figure. Time evolution of the W101

mode corresponding to these limit cycles is shown in the
inset (solid red curve varying periodically with dimensionless
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FIG. 7. Bifurcation diagram as obtained from the model for
Ta = 1100, Q = 100, and Pr = 0.1. The stable and unstable so-
lutions are represented by the solid and dashed lines, respectively.
The gray shaded region represents the conduction zone and the
green curves show the trivial conduction state. The red filled circle
at r = 1 shows the supercritical Hopf bifurcation point. Extremum
values of the limit cycles are represented by the red curves. The
dashed blue curves originated at the branch point BP at r = 1.88
(filled blue circle) through a subcritical pitchfork bifurcation of the
unstable conduction branch represent unstable 2D rolls solutions
which becomes stable via a saddle node bifurcation near r = 0.6
(filled yellow circle). The 2D rolls branch then turns towards higher
r and continue to exist as a stable solution (solid blue curve). Both
time dependent (supercritical origin) and finite amplitude steady
(subcritical origin) solutions persist at the convection onset. Empty
pink triangles and black stars represent the data obtained from DNS
for 2D rolls and periodic oscillatory rolls solutions, respectively.
Insets show the time evolution of W101 for a typical steady 2D rolls
solution (blue) and a periodic oscillatory rolls solution (red).

time). The pattern dynamics of these limit cycles is similar to
that reported in Refs. [26,48].

The unstable conduction solution continues to exist for
higher values of r and goes through a subcritical pitchfork
bifurcation at r = 1.866 (filled blue circle). An unstable 2D
rolls branch for which W101 �= 0 and W011 = 0 is originated
there (dashed blue curves). This unstable 2D rolls branch
starts to move backward and continues to exist for lower
values of r, even for r < 1. The unstable 2D rolls branch
becomes stable via a saddle node bifurcation at r = 0.56
(filled yellow circle) inside the conduction region. The stable
2D rolls branch (solid blue curve) then changes its direction
and continues to exist for higher values of r. This branch
eventually comes out of the conduction region at r = 1. As a
result, a high-amplitude 2D rolls solution prevails at the onset
which causes a sudden enhancement in heat transport there
during the forward transition. The variation of W101 with time
for the 2D rolls solution is also shown in the inset.

From the bifurcation diagram, we observe that the stable
2D rolls solution coexists along with the stable conduction
state inside the conduction region. As a result, the 2D rolls
solution continues to exist during backward continuation and
convection persists in the conduction region. A typical sce-
nario of subcritical transition accompanied with a hystere-
sis loop appears at the onset. The Hopf bifurcation point

and the saddle node bifurcation point are the forward and
backward transition points here, respectively. The distance
between these two points represents the hysteresis width.
Results obtained from DNS also show good qualitative agree-
ment with the model results. Empty pink triangles represent
the DNS data corresponding to the 2D rolls solution for the
specified parameter values during the backward transition.
The black stars in the Fig. 7 represent the oscillatory solutions
obtained from DNS.

Note that, we also have stable limit cycles at the onset of
convection due to the supercritical Hopf bifurcation at r = 1.
These limit cycles grow in size with the increment in r which
cause a little enhancement in heat transport. However, we do
not observe any hysteresis during the backward continuation
in this case and a scenario of supercritical transition prevails at
the onset. The limit cycle vanishes for r � 1.22 and we get the
high-amplitude 2D rolls solution for subsequent higher values
of r. To understand the underlying reason, we calculate the
basins of attraction for different solutions. Figure 8 shows the
basins of attraction for the 2D rolls solution (white region)
and the periodic oscillatory rolls solution (black region) cor-
responding to four different values of r. From the figure, we
see that the basin of attraction for limit cycles shrinks as r
is increased. Simultaneously, the limit cycle increases in size
and becomes homoclinic to the coexisting 2D rolls saddle
at r ∼ 1.22 and ceased to exist thereafter. The projection of
these limit cycles, their distance from the 2D rolls saddle and
the time period of oscillation are shown in the Fig. 9. The
homoclinic bifurcation of the limit cycle is apparent from the
figure. Therefore, for r > 1.22, the finite amplitude solution
which originated from the 2D rolls branch is observed in the
model. Similar qualitative behavior in the dynamics is also
observed in DNS.

As we mentioned earlier, changes in Ta corresponding to a
fixed Pr do not affect the bifurcation scenario near the onset of
convection qualitatively. However, the width of the hysteresis
loop decreases by a small amount with the increment in Ta.
This causes a diminution in Nu near the onset of convection
which we have seen earlier in Sec. IV A 1 (see Fig. 4). The
bifurcation scenario also remains unchanged with the varia-
tion in Q for fixed Ta and Pr. This can be easily verified by
observing that the low-dimensional model does not contain
any term related to Q.

