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Crack path selection in orientationally ordered composites
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While cracks in isotropic homogeneous materials propagate straight, perpendicularly to the tensile axis, cracks
in natural and synthetic composites deflect from a straight path, often increasing the toughness of the material.
Here we combine experiments and simulations to identify materials properties that predict whether cracks
propagate straight or kink on a macroscale larger than the composite microstructure. Those properties include the
anisotropy of the fracture energy, which we vary several fold by increasing the volume fraction of orientationally
ordered alumina (Al2O3) platelets inside a polymer matrix, and a microstructure-dependent process zone size
that is found to modulate the additional stabilizing or destabilizing effect of the nonsingular stress acting parallel
to the crack. Those properties predict the existence of an anisotropy threshold for crack kinking and explain the
surprisingly strong dependence of this threshold on sample geometry and load distribution.
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I. INTRODUCTION

In natural and synthetic composites consisting of hard par-
ticles within a soft matrix, crack path prediction is a complex,
intrinsically multiscale, problem. Accurate prediction of crack
paths, especially the existence of kinking, provides insight
into the properties of fracture energy and strength. Therefore,
understanding how cracks propagate at the scale of the hard
particles (microscale) and at the scale much larger than the
particles (macroscale) are both essential. On the microscale,
cracks can either penetrate or be deflected by the hard particles
depending on the elastic and fracture properties of the two
phases [1–3]. Such microscale deflection has been hypothe-
sized to provide an apparent toughening mechanism in both
natural [4–7] and biomimetic [7,8] composites by greatly
increasing the fracture surface area and the required energy
to fracture the material. Crack deflection at the microscale is
considered well understood. Microscale deflection can poten-
tially, but not always, lead to macroscale crack deflection even
in pure tensile (mode I) loading configurations, which has
been studied extensively in both natural [9,10] and biomimetic
composites [7,11]. For example, macroscale kinking occurs
in healthy bone for cracks perpendicular to the collagen fiber
direction, while straight crack propagation has been seen
in pathological bone exhibiting disordered collagen fibers
[10]. Other microstructurally ordered natural composites that
have impressive fracture energy and macroscale crack kink-
ing include seashells [12–14], wood [15,16], dental enamel
[17], and rock [18,19]. While these observations suggest
that macroscale crack kinking may result from microscale
alignment, other structural heterogeneities such as modulus
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variations and porosities in natural composites may also con-
tribute to kinking [9].

In synthetic composites, in which other heterogeneities
can be minimized, microsized particles or fibers are added
to concrete [20], ceramics [21,22], and polymers [23] to
increase toughness. The particles or fibers in synthetic com-
posites are often not arranged at the microstructural level
as they are in natural materials and can show crack kink-
ing [9,13] as well as straight crack propagation [10]. When
the microstructure is well aligned, such as in freeze-casted
nacre-like alumina (Al2O3) samples, and subjected to notched
three-point bending, crack kinking occurs when the crack
direction is perpendicular to the microstructure orientation
[24]. Three-dimensional (3D) printed composites have also
shown crack kinking with both aligned microstructure [25]
and macrostructures [7].

Previous experiments on natural and synthetic composites
have explored the influence of anisotropy on crack path,
where they have found that crack deflection depends on
fracture energy anisotropy, the direction of the crack relative
to the aligned microstructure, and the volume fraction of
the particles [26]. These studies have developed regression
models to predict the kink angle [26], estimated a critical
anisotropy ratio for crack kinking [27], and developed a
geometric adjustment factor for samples with fiber direction
perpendicular to the crack direction [26]. In the present work,
we use a rather unique composite system that allows us to
vary the fracture energy anisotropy several fold while keeping
the elastic properties nearly isotropic. Therefore, we are able
to investigate the effect of the fracture energy anisotropy
on crack paths on a macroscale (i.e., with both the fracture
energy and the crack paths measured on a sample scale much
larger than the composite microstructure). This is achieved by
leveraging magnetic alignment to produce highly oriented and
homogeneous alumina microstructures within photocurable
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polymers. By conducting mode I tensile testing of notched
specimens with these composites in different geometries that
promote or suppress kinking, we are able to quantify ex-
perimentally the fracture energy anisotropy and, at the same
time, to demonstrate a surprisingly strong effect of sample
geometry on crack-kinking behavior.

