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Numerical study of heat transfer in Rayleigh-Bénard convection under rarefied gas conditions
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The focus of this research is to delineate the thermal behavior of a rarefied monatomic gas confined between
horizontal hot and cold walls, physically known as rarefied Rayleigh-Bénard (RB) convection. Convection in a
rarefied gas appears only for high temperature differences between the horizontal boundaries, where nonlinear
distributions of temperature and density make it different from the classical RB problem. Numerical simulations
adopting the direct simulation Monte Carlo approach are performed to study the rarefied RB problem for a cold
to hot wall temperature ratio equal to r = 0.1 and different rarefaction conditions. Rarefaction is quantified by
the Knudsen number, Kn. To investigate the long-time thermal behavior of the system two ways are followed to
measure the heat transfer: (i) measurements of macroscopic hydrodynamic variables in the bulk of the flow and
(ii) measurements at the microscopic scale based on the molecular evaluation of the energy exchange between the
isothermal wall and the fluid. The measurements based on the bulk and molecular scales agreed well. Hence, both
approaches are considered in evaluations of the heat transfer in terms of the Nusselt number, Nu. To characterize
the flow properly, a modified Rayleigh number (Ram) is defined to take into account the nonlinear temperature
and density distributions at the pure conduction state. Then the limits of instability, indicating the transition of the
conduction state into a convection state, at the low and large Froude asymptotes are determined based on Ram.
At the large Froude asymptote, simulations following the onset of convection showed a relatively small range
for the critical Rayleigh (Ram = 1770 ± 15) that flow instability occurs at each investigated rarefaction degree.
Moreover, we measured the maximum Nusselt values Numax at each investigated Kn. It was observed that for
Kn � 0.02, Numax decreases linearly until the transition to conduction at Kn ≈ 0.03, known as the rarefaction
limit for r = 0.1, occurs. At the low Froude (parametric) asymptote, the emergence of a highly stratified flow
is the prime suspect of the transition to conduction. The critical Ram in which this transition occurs is then
determined at each Kn. The comparison of this critical Rayleigh versus Kn also shows a linear decrease from
Ram ≈ 7400 at Kn = 0.02 to Ram ≈ 1770 at Kn ≈ 0.03.

DOI: 10.1103/PhysRevE.102.013102

I. INTRODUCTION

Thermal convection, the flow of a fluid due to temperature
gradients, is a frequent process in nature and technology. The
dynamics of such process can be found in many natural phe-
nomena such as circulations in the oceans [1–3], atmospheric
flows [2,4,5], the dynamics of the interior core of stars and
planets [6–8], geostrophic convection [1,9–14], as well as
in numerous industrial applications like heat exchangers and
passive cooling devices for electronic equipments and com-
puter chips [15]. Moreover, there are high-tech applications
where precise knowledge of thermal convection phenomena
is very important. Thermal control of electronics using the
micro- and nanoelectromechanical systems (MEMS/NEMS)
[16] and the thermal management of the extreme ultraviolet
(EUV) radiation source facilities in vacuum environments
[17,18], which are used in manufacturing of semiconductor
devices, are only a few examples of these high-tech appli-
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cations. Although the physics of these processes is generally
complex, a simple thermal model is needed in order to repre-
sent the basic dynamics of all the cases mentioned above.

A fluid restricted between two parallel horizontal flat plates
exposed to heating from below, cooling from the top and
in presence of a vertical gravitational force is known as
the Rayleigh-Bénard (RB) problem. This is a well-known
physical system that is extensively studied in the framework
of hydrodynamic stability theory [19,20]. In Rayleigh-Bénard
convection, buoyancy due to density differences stimulated by
temperature variations appear as the driving force of convec-
tion and is being counteracted by diffusion as an equilibrating
fluid property. Thus, the RB system can be considered as
a simple paradigm for the flow cases with the presence of
thermal convection. It is also a reliable study setting for
investigation of heat transfer, flow structure formation, fluid
dynamic instability, and chaotic behavior in fluids [21], as
well as of turbulence transition and thermally driven turbu-
lence [22–25].

In continuum fluid dynamics, the intermolecular separation
distances, known as the gas mean free path λ, are much
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smaller than the characteristic length scale of the flow. Under
the continuum hypothesis and small temperature differences,
the physics of RB convection can be described within the
Oberbeck-Boussinesq (OB) framework [26–28], where the
buoyancy force is a linear function of the temperature differ-
ence. In this case, the following two dimensionless numbers
are sufficient to fully characterize the system: the Rayleigh
number Ra = αg�T H3

νk and the Prandtl number Pr = ν
k , where

α is the thermal expansion coefficient, ν is the kinematic
viscosity, k is the thermal diffusion coefficient, H is the
distance between the horizontal hot and cold flat plates, and
�T is the temperature difference between the plates.

Hitherto it is assumed that the fluid flow can be described
with a continuum approach. However, for rarefied gases, the
ratio of the molecular mean free path λ and the characteris-
tic length scale, H in case of RB convection, is no longer
negligible, and the continuum hypothesis becomes invalid.
The Knudsen number Kn = λ/H is a parameter used to
determine the degree of rarefaction and is commonly used
to classify flows based on rarefaction conditions. When the
Knudsen number approaches zero, which basically occurs
when Kn � 0.001, the flow regime is assumed continuum
and to investigate the flow, Navier-Stokes equations (and
eventually in the Boussinesq approximation) are accurate.
Whereas, at large Knudsen numbers, for example when Kn �
10, the free molecular regime dominates, where the most
important physical phenomenon is the collision of particles
with surfaces. Between these two limits, the slip-flow regime
(0.001 � Kn � 0.1) and the transitional regime (0.1 � Kn �
10) can be found, and both the intermolecular and particle-
to-surface collisions become physically important. In the slip-
flow regime, which is the focus of the current investigation,
the rarefaction effects are more important in the regions close
to the walls, where phenomena such as slip velocity and
temperature jump emerge [29].