The bifurcation scenario near the onset of convection be-
comes qualitatively different as Pr is varied in our considered
range. As Pr increases, the saddle node bifurcation point
moves towards the Hopf bifurcation point. As a result, the
width of the hysteresis loop gradually decreases with the
increment in Pr. The saddle node bifurcation point eventually
leaves the conduction region for Pr = 0.46 and the scenario
of subcritical transition vanishes there. However, the 2D rolls
branch with subcritical origin exists, but it turns around ahead
of the conduction region. So, the scenario of supercritical
transition prevails at the onset due to the supercritical Hopf
bifurcation. Figure 10 displays the scenario corresponding to
two different values of Pr. It is clearly seen from the figure
that the scenario of subcritical transition persists at the onset
for Pr = 0.4 while it vanishes for Pr = 0.5. Further increment
in Pr eliminates the possibility of overstability as discussed
earlier.
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FIG. 8. Basins of attraction for steady 2D rolls and oscillatory rolls solutions are shown on W101-Z101 plane for Ta = 1100, Q = 100,

and Pr = 0.1 as the reduced Rayleigh number is varied. Initial conditions from black (white) region lead to oscillatory rolls solutions of
supercritical origin (finite amplitude 2D rolls solution of subcritical origin). (a), (b), (c) and (d) are corresponding to the reduced Rayleigh
numbers r = 1.0086, 1.0758, 1.1095, and 1.1283, respectively.

B. Effect of small magnetic field (Q < 100)

We now discuss the results of DNS performed near the
onset of overstable rotating convection in the presence of a
weak magnetic field. Here we consider two different values of
the Taylor number (Ta = 1100, 3000) for Pr = 0.1 and vary
Q in the range 0 to 100 and investigate the flow patterns close
to the onset of convection.

It has been reported earlier that in the absence of external
magnetic field, when rotation acts solely, three-dimensional
(3D) quasiperiodic oscillatory cross-rolls (W101 �=0, W011 �=0,
max|W101| = max|W011|) is observed at the onset of con-
vection for smaller Ta, while 3D periodic oscillatory rolls
(W101 �=0, W011 = 0) is observed for higher Ta [13]. The pres-
ence of magnetic field in the horizontal direction breaks the

x � y symmetry of the system. As a result, the quasiperiodic
cross-rolls with equal amplitudes which were observed corre-
sponding to the lower values of Ta in the absence of magnetic
field now become asymmetric (max|W101| �= max|W011|) in
nature and the amplitude of the Fourier mode W011 becomes
smaller compared to that of W101 (see Fig. 11). From the
Fig. 11(a), it is prominent that even the presence of a very
weak magnetic field (Q = 0.1) makes the flow asymmetric.
A little increment in Q causes further diminution in the
amplitude of W011 [see Fig. 11(b)] and eventually suppresses
its oscillation for Q = 0.3 [see Fig. 11(c)]. As a result, 2D
oscillatory rolls for which W011 = 0 are observed at the onset.

We also vary r for fixed Ta = 1100 and Q = 0.1 to
investigate the subsequent transitions in overstable rotating
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FIG. 9. Homoclinic bifurcation of the limit cycle generated via supercritical Hopf bifurcation (overstability) for Pr = 0.1, Ta = 1100, and
Q = 100. (a) Projection of the limit cycles on the W101-Z101 plane together with the 2D rolls saddle are shown corresponding to three different
r. The increase in the size of the limit cycles is apparent as r approaches the homoclinic bifurcation point r ∼ 1.22. (b) Distance D of the
limit cycles from the 2D rolls saddle as a function of r. The points for which limit cycles are shown in (a) are indicated with same color code.
(c) Variation of time period of the limit cycle with r.
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FIG. 10. Bifurcation diagram constructed using the model for
Q = 100 and two different values of Pr near the onset of oscillatory
instability. Solid and dashed curves, respectively, represent the stable
and unstable solutions. The blue and cyan curves, respectively,
represent steady 2D rolls and oscillatory rolls solutions for Pr = 0.5,
while the red and pink curves represent the same for Pr = 0.4. It is
evident that the subcritical bifurcation point moves away from the
onset of convection as Pr is increased from 0.4 to 0.5.

convection in the presence of a very weak horizontal magnetic
field after overstability sets in. Figure 12 shows the variation
of the two largest Fourier modes W101 and W011 corresponding
to the transitions that occur following overstable onset in
an RMC system as the value of r is increased. We observe
asymmetric quasiperiodic cross rolls at the overstability onset
[see Fig. 12(a)] followed by cross rolls [see Fig. 12(b)] for
which |W101| �= |W011| and |W101| > |W011| as r is increased.
Further increment in r exhibits quasiperiodic cross rolls
[see Fig. 12(c)] for r = 1.479. Finally, chaotic cross rolls
[see Fig. 12(d)] appear as we raise the value of r further.

