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How boundary slip controls emergent Darcy flow of liquids in tortuous and in capillary pores
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Fundamental investigations of how boundary slip relative to the no-slip condition for liquid flow in a set
of two distinct idealized pore geometries, i.e., a diverging-converging tortuous pore, in contrast to a straight
tube capillary pore, contribute to emergent Darcy flow and flow enhancement are presented. Using steady-state
solutions to Navier-Stokes equations, a sensitivity study investigates the role of (a) a large variation in boundary
slip reported in the literature, and (b) a large variation in pore-throat sizes found in geologic porous media.
Results show that both the pore geometry and their pore-throat sizes contribute to differences over several orders
of magnitude in the emergent Darcy flow behavior and the flow enhancement. Tortuous pores contribute to
a lower flow enhancement relative to the capillary pores, and while the larger pore throats (i.e., � 10μm)
negligibly enhance flow, it increasingly becomes significant for the micron-size pore throats. From capillary
pores, flow enhancement is found to increases linearly in an unlimited manner with an increment in boundary
slip relative to the no-slip condition. In contrast, flow enhancement from diverging-converging tortuous pores
is found to get limited defined by an asymptote for flows with a larger boundary slip. Capillary pores offer
no change in resistance to flow due to boundary slip. In contrast, the very nature of diverging-converging
tortuous pore geometry offers growth in drag forces and energy dissipation rate, i.e., an increase in resistance
to flow, which contributes to the asymptote or the limited flow enhancement. A set of theoretical models are
presented, which can be used to predict the flow enhancement as a function of boundary slip and spatial-scale of
pore throats. This study may have implications for predicting flow enhancement and pressure loss during fluid
injection or recovery from low permeability geologic reservoirs, and relevant to other engineering applications,
e.g., hydraulics in corrugated channels or design of carbon nanotube membranes for desalinization purposes.
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I. INTRODUCTION

No-slip boundary condition, which leads to the traditional
form of the averaged continuity equation, i.e., ∇ · u = 0,
is fundamental to the theoretical derivation of Darcy’s Law
from Navier-Stokes equation [1–3]. Subsequently, the us-
age of no-slip boundary condition has become a norm
for most analytical and numerical studies of fluid flow
over a solid surface including pore-scale fluid dynamic
studies, with the exception of the gas flow in porous
media [4,5].

In last two decades, advances both in computational re-
sources and high-resolution imaging of porous media, in com-
bination, has revolutionized the fundamental investigations
of how complex porous structure modify fluid dynamics in
three-dimensions (3D) and its dependent transport of dis-
solved and particulate matter at the pore-scale, which al-
together gets manifested as the phenomenon of continuum
porous media [3,6]. Most pore-scale fluid dynamics studies,
which use direct numerical simulation solving Navier-Stokes
equations, or the lattice Boltzmann method, or solution of
Hagen-Poiseuille equation used in pore-network modeling,
continue to implement the no-slip boundary condition [5,7–
10]. The results from pore-scale studies are often used to
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benchmark results of laboratory experiments and predict flow
and transport phenomena of the field scale [11–14].

In contrast, the liquid slip at liquid-solid inter-
face/boundary i.e., the velocity of a liquid at the boundary
�= 0, is a well-known phenomenon [15–19]. The liquid slip
also known as viscous slip or Navier slip arise due to weak
van der Waals interactions at the liquid-solid boundary, and is
implemented as a slip boundary with a prescribed slip length
(b), i.e., length past the boundary at which linear extrapolation
of velocity profile satisfy the no-slip boundary condition. This
results in a liquid velocity at the boundary known as the slip
velocity.

The slip length (b) spanning from 8 nm to 10s of mm,
i.e., several orders of magnitude larger than the length scale
of confinement, have been reported from laboratory exper-
imental studies and molecular dynamics (MD) simulations
[18,20,21]. The large variations in slip length exist as a func-
tion of wettability [18,20,22], surface roughness [23–25], and
shear rate [26,27]. For example, from laboratory experiments,
slip length of 8–9 nm was found on perfectly wetting mica
and glass surfaces, i.e., contact angle, θ = 0 [28], b of ∼50 nm
was found from 10-µm-deep hydrophilic glass microchannel
[29], b of 85 nm was found from rough hydrophilic glass
surface [30], and a large b of ∼70μm is inferred from reported
slip velocity of 0.01 (m/s) from 14-mm-diameter hydrophilic
glass tube [31]. Likewise, large slip lengths of 0.1 to ∼10μm
are reported from hydrophobic glass surfaces [29,32], slip

2470-0045/2020/102(1)/013101(14) 013101-1 ©2020 American Physical Society

https://orcid.org/0000-0003-2366-2480
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.102.013101&domain=pdf&date_stamp=2020-07-06
https://doi.org/10.1103/PhysRevE.102.013101


KULDEEP SINGH PHYSICAL REVIEW E 102, 013101 (2020)

lengths of 20 to ∼200μm are found from rough-patterned
superhydrophobic surfaces [22,33,34], and b of up to 68 mm
was found from 7-nm carbon nanotube [21]. Using MD simu-
lation, slip lengths between 0.1 and 80 µm were computed for
a series of hydrophilic to hydrophobic surfaces, respectively
[20].

Aquifer/reservoir minerals are known to exhibit large vari-
ations in wettability and surface roughness, which can be
similar in form to patterned superhydrophobic surfaces, for
example, the surface roughness of up to 1 µm is reported
from quartz grains [35]. Wettability of aquifer/reservoir min-
erals generally exhibits strong to weak wetting characteristics
[36,37] that can transform to mixed-wet or hydrophobic char-
acteristics due to aging from organic acids found in soils or
hydrocarbon reservoirs [38,39]. The effect of slip flow can
be insignificant when slip length is smaller than pore-throat
sizes, however, slip flow may significantly modify the flow
field when b is greater than pore-throat sizes. Pore-throat sizes
for most aquifers, reservoirs, and soils (excluding clay-rich
formations, e.g., Shale) span between 0.1 and 100 µm [40].
At what wettability or slip lengths or pore-throat sizes do
aspects of slip flow become significant? Specifically, among
pore-scale fluid dynamic studies, how liquid slip flow, which
is likely related to the wettability of porous media, modify
Darcy flow behavior, has not been well studied. Aspects of
such a study bear implication for improving the predictive
nature of pore-scale models, and thus aid in representative
upscaling of the pore-scale phenomenon.