Primarily rarefaction is recognized as one of the restrict-
ing factors for the occurrence of convection [30,31], and
studying the RB convection outside the regime where the
continuum fluid dynamics hypothesis can be applied requires
other nondimensional control parameters than Ra and Pr.
Furthermore, in order to be able to study the RB convection
in the rarefied slip-flow regime, it is necessary to consider
a case with high temperature differences, see Sec. II A.
For instance, at a rarefied RB system using the isothermal
wall conditions with the temperature ratio between the cold
and hot walls, r = Tc/Th = 0.1, convection is viable up to
Kn � 0.03 [31], whereas for a case with low temperature
variation, e.g., r = 0.95, convection is achievable only for
continuum cases which practically means that Kn � 0.001.
Thus, the temperature ratio r is another factor that influences
the convection zone in rarefied RB flow. It is worth noticing
that the range of Oberbeck-Boussinesq validity is an accu-
rate assumption if α�T � 0.2 [25]. Therefore, for a large
temperature difference of r = 0.1, the expansion coefficient
set to α = 1/Tavg, thus using the ideal gas assumption, and
Tavg = 1

2 (Th + Tc), then α�T = 2(1−r)
(1+r) ≈ 1.64, and obviously

non-Oberbeck-Boussinesq (NOB) effects emerge. It should
be noted here that α�T is not necessarily the determining
factor for NOB effects. Further criteria have been proposed

[25,32,33] and discussions can be found in these studies.
However, the criterion used in the present study as the typ-
ical threshold to assume NOB effects is α�T � 0.1. In our
investigation NOB effects are thus for sure present without
even exploring the other indicators. Notice that considering a
hard-sphere gas, Ra will be a function of (r, Kn, Fr) [34] with

the Froude number defined as Fr = V 2
th

gH , where Vth = √
2RTh

is the most probable molecular speed at the hot wall, g is
the acceleration due to gravity, and R = kB

m is the specific gas
constant satisfying the ideal gas law according to P = ρRT .
Here kB is the Boltzmann constant (kB ≈ 1.38 × 10−23 J/K)
and m is the molecular mass. Hence, in general, a combination
of three parameters from a set consisting of (r, Kn, Ra, Fr) is
sufficient to appropriately delineate the convection state in a
rarefied RB system.

In order to take care of rarefied effects and large tem-
perature or density variations in numerical simulations, it is
needed to apply a standard method based on the molecular
description of the flow, where the Boltzmann equation is
solved on the corresponding system [30,31]. The direct sim-
ulation Monte Carlo (DSMC), introduced by Bird [35–37], is
a well-tested particle-based Monte Carlo simulation method
to study nonequilibrium rarefied gas flows. The underlying
principle of the DSMC method is to decouple the motion
and collision (change of velocities) of particles at each time
step into two sequential stages of free molecular movement
and then binary collisions. During these stages the linear
momentum and energy of colliding particles are conserved.
Each particle or “simulator” represents a large group of gas
molecules and the computational domain is divided into grid
cells smaller than the gas mean free path. Collision pairs are
then selected according to a stochastic binary collision scheme
[38,39] within the cell or among available subcells in the cell
[40]. Nanbu [41] and Wagner [42] proved that the DSMC
method correctly solves the Boltzmann equation if the time
step and the grid size become close to zero and the number of
simulators tends toward the number of molecules within the
flow field.

DSMC has already been used to investigate the RB convec-
tion in a rarefied gas on the formation of the convective rolls
[31,34,43–46], on the chaotic and periodic behaviors of the
flow [47], and on the transition of the flow into convection
based on temperature [48] and heat-flux [49] evaluations.
Stefanov et al. [31,44] used the DSMC method to recog-
nize the onset of convection in rarefied RB flow of a hard-
sphere gas based on three governing parameters (r, Kn, Fr). In
Ref. [31] an exact solution of the pure conduction state is pro-
vided and two analytical conditions for large and small Froude
numbers, indicated as exterior bounds for the appearance of a
convective state, are also determined. The critical Rayleigh
number Ra = 1708, determined by linear stability analysis
of the Oberbeck-Boussinesq equation [19], was assumed in
the DSMC studies of the corresponding system [31] as an
approximate exterior bound of convection at large Froude
parameters.

The critical Rayleigh number Ra = 1708 is derived from
a set of assumptions that does not entirely match with the
physics governing the rarefied RB convection. For instance,
as mentioned before, in the Boussinesq flow conditions
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compressibility effects that originate from density variations
and relative temperature differences are neglected [28]. More-
over, no-slip boundary conditions are assumed. Hence, this
classical view does not conform with the RB convection in
a rarefied gas with the presence of non-Oberbeck-Boussinesq
effects caused by high temperature differences and presence
of slip and temperature jump at the walls [31,50,51].

Manela and Frankel [50,52,53] applied the linear temporal
stability analysis to the analytical solution of the rarefied RB
problem to study the instability at low- and large-Fr limits, as
well as with respect to the particle interaction model which
was the variable hard-sphere model. Manela and Frankel [50]
derived the neutral curves in the (Fr, Kn) plane that delineates
the transition from the pure conduction to the convection
state. They considered a modified Ra, defined by Golshtein
and Elperin [34] for a hard-sphere gas, and showed that the
derived neutral curves are asymptotically equivalent with a
line of constant Rayleigh (Ra ≈ 1773) at r = 0.1 and Kn <

0.01 in the (Fr, Kn) plane. Recently, Ben-Ami and Manela
[54] replaced the isothermal wall conditions by the heat-flux
boundary conditions and applied the linear temporal stability
to the problem. They demonstrated that the heat-flux boundary
causes destabilizing effects, extending the convection zone
limits to a lower critical Rayleigh (at the onset of convection)
and higher rarefaction limits.

Within this framework, the aim of the present research
is to study the thermal behavior of rarefied RB convection
with DSMC simulations over a large range of parameters.
Although there are DSMC studies of three-dimensional RB
convection [46,55], they are computationally expensive to be
used in studies with a large span of parameters. In the present
paper, therefore, we consider a two-dimensional Rayleigh-
Bénard system of a “hard-sphere” gas at r = 0.1 and aspect
ratio of 2, as studied in Refs. [31,50]. Focus is given on
the higher rarefaction part with Kn ∈ [0.015 − 0.03], where
slip effects are more dominant. The parallelized DSMC code
employed in this study is implemented and validated by Di
Staso [56], see Sec. III. DSMC simulations are performed to
determine the final thermal state of the system as convective or
conductive, while the criterion is based on the Nusselt values
obtained from heat transfer measurements in the bulk flow
or at the molecular scale adjacent to the walls. Considering
this criterion based on heat transfer evaluations, three distinct
stages of thermal variations in the RB system are identified
as (i) onset of convection, (ii) maximum convection, and
(iii) cessation of convection and are addressed and quanti-
fied according to a modified Rayleigh number adapted with
nonlinear temperature and density distributions at the pure
conduction state.