Now, we construct two diagrams from DNS data to show
the 2D and 3D flow regimes on the Q-r plane corresponding to
two different values of Ta (see Fig. 13). The 2D flow regimes
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FIG. 11. Temporal evolution of the Fourier modes W101 (blue)
and W011 (pink) near the convection onset (r = 1.004) for Ta = 1100,
Pr = 0.1 and three different values of Q.
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FIG. 12. Temporal variation of the Fourier modes W101 (ma-
genta) and W011 (pink) for Ta = 1100, Q = 0.1, and Pr = 0.1 for
four different values of r. The reduced Rayleigh number r for the
first row (a), (b), second row (c), (d), third row (e), (f), and the last
row (g), (h) are, respectively, 1.004, 1.029, 1.479, and 2.017.

include both oscillatory and stationary rolls. For lower Q
(<40 and <20 for Ta = 1100 and 3000, respectively), 2D
flow regimes only include the oscillatory solutions and as
soon as r is raised a little beyond the onset of convection,
the flow becomes three-dimensional. The bifurcation struc-
ture associated with these three-dimensional flow patterns
are found to be similar to the ones reported in Ref. [13] in
rotating convection. However, for higher Q, in the 2D flow
regime both oscillatory and stationary flow patterns coexist.
The bifurcation structures associated with these co-existing
flow patterns have already been discussed in the Sec. IV A.

V. CONCLUSIONS

We have investigated the effect of external uniform hor-
izontal magnetic field on overstable rotating convection
using Rayleigh-Bénard geometry of electrically conduct-
ing low Prandtl number fluids with stress free boundary

FIG. 13. Flow regimes on two parameter Q-r plane for Pr = 0.1
and two different values of Ta as obtained from DNS. The gray
regions in both figures show the 2D flow regimes, while the cyan
regions represent the 3D flow regimes. From both figures, it is
apparent that the 2D flow regime shrinks with the increment in Ta.
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conditions. A combination of linear stability analysis, three-
dimensional (3D) direct numerical simulations (DNS) and
low-dimensional modeling of the system is performed for
this purpose. The parameters Ta, Q, and Pr are, respectively,
varied in the ranges 750 � Ta � 3000, 0 < Q � 1000, and
0 < Pr � 0.5.

Linear analysis of the system reveals that in this parameter
regime, 2D rolls aligned along the magnetic field are the pre-
ferred mode of convection which is found to saturate to two-
dimensional oscillatory rolls. Interestingly, a finite amplitude
steady rolls solution is found to coexist with the oscillatory
rolls solution at the onset of convection for relatively larger
values of Q. The presence of the finite amplitude steady
solution also causes much higher heat transport near the onset
compared to that of the oscillatory solution. Surprisingly, the
flow remains two-dimensional even in the nonlinear regime
for Q ∼ 100. The regime of two-dimensionality enhances
with the increment in Q. Even, a weak magnetic field (∼0.5)
is found to be sufficient to maintain two-dimensionality in
the nonlinear regime. This behavior is different from the case
when the imposed magnetic field is vertical, which has been
much investigated experimentally as well as theoretically.
This suggests that an inclined field with even a small hori-
zontal component might render the flow two-dimensional, but
this needs to be confirmed with further work.

A convenient three mode model is derived from the DNS
data to uncover the bifurcation structure associated with the
two-dimensional flow patterns for larger Q (� 100). Analysis
of the model along with the performance of DNS clearly
establishes the simultaneous presence of subcritical and su-
percritical branches of convection in a wide range of the pa-
rameter space. Bifurcation analysis of the model also reveals
that the appearance of finite amplitude solutions at the onset
is associated with a subcritical steady rolls branch generated
through a subcritical pitchfork bifurcation of the unstable
conduction solution. This subcritical branch exists at Rayleigh
numbers well below the critical for onset. Changes in Prandtl
number (Pr) also affect the scenario of transition to convection
deeply. The scenario of subcritical transition disappears from
the system as the value of Pr is increased. As a result, only the
supercritical transition to convection exists there.
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