In this paper, the main questions addressed are how does
the boundary slip during liquid flow in pores modify the
emergent Darcy flow and permeability? How do different
pore-throat sizes in the combination of a large variation in slip
length, as reported in the literature, contribute to the emergent
Darcy flow and permeability? and finally, are there any differ-
ences in the modification of emergent flow behavior between
straight tube capillary vs tortuous pores? To address these
related questions, a series of diverging-converging tortuous
and straight tube capillary pores, representative of pore-throat
sizes spanning 10−7 m to 10−4 m are designed. Using steady
solutions to Navier-Stokes equations, a sensitivity study is
conducted by varying wall boundary conditions from no-slip
to slip boundary with a range of slip lengths spanning be-
tween 10−9 and 10−4 m, i.e., as reported in the literature. The
methods section (II.) describes the details of pore geometry
design and the solution scheme of Navier-Stokes equations
with the implementation of slip boundary conditions. Next,
the evaluation of computed flow fields, related findings, and
development of theoretical models are presented in Sec. III.
The examination of physical mechanisms, e.g., resistive forces
and energy dissipation, which contribute to the observed find-
ings and related discussions are presented in Sec. IV. Finally,
Sec. V. presents a summary.

II. METHODS

A. Pore-scale tortuous vs capillary pore geometry design, and
motivation

To study the aspects of tortuous flow around sediment
grains of porous media, in contrast to studying pore-scale

FIG. 1. A cut section from a 3D rendition of an axis symmetric
periodic tortuous pores composed of periodic array of three pore
units (red dashed square highlights a single pore unit), which are
formed around staggered arrangement of sediment grains of size s,
(b) 2D section of a single tortuous pore unit showing anisotropic
pore throats of diameter (d) and boundary conditions, and (c) A cut
section from a 3D rendition of an axis symmetric capillary pore.

flow using the straight tube capillary pore geometry, i.e., the
framework for a capillary bundle or the pore-network mod-
eling, a series of axis-symmetric diverging-converging pores,
which represent 3D channel flow around sediment grains,
in combination with a series of axis-symmetric straight tube
capillary pores are designed for this study [Figs. 1(a)–1(c).

In an attempt to design tortuous pore geometries represen-
tative of natural porous media, i.e., a media which display
hydraulic anisotropy due to compaction related to geologic
burial processes, a series of compacted sediment grains, i.e.,
grains with aspect ratios of 1:2 in r and x directions, respec-
tively [s; Fig. 1(a)], are arranged in a staggered pattern. The
spacing between the grains is optimized to obtain hydraulic
anisotropy by arranging pore-throat sizes (d) in a ratio of 1:2
in r and x directions, respectively [d; Fig. 1(b)]. Here, the
x coordinate is the primary direction of flow, and r is the
radial coordinate of the axis-symmetric plane. In this specific
design, the sediment grain sizes are 10 times the pore-throat
sizes in each specific direction [i.e., s = 10d; Fig. 1(b)]. This
ratio is similar to average pore-throat to grain sizes found in
natural porous media [14,40–42]. The resulting pore spaces
around sediment grains form a channel of tortuous pores i.e., a
channel with a geometric tortuosity of 1.22, which represents
a more realistic diverging-converging tortuous pore geometry,
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is homogeneous, but with a moderate amount of anisotropy.
Similar pore geometries of grain packs have been used as
benchmarks for studying flow and transport phenomena of
porous media [7].

To compare and contrast the results of this study with
other pore-scale studies which rely on either the 1D analytical
solution to Navier-Stokes equations or the Hagen-Poiseuille
equation or the pore-network modeling which presumes pore
channels as a network of straight tubes, a series of axis-
symmetric straight tube capillary pores are also designed for
this study [Fig. 1(c)]. These capillary pores have a diameter,
d , similar to the pore-throat diameter of tortuous pores, but
with no anisotropy and no diverging-converging geometry,
and thus, have a geometric tortuosity of 1.

In natural porous media, pore-throat sizes could vary sig-
nificantly related to both the depositional environment and the
burial history, and the flow enhancement due to boundary slip
may manifest differently in different size pores. To account for
this large variability found in the size of pore throats, both the
tortuous pore and capillary pore domains were isotropically
scaled in log-space to obtain 13 × 2 domains with their
pore-throat sizes, d representing a variation between 10−7 and
10−4 m found from fine siltstones to sandstone reservoirs [40].

B. Computational fluid dynamics, boundary conditions, and
numerical scheme

Fluid hydraulics at pore-scale is studied by conducting
computational fluid dynamics (CFD) simulations, which in-
volve solving Navier-Stokes and continuity equations, numer-
ically using the finite element method (FEM). Single-phase
steady incompressible fluid flow in pore domains is governed
by

∇ · pI = ∇ · μ (∇u + (∇u)T) − ρ(u · ∇ )u, (1)

∇ · u = 0, (2)

where ρ is the fluid density, u = [u, v] is a velocity vector
with components in r and x directions, respectively, μ is
dynamic viscosity and p is total pressure. Standard properties
of water, i.e., ρ = 1000 kg m−3, and μ = 0.001 (Pa s) are
used. A pressure gradient, ∇p = 1(Pa m−1) is applied across
the periodic inlet-outlet boundaries [Fig. 1(b)], which allow
both for the flow to be fully developed at the inlet, and flow
from a single pore domain to be representative of flow from
an infinitely long pore channel in the x direction, i.e., the
main direction of flow. The applied pressure gradient results
in a laminar flow regime with Reynolds number, Re < 1. The
Reynolds number, Re, is calculated as

Re = ρ Ua d

μ
, (3)

where, Ua is average velocity in the x direction, and d , the
pore-throat diameter is the characteristic length.