In Sec. II, the 2D rarefied RB flow configuration will
be described and two methods to evaluate heat transfer will
be introduced. Subsequently, in Sec. III we briefly introduce
the parallelized DSMC method employed in this work. The
(Fr, Kn) parameter regime will be explored in Sec. IV. It starts
with describing and illustrating the general flow behaviors,
such as the rarefaction effect on convection. It then continues
with investigations for understanding the onset of convection,
determination of the maximum of convection, and the cessa-
tion of convection. Section V summarizes the conclusions of
this research.
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FIG. 1. Schematic of the 2D Rayleigh-Bénard flow configura-
tion, where in the current study following considerations are selected:
hard-sphere monatomic gas, aspect ratio of the domain � = L

H =
2, the temperature ratio r = Tc

Th
= 0.1, and fully accommodating

diffusive surfaces.

II. RB FLOW ANALYSIS

A. Problem configuration

The schematic view of the two-dimensional RB cell em-
ployed in this study is given in Fig. 1. An initially quiescent
monatomic hard-sphere model gas is confined between hor-
izontal hot and cold isothermal walls at a temperature set of
(Tc, Th) = (16, 160) K and a vertical separation distance equal
to H . The confined gas is subject to a constant acceleration
in the negative z direction, thus g = (0,−g). Gas molecules
have purely diffuse reflections at the isothermal and fully
accommodating surfaces.

In this system, the convection regime can be identified
with three nondimensional numbers (r, Kn, Fr). Here Kn =
λ
H , where for a hard-sphere monatomic gas with diameter
d and number density of n, we can define the mean free
path λ according to λ = 1√

2πd2n
[37]. An analytical solution

of the mentioned Rayleigh-Bénard flow in a rarefied gas is
only available for the pure conduction state and is derived
in Ref. [31]. They considered the continuity, Navier-Stokes,
energy and state equations for a perfect compressible viscous
gas, with transport coefficients obtained from the Chapman-
Enskog theory for low Knudsen numbers [57] for the hard-
sphere gas model. The Prandtl number (Pr) and the ratio γ of
specific heats at constant pressure are Pr = 2/3 and γ = 5/3,
respectively. According to Stefanov et al. [31], the solution
of these equations for the pure conduction state will lead to
the following expressions for the temperature T (z) and den-
sity ρ(z) along the vertical direction z. For convenience, we
assume dimensionless spatial coordinates with respect to the
height H , i.e., x ∈ [0 : 2] and z ∈ [0 : 1], in these expressions,

T (z) = (ξz + ζ )2/3, (1)

ρ∗(z) = 1

T (z)
exp

[
3η

ξ

√
T (z)

]
,

ρt =
∫ 1

0
ρ∗(z)dz, ρ(z) = ρ∗(z)

ρt
,

(2)

ξ = T 3/2
1 − T 3/2

0 < 0 , ζ = T 3/2
0 , η = −2/Fr, (3)
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FIG. 2. The analytical solution in a rarefied RB cell for the pure conduction state: (a) Variation of the temperature jump Tjump based on
the slip coefficients originated from the Bhatnagar-Gross-Krook (BGK) model [58] versus Kn at the hot and cold walls, (b) temperature (solid
line) and density (dashed lines) profiles using Eqs. (1) and (2) obtained at parametric values of r = 0.1, Kn = 0.02, and Fr = 1, 2, and 9.

where T0 and T1, representing the temperature of the fluid
adjacent to the walls, are obtained from the temperature jump
boundary conditions at z = 0 and z = 1 [31], respectively. All
the temperatures, and density ρ(z) are normalized with the
hot-wall temperature Th and ρt , respectively. This solution
is affected by the rarefaction effects present in the slip-flow
regime, where the velocity and temperature of the gas adja-
cent to the walls do not correspond with their wall values.
The variation of the temperature jump Tjump, defined as the
absolute difference between the fluid temperature adjacent to
the wall and the temperature of the wall (in the dimensionless
format with respect to Th), at the hot wall, Th,jump = 1 − T0,
and the cold wall, Tc,jump = T1 − r, is shown in Fig. 2(a). The
larger growth of the temperature jump Tjump at the cold wall
indicates the presence of a higher temperature gradient close
to the cold wall and is due to conservation of conduction heat
flux along the height.

Figure 2(b) shows the profiles of flow properties at a

constant rarefaction degree (Kn = 0.02), and from Fr = V 2
th

gH =
1, strongly stratified, to Fr = 9, close to the onset of instability
in the full domain. Unlike the temperature profile that remains
constant with Fr variations, the density profile changes con-
siderably and brings different states of convection according
to the corresponding Fr value. At Fr = 1, corresponding to
large gravitational forces, the density distribution of the gas is
negatively monotonic and dense gas layers are always below
less dense layers, and thereby the occurrence of instability is
not possible. At Fr = 2, a balance between thermal expansion
forces and gravitational forces makes the density distribution
to be nonmonotonic, where a positive slope emerges in a
region close to the cold wall, and at small enough Kn numbers
instability may arise in a confined region near the top plate.
At a high Froude number, in Fig. 2(b) Fr = 9, the density
distribution becomes positively monotonic where the denser
gas is always above less dense gas layers. This is a necessary
condition for onset of instability, and at critical (Fr, Kn) para-
metric conditions, it can be estimated and quantified based on
a constant Rayleigh number.

In RB convection under the Oberbeck-Boussinesq regime,
the transition from the conductive to convective regime oc-
curs when the Rayleigh number (Ra = αg�T H3

νk ) exceeds a
critical value Rac. In the no-slip regime, the critical value
of Rac = 1708 is obtained by a linear stability analysis of
the Oberbeck-Boussinesq equations [19]. For a hard-sphere
gas the volume expansion coefficient α = 1/T , the kinematic
viscosity ν and thermal diffusion coefficient k are obtained
at first-order approximation based on the Chapman-Enskog
theory for low Knudsen numbers [57]

ν = 5

16ρ0d2

√
kBmT

π
, k = 3

2
ν, (4)

where m is the molecular mass, ρ0 = mn = m√
2πd2KnH

is the
bulk density used to set the Kn number, and kB is the Boltz-
mann constant. Golshtein and Elperin [34] suggested an ef-
fective, or average, Rayleigh number based on the assumption
that the temperature profile at the conduction state is linear
along the vertical direction, and correspondingly the average
temperature is Tavg = 1

2 (Th + Tc). Within this condition and
using the coefficients mentioned for the hard-sphere gas, the
Rayleigh number takes the following form:

Ra = 2048

75π

(1 − r)

(1 + r)2FrKn2 . (5)