All pore boundaries, i.e., wall [Fig. 1(b)] are considered
at first with a prescribed no-slip boundary condition, i.e,
the velocity at the boundary, ub = 0. And, to study the role
viscous boundary slip, a slip boundary condition, i.e., velocity,
ub > 0 at the boundary i.e., the wall [Fig. 1(b) is implemented

by

ub = b

μ
τ, (4)

where b is the prescribed slip length and τ is shear stress.
Given that there exists a large variability in reported slip
lengths in literature which is likely related to the nature
of wettability of media, a sensitivity study is conducted by
systematically varying the slip length, b between 10−9 and
10−4 m. Steady-state numerical solutions to Navier-Stokes
and continuity equations are computed by applying a periodic
pressure drop, and a no-slip boundary condition. Next, a series
of simulations are conducted on 13 × 2 pore domains by
prescribing ten different values of slip length per one log
decade, which together lead to a total of 1352 computational
simulations considered in this study.

Finite element mesh sensitivity to the computed flow fields
with large variances in b and d is conducted by introducing
boundary layer elements, which are a subset of FEM meshing
methods. The usage of boundary layer elements allow a high-
resolution mesh refining parallel to boundaries or the wall of
pore domains [Fig. 1(c)], and thus, enables us to accurately
resolve the physics of the boundary layer, e.g., shear stress, τ

on the boundary. The mesh sensitivity based on the absolute
change in velocity, i.e., |�u| � 10−4 (m/s) or 99.99% accu-
racy in velocity approximation resulted in ∼4 × 106 elements
for the 2D sections of axis-symmetric tortuous pores. Numer-
ical solutions to Eqs. (1)–(3) are conducted using the finite
element based CFD module of Comsol Multiphysics software.
The numerical solution scheme included the implementation
of a higher order, i.e., quadratic Lagrange shape functions for
u and p, which allow for improved numerical accuracy with a
trade-off to an increase in the computational time. The steady
solutions were computed using a direct Multifrontal massively
parallel sparse solver .

III. RESULTS

A. Flow field, Darcy’s law, and permeability

The CFD simulations provide the flow field from tortu-
ous and capillary pores which form the basis for evaluating
their effective hydraulic characteristics. The periodic nature
of pores used here, allow its single pore unit to outline
the representative elementary volume, which may, however,
need redefinition for including heterogeneity found at a larger
length scales. Evaluation of the computed flow fields at pore
scale allows us to recover Darcy’s law which is similar in ways
to the derivation of Darcy’s law from Navier-Stokes Eqs. (1)
and (2). In this study, the computed relationship between
pressure gradient and volumetric flux from the outlet, which
follows Darcy’s Law, is used to calculate the permeability, k
[43,44]. Darcy’s Law is

Q

A
= q = − k

μ
∇p, (5)

where, Q is volumetric flux (m3/s) obtained by integrating the
magnitude of u, i.e., U over the outlet boundary, A(m2) is the
area of cross section of the outlet boundary, q is Darcy flux
(m/s), and k(m2) is the permeability. Similar to q, the average
U, i.e., Ua is = Q/A.
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FIG. 2. Orthogonal cross-sectional slices of computed velocity fields from a tortuous pore (d = 1μm) showing evolution of velocity within
a pore as a results of no-slip to slip boundary conditions (a)–(c), and (d) computed velocity profiles from a half section of an axis symmetric
capillary pore (d = 1μm) as a result of different slip lengths (b).

The computed steady-state flow fields from the diverging-
converging tortuous pore (d = 10−6 m) show differences in
how velocity gets enhanced within different sections of a pore
as a result of changes in the boundary slip [Figs. 2(a)–2(c)].
With an increase in boundary slip, i.e., the change from a no-
slip to a stepwise increase everywhere on the boundary/wall,
velocity enhancement gets focused near pore throats with
negligible changes in the pore body [i.e., wider region away
from pore throats; Figs. 2(a)–2(c)]. For example, near the
boundary of pore throats with d = 10−6 m, an increase in
velocity of up to 102 (m/s) can be found related to 102 (m)
increase in slip length, whereas negligible changes in velocity
are found within the dead-end part of the pore [Figs. 2(a)–
2(c)].

In comparison, the computed steady-state flow fields from
the capillary pore (d = 10−6 m) show a relatively consistent
velocity enhancement everywhere with an increase in the
boundary slip. While velocity enhancement at the boundary of
a capillary pore is always proportional to the slip length, ve-
locity enhancement in the middle of capillary pore transitions
from a negligible change during partial or small boundary slip
(i.e., b � 10−8 m) to a change proportional to the change in
boundary slip when it is on the same order as the diameter
of the capillary pore. The latter can be better observed from
Fig. 2(d), which shows velocity profiles for different slip
lengths b from a half-section of the capillary pore. With an
increase in boundary slip, velocity profiles transform from a
large velocity variation in the parabolic profile to negligible
variations, which appears as a characteristic plug-flow profile
in a semilog plot [Fig. 2(d)].

These observed variations of how and why velocity
changes differently within a pore as a function of pore geome-
try and boundary slip, and how such velocity variations within
a pore gets manifested as the effective hydraulic behavior
of porous media are the main objectives of investigations
presented in this paper.

B. Evolution of effective hydraulic behavior with boundary slip

To evaluate the variations in effective permeability of
straight tube capillary and diverging-converging tortuous pore
geometries, the results are presented in two different ways,
first, variations in permeability are presented as a function of

pore throats sizes (Fig. 3), and later, as a function of slip length
(Fig. 4).

1. Capillary pores

Computed permeability, k as a function of pore throat
(d) with the no-slip condition in capillary pores, follows the
Hagen-Poiseuille law, i.e., k ∝ d2 [Fig. 3(a)]. With a small
increase in boundary slip from the no-slip condition (i.e.,
when b < 10−6 m), the pore throats with the smallest sizes
exhibit the most important deviation from k ∝ d2, however,
for larger sizes this deviation declines and the permeability
tends to follow the Hagen-Poiseuille law [Fig. 3(a)]. For flows
with a large boundary slip (i.e., b > 10−5 m), the variations in
k are found to be a linear function of d for all size pore throats,
i.e., the exponent 2 in Hagen-Poiseuille law (k ∝ d2) is found
to change from 2 to 1 [Fig. 3(a)].

From another perspective [Fig. 4(a)], the computed per-
meability, k as a function of boundary slip b (i.e., from b =
0 → b = 10−9 m to b = 10−4 m) for various size pore throats
shows that there are negligible changes with a small increase
in the boundary slip from the no-slip condition (i.e., when
b � d), which, however, transition to a linear increase in
the permeability, i.e., k ∝ b1 for a relatively large increase
in the boundary slip (i.e., when b � d). This transition from
negligible changes to a linear increase is found to appear when
the magnitude of slip length is on the same order as the size
of pore throats, i.e., when b ≈ d [Fig. 4(a)].

2. Diverging-converging tortuous pores

With the no-slip condition, the permeability variation as
a function of pore-throat diameter d of tortuous pores, is
also found to follow the Hagen-Poiseuille law, i.e., k ∝
d2 [Fig. 3(b)]. And, with small increases in boundary slip
(i.e., when b < 10−6 m), similar to findings from capillary
pores, the pore throats with the smallest sizes exhibit the
most important deviation from k ∝ d2, however, for larger
pore-throat sizes this deviation declines and the permeability
tends to follow the Hagen-Poiseuille law [Fig. 3(b)]. Unlike
capillary pores, for boundary conditions with a larger slip
length, (i.e., when b > 10−5 m), the permeability variation
with pore-throat diameter tend to once again follow the
Hagen-Poiseuille law, i.e., k ∝ d2 [Fig. 3(b)]. This indicates
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FIG. 3. Average velocity (Ua) and permeability (k) of various
size of pore throats (d) as a function of boundary slip, i.e., slip length,
(b), from capillary (a) and tortuous (b) pores.

that Hagen-Poiseuille law holds for a very large boundary
slip in tortuous pores. In contrast, for a system of capillary
pores, the permeability with a large boundary slip follows the
dependence k ∝ d1 [Fig. 3(a)].

From another perspective [Fig. 4(b)], the computed perme-
ability, k of diverging-converging tortuous pores as a function
of boundary slip b for various size pore throats, also show
that there are negligible changes with a small increase in
the boundary slip from the no-slip condition (i.e., when b �
d). However, with a larger boundary slip (i.e., when b �
d), unlike the unlimited linear increase in flow found from
capillary pores, the linear increase in permeability of tortuous
pores is found to get limited marked by an asymptote in k
[Fig. 4(b)]. The boundary slip condition around which the
asymptote in k occurs is found to be dependent on the size

FIG. 4. Average velocity, Ua and permeability, (k) as a function
of boundary slip, (b) for various size pore throats (d), of capillary (a)
and tortuous (b) pore domains.

of pore throats [Fig. 4(b)]. This asymptote which takes on
the S-type characteristics curve in log space marks a limited
nature of velocity enhancement found from the diverging-
converging tortuous pore geometry as opposed to an unlimited
velocity enhancement found from the straight tube capillary
type models.

C. Characteristics of flow enhancement due to boundary slip

The impact of an increase in boundary slip from the no-
slip condition generally results in an increase in the average
velocity or the permeability. The net increase in permeabil-
ity, i.e., the change in permeability relative to when the
no-slip boundary condition is considered, is referred to as
the flow enhancement (E). The flow enhancement can be
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evaluated in the form of arelative factor or a fractional factor
defined as

E1 =
k(slip) − k(no−slip)

k(no−slip)
, (6)

E2 =
k(slip)

k(no−slip)
, (7)

where k(no−slip)(m2) and k(slip)(m2) is permeability with the
no-slip and a slip boundary condition, respectively. E1 and
E2 are the relative and fractional flow enhancement factors,
respectively. Here, E2 is specifically defined to contrast the
results from this manuscript with that of in literature. How-
ever, E1 may be a more informative metric to examine flow
enhancement. Both E1 and E2 distinguish unique characteris-
tics of the emergent flow enhancement behavior, and thus, the
usage of the two is justified.

E1 and E2 allow us to evaluate the magnitude of change in
permeability as a result of an increase in boundary slip from
the no-slip condition. The usage of E1 over the conventional
E2 can better examine the flow enhancement due to partial
boundary slip. To illustrate the usage of E1, 2D and 3D maps
in Figs. 5 and 6 show how the flow enhancement varies as a
function of b and d for capillary and tortuous pores, respec-
tively. E1 and E2 are further used to present the normalized
flow enhancement to size variations in pore-throat diameter,
i.e., a dimensionless factor b/d is used to evaluate the net flow
enhancement from both the capillary pores (Fig. 7) and the
diverging-converging tortuous pores (Fig. 8).

1. Capillary pores

In capillary pores, the flow enhancement as evaluated by
the factor, E1, is found to increase linearly in an unlimited
manner with an increase in the boundary slip b [Figs. 5(a)].
This can be more clearly noted from the 3D planar surface in
Fig. 6(a), and the plot of E1 for a few different size capillary
pores [Fig. 7(a)]. This linear relationship found from capillary
pores indicates that the flow enhancement can be significantly
large, i.e., up to several orders of magnitude; for example,
an increase in E1 > 103 can be found for a geometry, with
d = 10−7 m and b > 10−5 m (Figs. 5 and 6). However, how
much flow enhancement can occur for a given boundary slip
depends on the size of capillary pore throats [Figs. 7(a) and
7(b)]. The larger size pore throats (i.e., when d � b) exhibit
an insignificant amount of flow enhancement that tends to
become significant when the boundary slip is on the same
order or greater than the size of pore throats (i.e., when
b � d). Note that the usage of E2 better distinguishes the
differences in the magnitude of flow enhancement with lager
boundary slips, whereas the usage of E1 can better distinguish
the differences between smaller flow enhancements related to
smaller boundary slips [Figs. 7(a) and 7(b)].