We have modified this definition by considering the pure con-
duction solution given as the temperature and density profiles
in Eqs. (1) and (2). According to these equations, temperature
and density profiles are nonlinear functions, based on the Kn
and Fr parameters, along the cell height. Hence, if the average

temperature is calculated as Tavg =
∫

T (z)ρ(z)dz∫
ρ(z)dz using Eqs. (1)

and (2), the modified Rayleigh number (Ram) now becomes

Ram = 512

75π

�T

Tavg

1

Kn2Fravg
, (6)

where Fravg = 2RTavg

gH . Figure 3 shows the variation of Ram/Ra
at each constant Ra, according to Eq. (5) and fixed by a set
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FIG. 3. Ratio of Ram to Ra versus Knudsen for the range of
Kn ∈ [0 − 0.03] over which the approximate RB convection zone at
temperature ratio r = 0.1 is defined. Different lines are for different
values of the gravity acceleration, which affects Ra. Each line repre-
sents the variation over rarefaction, quantified by Kn, while gravity
acceleration g is constant. Note that the modified Rayleigh number
Ram has a lower value than Ra as rarefaction or gravity increases.

of (g, Kn) parameters, and different Knudsen numbers. Here
the Ra parameter changes between 1500 and 25 000 as g
increases. It is evident that increasing rarefaction decreases
the ratio of Ram/Ra, and Ram/Ra decreases as g increases.
Therefore, we expect to generally see lower Ram values com-
pared to the traditional definition of Ra in Eq. (5) for cases
with higher rarefaction and gravity acceleration.

Transition into the convection regime at high Froude num-
bers occurs at a constant Rayleigh number, and according
to Ref. [50] it occurs at Ra ≈ 1773, while at low Froude
numbers the appearance of a highly stratified flow will sup-
press convection. The latter limit corresponds to a condition
in which the density ρ(z) shows a minimum at the cold wall
[31], i.e., [ dρ(z)

dz ]
z=1

= 0. Starting from a small Froude number
we see that the minimum does not occur within the domain
(0 � z � 1) but would only mathematically occur beyond the
hot wall, i.e., dρ(z)

dz = 0 for z > 1. See Fig. 2(b) with Fr = 1 as
a highly stratified case at Kn = 0.02. Then, while increasing
Fr, the position z at which the minimum of density is formed,
moves toward to z = 1. The flow becomes unstably stratified
when dρ(z)

dz = 0 for z < 1. See, for example, Fig. 2(b), Fr = 2
where the minimum density is found close to the cold wall.
As the instability sets in for Fr such that [ dρ(z)

dz ]
z=1

= 0, we
immediately find

−
(

ζ

ξ

)
+

(
2

3η

)3

ξ 2 = 1, (7)

which yields the critical Froude number as

Frcr = 3T 1/2
1

T 3/2
0 − T 3/2

1

(8)

with T0 and T1 as a function of Kn. The parametric re-
gion constrained by low- and high-Froude asymptotes where
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FIG. 4. Demonstration of the zone of convection on the (Fr, Kn)
plane at each temperature ratio r = Tc

Th
= (0.1, 0.3, 0.6, 0.9) and

outlined via boundaries defined at low and high Froude numbers.
These boundaries follow the Ram definition in Eq. (6) at high
Froude numbers and at low Froude numbers they follow the critical
Froude condition defined in Eq. (8). The intersection points of
these boundaries, denoted by (Fri, Kni), are located at (1.64, 0.039),
(2.38, 0.027), (4.59, 0.013), and (19.51, 0.0026) for r = 0.1, 0.3,
0.6, and 0.9, respectively. No convection occurs for Kn > Kni for
the respective r values as stable stratification of the rarefied gas
suppresses the onset of convection. Note the presence of a relatively
small area with convection at r = 0.9, which is the typical temper-
ature ratio existing in the conventional RB cases in the continuum
regime for which the Oberbeck-Boussinesq approximation is valid
(α�T � 0.2) [25]. Convection at higher Knudsen values occurs only
for low-temperature ratios. For instance at r = 0.1, the convection
zone includes Kn ∈ [0 − 0.03], limited by the rarefaction limit of
Kn = 0.03.

convection is expected to occur, and introduced in Eqs. (6) and
(7), is shown in Fig. 4 for several values of r.

Convection zones shown in Fig. 4 determines the impor-
tance of choosing the low-temperature ratio r = 0.1 in this
research. Performing DSMC simulations at low Kn numbers
requires high computational resources. Note that the area of
the convection zone only extends to a relatively high Kn value,
for example Kn ≈ 0.03 representing the part of the param-
eter regime where DSMC simulations costs are reasonable,
when the smaller temperature ratios are considered. Hence,
the temperature ratio r = 0.1 would provide feasible DSMC
simulations to study convection behavior of a rarefied gas. As
a result, the flow regime of interest in this investigation with
r = 0.1, Kn ∈ [0.015 − 0.03], is rarefied (with velocity-slip
and temperature-jump effects), has large density variations
due to the stratification, and is characterized by large non-
Oberbeck-Boussinesq effects, i.e., α�T = 2(1−r)

(1+r) ≈ 1.64.

B. Evaluation of the heat transfer

The aim of this section is to define evaluation methods for
the calculation of the total heat transfer from bottom to top
plate. First, the heat transfer in the bulk, which is composed
of the conductive and convective parts, is considered. The un-
derlying assumption is that convective and diffusive transports
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are the significant heat transfer processes. Thereby, the energy
equation can be expressed as

ρcp
∂T

∂t
+ ρcpux

∂T

∂x
+ ρcpuz

∂T

∂z

= ∂

∂x

(
kC

∂T

∂x

)
+ ∂

∂z

(
kC

∂T

∂z

)
, (9)

where kC = kρcp is the gas thermal conductivity. Averag-
ing over horizontal sections of the domain, according to
〈 f (x, z)〉 = 1

L

∫ L
0 f (x, z)dx, applying the periodic boundary

conditions along the horizontal direction, and using of the
continuity equation, Eq. (9) becomes

∂〈cpρT 〉
∂t

+ ∂〈cpρuzT 〉
∂z

= ∂

∂z

〈
kC

∂T

∂z

〉
. (10)

According to this description, in the statistically steady state,
i.e., when ∂〈cpρT 〉

∂t = 0, the conserved heat flux Jz at each
position along the cell height z is defined as

Jz = 〈ρcpuzT 〉 −
〈
kC

∂T

∂z

〉
. (11)

The Nusselt number at the cell height z is then defined by
making Jz dimensionless using the conductive heat QC , i.e.,
Nuz = Jz

QC
. According to the solution obtained for a compress-

ible heat-conducting viscous gas at the pure conduction state,
see Eq. (1), QC is defined as

QC = −kC (z)
∂T (z)

∂z
= −kC (z)

2ξ

3(ξz + ζ )1/3 . (12)

Note that QC depends only on (r, Kn) parameters but not on
Fr. Finally, in order to have a better statistical average, the
Nusselt number in the bulk, Nu f , is calculated as

Nu f = 1

HQC

∫ H

0

(
〈ρcpuzT 〉 −

〈
kC

∂T

∂z

〉)
dz. (13)

Apart from the macroscopic definition of heat transport which
is given by Nu f , we consider also a definition based on the
microscopic molecular transport processes at the walls. This
evaluation is important as for other thermal flows, nonequi-
librium effects on heat transport, such as the anti-Fourier heat
transport [59], have been reported. These effects are not taken
into account in the bulk evaluation of heat transfer in Eq. (13).
Using the simulation methodology of DSMC, it is possible to
evaluate the heat flux at the microscopic scale with the physi-
cal direct molecular description for which the nonequilibrium
effects are implicitly considered. The heat flux at the wall,
denoted by q, is defined as the energy exchange between the
colliding particles and the wall per unit time and area. The
energy exchange in case of a hard-sphere monatomic gas is
only based on the translational energy, hence

q = 1

Ats

∣∣∣∣∣
∑

ts

1

2
m

(
V2

i − V2
r

)∣∣∣∣∣. (14)

Here (Vi, Vr ) are the velocities of a particle before and after
interaction with the wall with surface area A, respectively, and
ts is an arbitrary time span in which the kinetic information
of the particles hitting the wall are being collected. For the
DSMC simulations of the current study, ts is considered to

be around 60τ , where τ = λ/Vth is the mean-free-flight time.
Using QC and thermal fluxes evaluated at the cold and hot
walls, which we denote by qc and qh, respectively, the Nusselt
numbers at the cold and hot walls are defined accordingly as

Nuw,i = qi

QC
(15)

with i = c or i = h, representing cold wall and hot wall,
respectively.

In this investigation we report the measured Nu values
based on the mean and the standard deviation error of the
temporal variations, after the steady state is reached. For a set
of samples {X1, X2, X3, . . . , Xn} the mean X and the standard
deviation σX are calculated based on classical conventions
[60] as

X = 1

n

n∑
i=1

Xi , σ 2
X

= 1

n − 1

n∑
i=1

(Xi − X )2. (16)

III. THE PARALLEL DSMC CODE

The employment of a computationally intensive numerical
method as DSMC becomes practically feasible when com-
putations are done taking advantage of code parallelization.
As particle movement and collision events in the DSMC
method are managed independently and happen locally, the
DSMC routines then are highly suitable for parallelization.
The DSMC code in this study, is fully parallelized with mes-
sage passage interface (MPI) on a three-dimensional Cartesian
processor grid, and its development and validation is pre-
sented in Ref. [56]. In this code, the physical computational
domain is decomposed into groups of cells, and these groups
are distributed among parallel processors. Each processor then
executes the DSMC algorithm for its corresponding physical
space (cells) and containing particles. Communication across
processors, in order to transfer particles between each of them,
happens as particles cross the physical domain of each proces-
sor. Finally, in order to increase the computational efficiency,
the computations are separated in two routines. The streaming
step and particle interactions with domain boundaries, the
inter-process communication operations, and the indexing
of the particles within each cell, are performed in the first
routine. The second routine performs the collision step, which
is based on the “no time counter” (NTC) collision scheme
[37], and the evaluation of the hydrodynamic quantities.

TABLE I. Computational information of the simulation cases
that are selected according to the typical spatial and temporal dis-
cretization rules of the DSMC method [37], where cell size �x < λ

2 ,
the simulation time step �t < �x

5Vth
, and the total number of DSMC

simulator particles Nt results in 25 or more particles in each cell.

Grid size �t
Kn (Nx × Nz) s (×10−8) Nt × 106

0.015–0.018 400 × 200 4 2
0.020–0.030 200 × 100 4 1
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FIG. 5. Time averaging in collecting of particle information
used for the evaluation of Nusselt at the walls. The evaluation of
(Nuw,c, Nuw,h ) is based on a sampling time step of about 60τ and the
minimum of the intersampling interval is about 200τ . For evaluation
of Nusselt values in the bulk (Nu f ), the instantaneous information is
used and the sampling time step corresponds to a single DSMC time
step.

IV. RESULTS AND DISCUSSION

In this section, DSMC results obtained for the Rayleigh-
Bénard case, as shown in Fig. 1 with a hard-sphere monatomic
gas at temperature ratio of r = 0.1, aspect ratio of � =
2, and Knudsen number in the range of 0.015–0.030, are
presented. The working fluid is the monatomic argon gas
with a molecular mass m = 6.63 × 10−26 kg and a molec-
ular diameter of d = 3.658 × 10−10 m. DSMC calculations
start from a uniform initialization at the average temperature
(T = 88K), and density chosen according to the investigated
Kn. Computational informations about DSMC simulations are
presented in Table I. In order to obtain Nusselt values at
the walls (Nuw,c, Nuw,h), sampling, i.e., collecting of particle
information during the simulation, is done for a period about
60τ according to the schematic shown in Fig. 5.

A. General overview

A parametric (Fr, Kn) overview of the performed DSMC
simulations is shown in Fig. 6. In total around 225 simulations
were performed. The simulation times vary according to the
(Fr, Kn) parametric conditions. In order to have estimates in-
dependent from the size and type of computational resources,
simulation times are reported in a comparative format. If the

simulation time for the parameters with Kn � 0.02 and close
to the maximum convection zone, for instance, Kn = 0.02
and Ram = 4000, can be assumed as unity, then parameters
with lower rarefaction level, e.g., 0.015 � Kn < 0.02 require
a simulation time of 2 to 2.5. In case of parameters close to the
zone of onset of convection, i.e., Ram close to Racr,I = 1770,
simulations are continued 2 to 4 times longer. Simulations are
mostly concentrated near the regions of expected maximum
convection, onset of convection (high-Froude limit along the
Ram = 1773 curve, that is mentioned in Ref. [50]), and extinc-
tion of convection at the low-Froude limit which is determined
by Frcr defined in Eq. (8).

The effect of rarefaction by varying Kn on RB convec-
tion is presented in Figs. 7–9 in terms of the Mach num-
ber, velocity, density, temperature fields, and horizontally
averaged temperature and density profiles. Additionally, the
measured bulk Nusselt number Nu f over time is displayed
in Fig. 10. In Figs. 7–10, the comparisons are made among
three simulations with different Knudsen numbers. These
particular Knudsen numbers are marked with the blue filled
squares in Fig. 6(b), viz. the (Fr, Kn) cases of (15.53, 0.015),
(8.08, 0.02), and (2.87, 0.03), at constant Ram ≈ 2040. As
rarefaction increases from panels (a)–(c) in Figs. 7, 9, and 10,
and from the left to the right column in Fig. 8, the thermal
state, while clearly convective for Kn = 0.015, transits to the
conduction state at Kn = 0.03. In order to show a qualitative
comparison between the convection intensities of the three
cases, the Mach number, defined as Ma = |V|/√γ RT , of the
time-averaged steady-state flow is shown in Fig. 7. Although
the two-roll convection structure in Fig. 7 is considered as
incompressible (as Mach �0.2 the flow can be considered
as incompressible [61]), for the cases close to the maximum
convection state, see Fig. 6(b), the compressibility effect may
become relevant. For example, at Kn = 0.02 and maximum
convection state for Ram ≈ 6600, slight compressibility ef-
fects emerge as Mamax ≈ 0.3.