The net change in flow enhancement factors both due to
boundary slip and the size of pore throats can be further
evaluated by using a dimensionless parameter b/d . The usage
of b/d shows that the relative flow enhancement, E1 is a linear
function of b/d , and the fractional flow enhancement factor,
E2 is insignificant for b/d < 10−1, which tend to become
significant and increase linearly for b/d > 10−1 [Figs. 7(c)

FIG. 5. 2D maps of the flow enhancement factor, E1 as a function
of pore-throat size, d and slip length, b from capillary (a) and
tortuous (b) pores.

and 7(d)]. In summary, the evaluation of flow enhancements
from the straight tube geometry capillary pores signifies that
the usage of capillary tube models will result in a prediction
of flow enhancement or pressure change, which is directly
proportional to the amount of boundary slip, i.e., a larger
boundary slip will always lead to a larger flow enhancement
or a larger pressure loss.

2. Diverging-converging tortuous pores

The flow enhancement factor, E1 from diverging-
converging tortuous pores, similar to capillary pores, also
shows a linear increase with an increase in boundary slip
when b < d [Fig. 8(a)]. However, this linear relationship,
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FIG. 6. 3D maps of the flow enhancement factor, E1 showing a
planar or linear flow enhancement from capillary pores (a) relative
to the limiting flow enhancement behavior found from the tortuous
pores (b).

unlike its unlimited character observed from capillary pores, is
found to get limited marked by an asymptote for flows with a
larger boundary slip relative to the size of pore throats, i.e.,
when b > d [Figs. 6(b) and 8(a)]. On the other hand, the
fractional flow enhancement factor, E2, similar to capillary
pores, shows insignificant changes when b � d , and which
tend to a linear relationship when b < d to b ∼ d . And, in
contrast to capillary pores and as also noted from E1 of
tortuous pores, this linear relationship gets get limited marked
by an asymptote when b > d . This limited character of the
fractional flow enhancement factor with variations in bound-
ary slip can be observed as the S-type characteristic curve in
Fig. 8(b). This asymptote or the S-type characteristic defines
that the maximum amount of flow enhancement is limited to
101.23 or a factor of 17 for all scenarios considered.

The net change in flow enhancement factors both due to
boundary slip and the size of tortuous pores can also be

evaluated by using a dimensionless parameter b/d . Here, E1

shows that the linear increase tends to asymptote for b/d ∼ 1
and remains unchanged for b/d > 10 [Fig. 8(c). And, similar
to capillary pore, E2 outlines that there is negligible flow
enhancement when b/d < 10−1 and which tend towards a
linear increase for b/d > 10−1. However, as also noted from
E1, the flow enhancement factor, E2 tends to asymptote for
b/d ∼ 1 and remains unchanged for b/d > 10 [Fig. 8(d).
In summary, the flow enhancement factors show that the
geometry of pore and pore throats has a vital control, on how
liquid slip flow manifests as the emergent Darcy flow (Figs. 5
and 6), an aspect that has been overlooked so far.

This study finds that with the representation of pore-scale
porous media by a straight tube capillary geometry as opposed
to a more realistic diverging-converging tortuous pore ge-
ometry, upscaling of related hydraulic parameters associated
with the boundary slip, will contribute to over predicting flow
enhancement, flow rate, and pressure drop by several orders
of magnitude, an aspect critical, for example, for evaluating
the efficiency and integrity of either waste storage or energy
recovery processes from geologic reservoirs. Likewise, this
study may bear implications for many other engineering ap-
plications, for example, evaluation of accurate slip lengths
from tortuous nanomicro channels, hydraulics in corrugated
channels, and design of carbon nanotube (CNT) membranes
for desalinization purposes.

D. Theoretical models to predict flow enhancement due to
boundary slip

Fluid flow in a capillary pore with the no-slip bound-
ary condition is given by the Hagen-Poiseuille (HP)
equation:

QHP = π r4

8 μ

�P

L
, (8)

where, QHP is volumetric flux with the no-slip boundary
condition, r is the radius of the capillary pore. Here, r = d/2
and L is the length of the pore. From Eq. (8), r2/8μ is
k(no−slip) . For a slip boundary condition with a prescribed
slip length (b), fluid flow in a capillary pore is given by a
modification to the Hagen-Poiseuille equation [45]:

Qslip = QHP

(
1 + 4

b

r

)
, (9)

where Qslip is volumetric flux with a slip boundary condition
of slip length, b. Using Eqs. (8) and (9) in combination
with the definition of Eqs. (6) and (7), respectively, flow
enhancement factors E1P and E2P can be calculated as

E1P = 4
b

r
, (10)

E2P = 1 + 4
b

r
, (11)

where, the subscript P in E1P and E2P refers to the capillary
pore or the pipe geometry and the subscripts 1 and 2 refer to
the type of flow enhancement factor after Eqs. (6) and (7).

Fluid flow in a diverging-converging tortuous pore, i.e.,
flow through a system of pore-throat and pore body with a
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FIG. 7. Flow enhancement computed data (E1 and E2) from straight tube capillary pores and the plots of theoretical Eqs. (10) and (11)
which can predict flow enhancement due to boundary slip for various size (d) pore throats as a function of slip length b (a) and (b), and as
a function of nondimensional parameter b/d (c) and (d). Note: the frequency of total number of domains with various pore-throat sizes have
been subsampled to present clarity in figures.

circular cross-section and with the no-slip boundary condition
is given after [46,47] as