Contours of instantaneous values of density, temperature,
and the horizontal and vertical fluid velocity components

0.015

0.020

0.025

0.030

100 101

(b)

K
n 

Fr 

Max. conv.
Figs. (7-10)

0

0.005

0.010

0.015
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0.025
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0.035
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Pure conduction

P
ur

e 
co

nd
uc

ti
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(a)

K
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Fr 

 Ram  = 1773 [48]

 Frcr(Kn)

DSMC Sim.

FIG. 6. Overview of the DSMC simulations: (a) a general overview and (b) a zoom on the region of interest. The computational information
of these DSMC simulations are summarized in Table I. The distribution of simulations is set in a way to determine the characteristics of the
zone of convection, where the interest is on three regions: (i) onset of convection, close to the boundary of Ram = 1773 and plotted by the
black solid line; (ii) maximum of convection, indicated by black circle points with an error margin over Fr; and (iii) cessation of convection,
determined by Frcr defined in Eq. (8) and plotted by the black dashed line.
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FIG. 7. Mach contour plots overlaid on velocity vectors at a constant Ram ≈ 2040 for (Fr, Kn) cases of (15.53, 0.015), (8.08, 0.02), and
(2.87, 0.03). These parametric sets are marked with the blue filled squares in Fig. 6(b). Results are time averaged for 30 time instances once
the steady-state solution, based on the temporal Nusselt Nu f behavior, is reached.

are shown in Fig. 8. It is clear that as rarefaction increases,
the macroscopic properties ρ and T show strong signatures
of the formation of a conductive state with increasing Kn.
In particular, these properties become more homogeneously

distributed in horizontal layers when Kn increases, see the
right column.

Transition into the conduction regime due to rarefaction
can also be shown based on the one-dimensional temperature

FIG. 8. Contour plots of normalized instantaneous density, temperature, and horizontal and vertical velocity components (u, w) at Ram ≈
2040 and Kn = (0.015, 0.02, 0.03) for left, center, and right columns, respectively. By increasing rarefaction, the gas properties ρ and T show
horizontally homogeneous distributions, a signature of a conductive state.
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FIG. 9. Dimensionless horizontally averaged temperature and density profiles at Ram ≈ 2040 for Kn = (0.015, 0.02, 0.03). The (Fr, Kn)
locations are marked with the blue filled squares in Fig. 6(b). Only a few points of the DSMC results are shown for better visibility. The dashed
horizontal lines highlight the temperature values of the walls, T = (0.1, 1). Note that the temperature values of the confined fluid adjacent to
the walls do not coincide exactly with the dashed lines. This is recognized as the temperature jump due to rarefaction effects (slip-flow regime).

and density profiles. Figure 9 shows the comparison between
these one-dimensional horizontally averaged density and tem-
perature distributions defined as,

〈ρ〉 = 1

ρ0L

∫ L

0
ρ(x, z)dx,

〈T 〉 = 1

ThL

∫ L

0
T (x, z)dx, (17)

indicated by the cross symbols in Fig. 9, against the pure con-
duction solution (solid lines) based on Eqs. (1) and (2). The
presence of convection makes the temperature and density
profiles slightly deviating from the conductive state. Note also
that due to the slip-flow regime, with increasing rarefaction
the level of temperature jump also increases. See, for exam-
ple, the small difference between the horizontal dashed lines
representing the wall temperature values T = (0.1, 1) and the
red crosses at wall locations, z = (0, 1).

The overall effect of the transition from convective to
conductive state can be quantified with the Nusselt num-
ber. Figure 10 presents the steady-state variation of Nu f ,
defined according to Eq. (13), over time for the three
cases Kn = (0.015, 0.02, 0.03) at Ram ≈ 2040. The instan-
taneous and time-averaged Nusselt numbers, Nu(t ) and
〈Nu〉t = 1

n

∑n
i=1 Nu(ti ), denote the convection state at Kn =

(0.015, 0.02) with 〈Nu〉t significantly larger than unity and the
conduction state with 〈Nu〉t ≈ 1, indicating that heat transfer
is almost completely governed by conduction, at Kn = 0.03.
In that case the instantaneous values of Nu(t ) varies in the
range between 0.96 and 1.06. The strength of convection is
measured by the Nusselt numbers defined in Eqs. (13), and
(15), where heat transfer is obtained from two different per-
spectives. These are from the macroscopic bulk flow, Nu f , and
from the molecular processes at the walls, Nuw,c and Nuw,h.
As stated in Sec. II B, Nu f is based on the combined con-
ductive and convective heat transport and does not take into
account any other nonequilibrium effects. The comparison
of the macroscopic and microscopic evaluation methods for
Nu f and the pair Nuw,c and Nuw,h, respectively, is provided
in Fig. 11. For Kn = 0.025 Nuw,c and Nuw,h are compared,
showing the exact agreement between the Nusselt evaluations
at the two walls. For the Kn = 0.02 case, instead a comparison
is shown only between the Nusselt evaluation in the bulk
(Nu f ) and a Nusselt evaluation at the hot wall (Nuw,h) to show
the consistency between the two evaluations. It is observed
that the different methods provide consistent results. Thereby,
it can be concluded that for the cases under consideration the
contribution of other thermal effects like heat dissipation and
nonequilibrium effects, such as anti-Fourier heat flows, on the
heat transfer has a negligible role and convection and diffusion
represent the significant heat transfer processes.
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FIG. 10. Variation of Nu f over time after reaching the steady-state value for Kn = (0.015, 0.02, 0.03) at a constant Ram ≈ 2040. The
(Fr, Kn) locations are marked with the blue filled squares in Fig. 6(b). Nu(t ) and 〈Nu〉t represent instantaneous and averaged values accordingly.
〈Nu〉t = (1.27, 1.20, 1.02) and standard deviations σNu = (0.020, 0.029, 0.027), calculated based on Eq. (16) but for time series {t1, . . . , tn},
for the aforementioned sequence of Kn.
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FIG. 11. Comparison of Nusselt values obtained from different
methods. The error margin is calculated according to the standard de-
viation error σ defined in Eq. (16). (i) Nu f using macroscopic flow-
field properties, Eq. (13) and (ii) Nuw,c and Nuw,h using the DSMC
methodology in calculating heat exchange at the walls, Eq. (15). Note
that the smaller standard deviation error of the Nusselt values from
the cold wall is due to the smaller magnitude of temperature when
compared to the hot wall. Hence, despite of having different standard
deviation errors, it is safe to say that both approaches of Nusselt
evaluation can be assumed equivalent under the present conditions.