Qno−slip = �P

(
8μL

π r4
+ C μ

r3

)−1

, (12)

where, Qno−slip is volumetric flux at the outlet boundary of a
diverging-converging tortuous pore and C is a constant with

a value of 3 for small length pore throats [46,48]. Note that
Eq. (12) was derived by Weissberg [46] for the sharp diverging
geometries also known as the end-effects of tubes and can be
used here due to the continuity Eq. (2) and mirror symmetry of
the diverging to converging pore geometry (Fig. 1). Fluid flow
with the boundary slip from a diverging-converging tortuous
pore, i.e., a geometry that has a thin pore-throat that diverges
to a larger pore body with a circular cross-section can be
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FIG. 8. Flow enhancement computed data (E1 and E2) from diverging-converging tortuous pores and the plots of theoretical Eqs. (14) and
(15), which can predict flow enhancement due to boundary slip for various size (d) pore throats as a function of slip length b (a) and (b), and
as a function of nondimensional parameter b/d (c) and (d). Note: the frequency of total number of domains with various pore-throat sizes have
been subsampled to present clarity in figures.

calculated after [49] as

Qslip = �P

(
8μL

4πr3b + πr4
+ Cμ

r3

)−1

, (13)

where Qslip is the volumetric flux of a diverging-converging
tortuous pore with a slip boundary condition defined by the
slip length b. C is the constant same as in Eq. (12). Using the
Eqs. (12) and (13) in combination to the definition of Eqs. (6)

and (7), respectively, flow enhancement parameters E1 and E2

for the diverging-converging tortuous pore, i.e., E1T and E2T

can be calculated as

E1T =
(

1

4 b
r

+ Cπ

8 L
r

)−1

, (14)

E2T =
(

1

1 + 4 b
r

+ Cπ

8 L
r

)−1

, (15)
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wherethe subscript T in E1T and E2T refers to the diverging-
converging tortuous geometry and the subscripts 1 and 2 refer
to the type of flow enhancement factor after Eqs. (6) and (7).

The theoretical Eqs. (10) and (11) can be used to predict the
flow enhancement factors E1P and E2P, respectively. Figure 7
shows the plot of computed E1 and E2 from the straight tube
capillary pore geometry for a variety of pore diameters. Here,
the theoretical Eqs. (10) and (11) match with computed E1

and E2 shown for a variety of pore diameters [Figs. 7(a) and
7(b)], and likewise, for the case of dimensionless length b/d
[Figs. 7(c) and 7(d)].

Similarly, the theoretical Eqs. (14) and (15) can be used
to predict the flow enhancement factors E1T and E2T , respec-
tively for the diverging-converging tortuous domains. Figure
8 shows the plot of computed E1 and E2 from the tortuous
geometries for a variety of pore sizes. And, the theoretical
Eqs. (14) and (15) fit well to the computed E1 and E2 from a
variety of pore sizes [Figs. 8(a) and 8(b)], and likewise, for the
case of dimensionless length b/d [Fig. 8(c) and 8(d)]. Here,
the match of theoretical Eqs. (14) and (15) to computed flow
enhancement factors is achieved with a value of C = 3.

IV. ROLE OF DRAG FORCES AND ENERGY DISSIPATION
ON FLOW ENHANCEMENT

Drag or resistive forces offered by the pore wall boundaries
are manifested in the permeability of the media [50], and
therefore, integral to flow enhancement factors, E1 and E2.
Likewise, fluid deformation during its flow due to viscous de-
formation and structural deformation related to fluid-structure
interaction, for example, fluid flow in a diverging-converging
pore geometry, contribute to the dissipation of energy. The
combined effects of energy dissipation get manifested as the
permeability of media [51,52], and thus, integral to flow
enhancement factors, E1 and E2 [48]. A detailed investigation
of how and if drag forces and energy dissipation may control
and explain for the observed differences in flow enhancement
between the straight tube capillary pores and the diverging-
converging tortuous pores is presented in subsequent sections.

A. Friction drag and form drag

The two components of the total drag force offered by a
pore boundary to fluid flow are friction drag (Fτ ) and form
drag (FN). These forces are also known as viscous drag and
pressure drag, respectively, however, the former terminology
is used in this manuscript. The friction drag arises from the
shear stress caused by the moving fluid at the boundary and
offers resistance to flow tangent to the boundary. The form
drag arises due to fluid pressure and offers resistance to flow
normal to the boundary. For fluid flow in the x direction, the
x component of local form drag and local friction drag in
cylindrical coordinates are computed as

fN,x = −[(P I) · nx], (16)

fτ,x = μ

[(
∂u

∂x
+ ∂v

∂r

)
· nr + 2

(
∂v

∂x

)
· nx

]
, (17)

where I, is the identity matrix, u and v are velocities in r
direction and x direction, respectively, and nr and nx are unit
normal vectors in the r and x directions, respectively. Note

that as per the convention in this study, friction drag on the
pore boundary yields negative values in the +x flow direction,
and vice versa.

For axis-symmetric pore geometries, the net amount of
form drag (FN) for a given pore geometry is calculated by
integrating the x component of the local form drag over the
surface boundary of the pore domain [i.e., Wall in Fig. 1(b)]
as

FN = ∣∣∫ fN,x · n dA
∣∣, (18)

where n is a unit vector normal to pore boundaries. Similarly,
the net amount of friction drag, Fτ is calculated by integrating
the x omponent of the local friction drag over the entire
surface of the pore body [i.e., Wall in Fig. 1(b)] as

Fτ = ∣∣∫ fτ,x · t dA
∣∣, (19)

where t is the unit vector tangent to pore boundaries. Note
that, to examine the relatively large differences in friction
drag in log space, the magnitude of Fτ is calculated, i.e., its
absolute value, which, however, by definition is a −ve value,
i.e., a force in the opposite direction to flow, but presented as
a +ve value.

1. Capillary pores

The straight tube geometry of capillary pores contributes to
a linear pressure drop between the inlet and outlet boundaries.
Therefore, pressure changes only in the direction parallel to
the main flow direction (i.e., x direction), and it remains
constant in the direction perpendicular to the x direction or
normal to the wall boundary. This constant pressure yields a
zero pressure gradient normal to the boundaries, which results
in a zero form drag (FN) for all boundary slip conditions.
Therefore, the geometry of the straight tube of capillary pores
offers no form drag irrespective of either a boundary slip or the
no-slip condition. Likewise, the straight tube geometry results
in a constant velocity in the main flow direction, as such
the gradient in velocity perpendicular to the wall boundary
is also constant. This constant gradient in velocity results in
a constant friction drag (Fτ ) for all boundary slip conditions
[Fig. 9(c)].

2. Diverging-converging tortuous pores

The computed friction drag (Fτ ) from the tortuous pore do-
mains shows a net growth with an increment in the boundary
slip, albeit this growth is very small [Figs. 9(c) and 9(d)].
With an increment in boundary slip, the growth in velocity
tends to focus in the vicinity of pore throats, which results in
a small growth in the net friction drag offered by the entire
pore domain [Fig. 9(c)].

Likewise, a net growth in the form drag (FN) is found from
the tortuous pores [Figs. 9(a) and 9(b)]. While the magnitude
of form drag is smaller than the magnitude of friction drag, the
amount of growth in form drag due to an increment in bound-
ary slip is larger than the amount of growth in friction drag.
For example, the growth in form drag is ∼20% more than
the growth in friction drag for a pore-throat size, d = 10−6 m
[Fig. 9(c)]. In the vicinity of the diverging part of pores, the
streamlines diverge towards the widest section of pore-body,
which is a result of local pressure dissipation balanced by
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FIG. 9. Net changes in form drag, FN(N) and friction drag, Fτ (N)
due to an increase in slip length b at boundaries of tortuous pore
domains of various pore-throat sizes d . Note, for a better display,
(a) and (c) are semilog plots of forces also included in (b) and (d),
respectively. Only (c) shows friction drag from the capillary pore.

the form drag on the boundary. And, with an increment in
boundary slip, pressure dissipation expands towards the wider
section of pore space, which leads to growth in the net amount
of form drag. Using the integration of diverging streamlines
from a geometry, similar to that considered in this study,
Weissberg [46] derived the theoretical Eq. (12) to predict
the pressure drop for a diverging pore geometry, and using
Eq. (12), Sisan [49] derived the Eq. (13) to predict the related
pressure drop due to the boundary slip. The occurrence of
form drag in a diverging-converging geometry signifies ad-
ditional pressure loss which is integral to theory, i.e., integral
to Eq. (12), and growth in form drag with an increment in
slip flows implies an expansion in pressure loss which gets
manifested as the asymptote in the flow enhancement factors.

B. Energy dissipation rate, ε

Viscous fluids are subject to loss of mechanical energy
or energy dissipation due to viscous stresses in a flowing
fluid. The energy dissipation or viscous losses are ampli-
fied when the fluid deviates from a straight flowing path,
for example, when it flows around a structure or through
a diverging-converging pore channel. Such a dissipation of
energy is known to manifest as the permeability of porous
media [51,52], and therefore, contribute to flow enhancement
factors, E1 and E2. To examine if and how energy dissipation
within pores may explain for the observed asymptote in the
flow enhancement factor of diverging-converging tortuous
pore geometries, energy dissipation rate (ε) is computed from
pore domains with the no-slip and various slip boundary
conditions as

ε = τ : ∇u, (20)

where τ is stress tensor and ∇u is strain rate tensor.

1. Capillary pores

The linear pressure drop along the length of capillary pores
results in a constant velocity profile, as such, the component of
the velocity gradient orthogonal to the central line of the cap-
illary pores remains constant. Likewise, the associated shear
stress remains constant, both of which result in a constant
amount of energy dissipation rate (ε) from the straight tube
capillary pores (Fig. 10). Moreover, this energy dissipation
rate (ε) is found to remain constant both in its distribution and
its magnitude with an increase in boundary slip [Figs. 10(i)–
10(l)].

2. Diverging-converging tortuous pore

The computed energy dissipation rate (ε) from the tortuous
pore with the no-slip boundary condition shows that it is pro-
nounced in the vicinity of pore throats (i.e., the narrow region
around the label d in Figs. 1(b) and 10(a), and diminishes
away from pore throats towards the pore body [i.e., the wider
region away from pore throats; Fig. 10(a)]. And, with an
increase in boundary slip (i.e., when b > 0), the distribution
of energy dissipation with a partial slip (i.e., when b � d)
remains similar to the case of the no-slip boundary condition
[Fig. 10(b)]. However, when boundary slip is on the order of
the size of pore throats (i.e., when b ∼ d), the distribution of
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FIG. 10. (a)–(h) Energy dissipation rate ε(W m−3) showing an increase in energy dissipation from 2D half sections of tortuous pores of
d = 1μm (notice its location highlighted by dashed red rectangle in the inset), in comparison to no change in energy dissipation found from
the capillary pore (i)–(l).

energy dissipation rate (ε) shows a focused increase in the
region of the pore body [Figs. 10(c)–10(e)]. This transition
in the distribution of energy dissipation rate (ε) from pore
throat to pore body is found to get further magnified within
the pore-body [Figs. 10(f) and 10(h)] for slip flow scenarios
with a large boundary slip, i.e., when b � d .

The increase in energy dissipation due to an increase in
boundary slip of a diverging-converging tortuous pore is man-
ifested in the emergent Darcy flow behavior as a limitation to
the flow enhancement marked by an asymptote in E1 and E2

[Figs. 6(b) and 8]. The straight tube capillary geometry offers
no such change in energy dissipation due to an increase in
boundary slip, and thus, contributes to an unlimited increase
in flow enhancement [Figs. 6(a) and 7].

C. Discussions

This study determines how pore geometry (i.e., diverging-
converging tortuous pore vs capillary pore) plays a vital
role in contributing to how variations in boundary slip of
liquid flow, manifest in enhancing the flow or the perme-
ability (k). It is found that with an increase in boundary
slip from the no-slip condition, there is an unlimited lin-
ear increase in flow enhancement, e.g., as shown by the
factors, E1 and E2 which can be attributed to the straight
tube geometry of capillary pores. This unlimited nature of
increase is, however, found to get limited within diverging-
converging tortuous pore geometries. This limited increase
is defined by an asymptote in the flow enhancement factors,
E1 and E2. Similar asymptote in the flow enhancement factor
or pressure loss has also been noted from computational
studies on CNT [48], and investigations of end effects of
nanochannels [49,53,54].