The general picture of the heat transfer behavior measured
by DSMC simulations of the Rayleigh-Bénard instability in
rarefied gases is shown in Fig. 12. This behavior is shown in
the form of variation of Nu f at different rarefactions (0.015 �
Kn � 0.03) and over the Ram range for which the convec-
tion zone is defined. A (Nu, Ra) relation according to Nu =
1 + 1.44(1 − 1708

Ram
) [62], and valid at 1708 < Ram < 5830,

is reported from experimental studies of air in continuum
compressible conditions and is added for comparison. At a
limited range of low Rayleigh numbers, Ram < 2000, con-
vection enhancement follows approximately the same trend as
these experimental data. This trend is not followed at higher
Ram values as stratification effects first causes a maximum in
convection, see the black dots in Fig. 12, and then a monotonic

TABLE II. Assessment of the critical modified Rayleigh num-
ber for the onset of convection, Racr,I , in the rarefaction range of
0.015 � Kn < 0.03. The error margin is calculated according to the
standard deviation error σRacr,I

defined in Eq. (16).

Racr,I σRacr,I

Kn 0.015 0.02 0.0225 0.025 0.027 – –
Racr,I 1785 1770 1750 1760 1785 1770 15

reduction of Nusselt values toward the cessation of convection
(Nu = 1).

The Rayleigh-Bénard convection zone in this investigation
is studied with focus on three stages, (i) onset of convection,
(ii) maximum convection, and (iii) cessation of convection,
and are discussed in the following sections.

B. Onset of convection

The purpose of this section is to measure the critical
modified Rayleigh number, based on the definition given in
Eq. (6), for the onset of convection, which is denoted here by
Racr,I , at the high-Fr limit. At each rarefaction degree, thus
constant Kn value, the conduction state is made unstable by
increasing the value of g which is equivalent to decreasing
Fr. We follow here the opposite trajectory, starting from the
convective regime and increasing the Froude number. As Fr
increases and consequently Ram decreases and approaches
Racr,I , the time ttr at which transition from the conduction into
the convection state occurs, and which is quantified by Nu, is
further delayed, see Fig. 13. This transition is also observed
evaluating the total kinetic energy E of the system defined as
E = 1

2

∑Ncell
n=1 (ρnV−nu2

n ), where un is the macroscopic velocity
vector of the cell n, V−n is the cell volume and Ncell is the total
number of computational cells. According to Figs. 13(c) and
13(d) the energy E of the RB system follows the same trend as
the measured heat transfer, see Figs. 13(a) and 13(b). Hence,
in the current study, only heat transfer measurements are used
to refer to the characteristic behaviors of the system, such as
onset or suppression of convection.
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FIG. 12. Nusselt values obtained from macroscopic flow-field properties versus modified Ram, see Eq. (6), at r = 0.1. The left plot shows
the general behavior of Nu f and the right plot is a zoom on the region of interest at low Ram values. Note that the error margin is calculated
according to the standard deviation error σ defined in Eq. (16). For the purpose of comparison, experimental Nu(Ra) relation from Ref. [62] for
a compressible gas in non-Oberbeck-Boussinesq conditions, which is considered valid in the range of 1708 < Ram < 5830, is also sketched.
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FIG. 13. Temporal behavior of the cold wall Nusselt number Nuw,c and the total kinetic energy E for a set of parameter combinations
that are close to the instability limit at high Fr numbers. Note that the cold wall Nusselt number is opted for demonstration as it has lower
fluctuations than the hot wall Nusselt number. It is observed that the transition time ttr , normalized with the mean free flight τ , is larger for
parameter regimes that are more continuum, thus lower Kn, and closer to the instability limit, e.g., Racr,I ≈ 1770.

Figure 14 presents the long-term steady-state Nusselt val-
ues measured at the hot and cold walls for the rarefied RB
cases chosen within the range of Kn ∈ [0.015 − 0.027]. At
each rarefaction degree we incrementally increase Ram and
measure the Nusselt value. When the Nusselt value deviates
from unity the critical modified Rayleigh for the onset to
convection, Racr,I , is determined, see Table II. According to
Table II, for the considered Kn range, the critical modified
Rayleigh numbers deviate with a small standard deviation
error from the average value Racr,I . Therefore, according to

this evaluation, the critical modified Rayleigh number for the
onset of convection in the rarefied range of 0.015 � Kn <

0.03 is determined as Racr,I = 1770 ± 15.

C. Maximum convection

We now focus on the maximum convection of a rarefied
RB system while varying rarefaction conditions. To this aim,
measurements are performed to obtain the maximum con-
vection intensities in terms of Nusselt values at each studied
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FIG. 14. Transition to convection in proximity of the high-Fr limit, identified via the Nusselt values at the cold and hot walls. The error
margin is calculated according to the standard deviation error σ defined in Eq. (16). According to this data set, the onset of convection for
parameters in the range of 0.015 � Kn < 0.03 could be extracted and is given in Table II.
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FIG. 15. Maximum Nusselt, Numax, obtained at each rarefaction
degree Kn. The error margin is calculated according to the standard
deviation error σ defined in Eq. (16). Results indicate that the
maximum convection of the rarefied RB system tends to decrease
linearly for the range of Kn ∈ [0.02 − 0.03]. The intersection of
this linear trend with the conduction limit Numax = 1 coincides with
Kn ≈ 0.03.

rarefaction degree, indicated by Kn, knowing that for each
case the maximum convection occurs at different Ram. Fig-
ure 15 shows a comparison of the maximum Nusselt values,
denoted by Numax, obtained at each studied rarefaction degree
for the range of Kn ∈ [0.015 − 0.03]. A linear dependency of
Numax on Kn is found for the range of Kn ∈ [0.02 − 0.03].
However, for the less rarefied range, in particular when Kn �
0.02, the maximum convection in the rarefied RB system
tends to deviate from the proposed linear trend. They show
somewhat higher values of Numax. As expected, the linear
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FIG. 16. The heat transfer magnitudes measured for parametric
cases at the low-Fr limit and close to the the critical Froude number
Frcr, see Eq. (8). The error margin is calculated according to the
standard deviation error σ defined in Eq. (16). Based on these points,
the critical modified Rayleigh number Racr,II for which cessation of
convection occurs is assessed for the rarefaction range of 0.015 �
Kn < 0.03. The results for Racr,II are summarized in Table III.