The physical mechanisms that are likely accountable for
the asymptote in the flow enhancement of the diverging-
converging tortuous pore geometry are examined using drag
forces and energy dissipation rate. The nature of a straight
tube in capillary pores results in a nil amount of form drag
and a friction drag which remains unchanged with an increase

in boundary slip. Similarly, the straight tube geometry of
capillary pores offers no additional fluid deformation as such
the energy dissipation is only due to the viscosity, and which
remains unchanged with the boundary condition of either a
no-slip or a boundary slip. Thus, the very nature of the straight
tube geometry of capillary pores is found to offer no additional
resistance to an increase in flow due to an increase in boundary
slip, which manifests as the unlimited linear increase in the
flow enhancement factors, E1 and E2.

In contrast, the diverging-converging tortuous pore geom-
etry offers an increase in both the form drag and the friction
drag related to an increase in boundary slip. Also, the energy
dissipation rate is found to increases with an increase in the
boundary slip. Thus, the very nature of diverging-converging
tortuous pore geometry offers an increase in both the drag
forces and energy dissipation rate, combined effect of which
offer resistance to flow, and thus, limits or contribute to the
asymptote in the flow enhancement factors, E1 and E2.

Finally, this study presents a set of theoretical models based
on the works of Weissberg [46] and Sisan [49] that can be used
to predict the flow enhancement factors, E1 and E2 both for a
straight tube capillary geometry and a diverging-converging
tortuous pore geometry as a function of boundary slip and
spatial-scale of pore throats.

This study lays emphasis on how the geometry of pores
plays a vital role in the emergent Darcy flow behavior as a
result of boundary slip. The differences in the flow enhance-
ment due to boundary slip are found to be over several orders
of magnitude between when considering a more realistic,
albeit synthetically designed, diverging-converging tortuous
pore geometry in contrast to a straight tube capillary pore
geometry. The majority of studies to date have utilized straight
tube pore geometries for such investigations, for example, the
usage of pore-network modeling, as such, our ability to predict
pressure loss or flow enhancement or apparent permeability
may be off by several orders of magnitude. These findings
may be relevant to the applications of waste storage or energy
recovery processes, e.g., waste fluid injection for storage
or recovery of hydrocarbons from geologic reservoirs, and
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likewise for many engineering applications, e.g., hydraulics in
corrugated channels or design of CNT filters for desalinization
purposes.

V. SUMMARY

(a) Fundamental pore-scale investigations of how pore
geometry and boundary slip conditions contribute to the emer-
gent Darcy flow and flow enhancement factors, E1 and E2 are
presented. Diverging-converging tortuous pores in contrast to
straight tube capillary pores are designed to include a large
variation in pore-throat sizes (i.e., 10−7 m to 10−4 m), found
in geologic porous media. Computational fluid dynamics sim-
ulations are conducted for a sensitivity study to examine the
effect of a large variation in boundary slip reported in the
literature.

(b) Results show that with a systematic increase in bound-
ary slip from the no-slip condition, pore-throat size, and pore
geometry contribute to unique and systematic modifications
with differences over several orders of magnitude in the
emergent Darcy flow behavior and flow enhancement factors,
E1 and E2. From straight tube capillary pores, flow enhance-
ment factors, E1 and E2 are found to increase linearly in an
unlimited manner with an increase in the boundary slip. In
contrast, E1 and E2 from diverging-converging tortuous pores
show a limited flow enhancement marked by an asymptote.
The linear unlimited relationship from straight tube capillary
pores indicate that the flow enhancement can be up to several
orders of magnitude, whereas, the S-type characteristics or the
asymptote, limits the maximum flow enhancement to 101.23 or
a factor of 17 in diverging-converging tortuous pores.

(c) This study finds that the flow enhancement due to
boundary slip is always lower in a diverging-converging tor-
tuous pore geometry relative to a straight tube capillary pore
geometry. In addition, pore-throat sizes have a vital control
over how a given slip length enhances effective flow or E1

and E2. Larger pore throats negligibly enhance flow, which,
however, increasingly becomes significant for the micron size
pore throats and smaller.

(d) The limited nature of flow enhancement marked by
an asymptote for flows when boundary slip is proportional to
the size of pore throats defines how slip flows manifest as an

emergent Darcy flow behavior from a diverging-converging
tortuous porous media, a finding which is consistent with pre-
vious studies on end effects of carbon nanotube membranes
[48,49,53,54].

(e) The physical mechanisms which are likely account-
able for the asymptote in the flow enhancement found from
diverging-converging tortuous pores are examined using drag
forces and energy dissipation rate. The straight tube geometry
of capillary pores is found to offer a nil amount of form
drag, and both the friction drag and the energy dissipation rate
are found to be constant with changes in the boundary slip.
Thus, capillary pores offer no change in resistance to flow
which contributes to a linear or an unlimited increase in the
flow enhancement. In contrast, the very nature of diverging-
converging tortuous pore geometry offers an increase in drag
forces and energy dissipation rate, i.e., an increase in resis-
tance to flow, which limits or contributes to the asymptote in
the flow enhancement.

(f) A set of theoretical models based on the works of
Weissberg [46] and Sisan [49] are presented, which can be
used to predict the flow enhancement factors, E1 and E2

both for a straight tube capillary geometry and a diverging-
converging tortuous pore geometry as a function of boundary
slip and spatial-scale.

(g) This study lays emphasis on how the geometry of
pores plays a vital role in the emergent Darcy flow behavior
as a result of the boundary slip. The differences in the flow
enhancement between tortuous and capillary pore geometry
are found to be over several orders of magnitude, which
likely has direct implications for evaluating hydrocarbon re-
covery or pressure loss during fluid injection or recovery
from low permeability reservoirs. Likewise, this study may
bear implications for many other engineering applications,
e.g., hydraulics in corrugated channels or design of carbon
nanotube CNTmembranes for desalinization purposes.
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