TABLE III. Assessment of the critical modified Rayleigh number
Racr,II for the cessation of convection in the rarefaction range of
0.015 � Kn < 0.03. A set of DSMC simulations are performed
at each rarefaction degree Kn, while gravity g is being increased
incrementally. The critical modified Rayleigh number, for occurrence
of the conduction state, i.e., the Nusselt number being close to
unity, is then chosen from the simulated cases. In most of the
measurements, the determination of Racr,II is done with precision
about �Racr,II ≈ 200 that is the parametric distance between two
consecutive states in which the transition from the convective to the
conductive state occurs.

Kn 0.015 0.02 0.0225 0.025 0.027 0.028 0.029
Racr,II 14091 7400 5671 4343 3511 3285 2541

trend predicts a conduction state with Numax = 1 due to
rarefaction close to the value of Kn = 0.03. This estimation
agrees closely with the investigation by Stefanov et al. [31],
in which they reported zero number of convection rolls, which
they consider as an indication for the presence of the pure
conduction state, generated by the DSMC and the Navier-
Stokes finite difference simulations at Kn = 0.029 and Kn =
0.028, respectively.

D. Limit at low Froude numbers

The suppression of convection at low Fr values is studied
looking at the measured heat transfers at the walls. Fig-
ure 16 shows the long-term steady-state magnitudes of heat
transfer (Nuwall) of the rarefied RB cases. The cessation of
convection is presumably due to the emergence of a highly
stratified flow, which is analytically bounded by the critical
Froude number Frcr, see Eq. (8). Here, at each rarefaction
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FIG. 17. Critical points in the transition from convective into
conductive state for the low-Fr range. Red dots indicate DSMC
data for Racr,II and the error bars are smaller than the size of the
circular symbols. These symbols are compared with the profile of
Ram(Frcr, Kn) at the Frcr condition, see Eq. (8). Note that the linear
trend existing at higher rarefactions intersects with the conduction
condition of Ram = 1770 at approximately the hypothetical rarefac-
tion limit of Kn ≈ 0.03.
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FIG. 18. The convection zone at the rarefied RB problem for
Kn ∈ [0.015 − 0.03] and a fixed temperature ratio of r = 0.1.
DSMC points obtained in the present work at Racr,II are compared
with the constant Ram = 1770, which is the critical value determined
via a set of DSMC simulations, see Sec. IV B. Similarly, using the
DSMC simulations, the values for Racr,II are obtained and compared
with the condition posed by Frcr, see Eq. (8). Note that the zone of
convection is also bounded with the rarefaction limit of Kn ≈ 0.03.

degree Kn, the value of Ram is incrementally increased
with increasing gravity g, and the flow regime approaches
the condition for cessation of convection posed by Frcr.
Thereby, the cases in which the convection state changes
into the conduction state are approximately recognized. The
Racr,II is defined as the critical modified Rayleigh number in
which this transition at the low-Fr limit occurs, and is given
in Table III.

In order to better distinguish this behavior for the rar-
efaction range of Kn � 0.02, Racr,II is shown versus the
rarefaction degree Kn in Fig. 17. According to this figure,
for the higher rarefaction range (Kn � 0.02) a linear de-
crease of Racr,II versus Kn is recognized, which also seems
to deviate from the prediction based on Frcr. In this fig-
ure, with the assumption that at higher rarefactions (Kn �
0.02), the conduction limits of the high (Racr,I = 1770)
and low (Racr,II ) Froude numbers will asymptotically in-
tersect, the mentioned linear decrease of Racr,II is extrapo-
lated. The two limits (Racr,I , Racr,II ) then intersect at a point
close to the rarefaction limit of Kn ≈ 0.03, which indicates
the conduction limit imposed by the rarefaction condition.
See also Fig. 15 where extrapolation of Nusselt values in
the maximum convection state asymptotically intersects with
the conduction condition at a point close to the rarefaction
limit Kn ≈ 0.03.

Finally, using the data presented in this research, the con-
vection zone in (Fr, Kn) plane can be updated. Figure 18
shows the parametric locations obtained by the DSMC sim-
ulations to determine the regions of (i) onset of convection,
(ii) maximum convection, and (iii) cessation of convection.

V. CONCLUSION

This investigation addressed the behavior of Rayleigh-
Bénard convection of a rarefied gas using DSMC simulations
for r = Tc

Th
= 0.1. Both macroscopic- and microscopic-based

measurements of the heat transfer were done for the bulk fluid
and also at the cold and hot walls. These measurements were
applied to determine the limits within the parametric space
for which the onset and cessation of convection as well as the
maximum convection occurs.

It was shown that the maximum convective heat transfer at
each rarefaction degree linearly decreases in the 0.02 � Kn <

0.03 range. This linear trend intersects the conduction state at
Kn ≈ 0.03.

By taking into account the non-Boussinesq effects as ob-
tained from the pure conduction solution of the RB com-
pressible “slip-model,” a modified Rayleigh number (Ram)
definition is proposed that takes into account the nonlinear
distribution of temperature at the pure conduction state. It
was observed that the Rayleigh range for which the onset
of convection occurs is small enough to be represented by
a single constant Ram value. DSMC simulations for the rar-
efied range of Kn � 0.015 showed that the critical modified
Rayleigh number for the onset of convection, Racr,I , can be
closely approximated as Racr,I = 1770 ± 15.

At low Froude numbers corresponding to strongly strati-
fied states, the critical modified Rayleigh numbers Racr,II in
which a convective state changes into a conductive state are
determined. Non-Oberbeck-Boussinesq effects in this rarefied
and highly stratified regime makes no longer possible to reach
a single nondimensional parameter describing the cessation
of convection. Despite this fact, performing DSMC simula-
tions at each rarefaction degree, a linear dependency between
Racr,II and Kn has been observed for Kn � 0.02. How the
results for Racr,II are affected by stratification and what is due
to rarefaction is not fully clear yet. For the low-Kn regime,
it might be useful to explore this transition between the
convective and conductive state from the continuum system.
Is the second transition, at Racr,II , still present for very small
Kn? Although this is outside the scope of the present work
and not feasible with DSMC future investigations are required
to shed light on this particular issue. At higher rarefaction
conditions, the aforementioned linear trend between Racr,II

and Kn intersects with the onset of the conduction limit,
defined by Racr,I = 1770, at a parametric zone close to the
rarefaction limit of Kn ≈ 0.03.
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