Furthermore, to explain our experimental findings, we use
the phase-field approach for fracture [28–30]. This method
has been validated by theoretical analyses [28,31] and com-
parisons with observed crack paths in benchmark geometries
[32]. It has been used to model a wide range of fracture
phenomena in diverse applications including thin-film fracture
[33], thermal fracture [34], mixed-mode fracture [35], chemo-
mechanical fracture [36–40], dynamic fracture [35,41,42],
and fracture in colloidal systems [43], as well as ductile
fracture [44–47] and fatigue crack growth [48–50]. Directly
relevant to the present study, the phase-field method has also
been used to model brittle fracture with an anisotropic frac-
ture energy [31,51,52] and fracture of composites at micro-
[53–55] and macro- [56,57] scales. Here we perform phase-
field simulations that demonstrate the existence of a transition
from straight to kinked crack propagation on a macroscale
with increasing magnitude of the fracture energy anisotropy
in good quantitative agreement with experimental findings.
Simulations also reproduce the surprisingly strong effect of
sample geometry on crack-kinking behavior for values of the
process zone size in the phase-field model estimated from
experimentally measured mechanical properties. We explain
quantitatively this effect in terms of the nonsingular T stress
acting parallel to the crack. While the T stress has been found
to influence crack path selection in isotropic media such as
PMMA [58], its effect has so far been neglected in theoretical
studies of crack paths in anisotropic media [31,51,52]. Here
we show that the dependence of crack-kinking behavior on
both the anisotropy of the fracture energy and sample geom-
etry can be quantitatively predicted using existing analytical
predictions for the energy release rate G at the tip of a short
kinked extension of a preexistent crack in mode I loading,
which take into account the contributions of both the singular
stresses and the T stress [59].

When the T stress is neglected, as in previous studies
[31,51], G depends only on the mode I stress intensity factor
KI and the kink angle θ , which together determine the mode
I and mode II stress intensity factors at the tip of the kinked
crack, kI and kII , respectively, and hence the energy release
rate G = (k2

I + k2
II )/E , where E is the elastic modulus. When

the T stress is included, G depends additionally on the length
s of the kinked crack extension through the ratio T

√
s/KI

of nonsingular and singular stress fields. Hence, G depends
additionally on both the sample geometry and loading config-
uration, which determine the magnitude of T , and the size ξ

of the process zone around the crack tip where linear elasticity
breaks down, which sets a natural length scale for s. Remark-
ably, we find that computing G with the simple choice s =
ξ predicts quantitatively well crack-kinking behavior in the
experiments, where ξ is estimated from measured mechanical
properties, and in the phase-field simulations where ξ is a key
input parameter together with the fracture energy anisotropy.
The combined experimental and numerical results provide a
comprehensive understanding of the combined effects of frac-

ture energy anisotropy and sample geometry on macroscale
crack paths in anisotropic composites.

II. MATERIALS AND METHODS

A. Preparation of oriented alumina-reinforced polymer
matrix composites

For the experiments, we used composites with varying vol-
ume fraction fv of uniformly dispersed micron-size alumina
platelets embedded in a polymeric matrix that exhibited little
plastic deformation. Platelets were dispersed within uncured
polymeric resin and then were forced to orient in a common
plane by applying a magnetic field, thereby producing a
composite with a fine microstructure with long-range orien-
tational order. To produce the polymer matrix, we mixed two
photocurable resins, EBECRYL 230 urethane acrylate and
isobornyl acrylate, with a weight ratio of 1:9 so as to raise the
viscosity and prevent the sedimentation of particles, together
with two photoinitiators (1-hydroxycyclohexyl phenyl ketone
and phenylbis phosphine oxide, 1 wt% each relative to the
resin). To this, magnetized alumina particles were added at
0–10 vol% ( fv = 0–0.07).

To produce the magnetized alumina particles, first, 10 g
of 7.5 μm alumina (Antaria, Australia) microplatelets were
dispersed in 400 ml of deionized water in an Erlenmeyer flask
with a magnetic stirring bar stirring at 500 rpm. A partial
surface coating of superparamagnetic iron oxide nanoparticles
on the surface of these alumina platelets provides an effective
magnetic shell with a volume susceptibility of around 1.33
measured previously [60], which enables fast alignment times
of the platelets within a few seconds. The pH of the water was
maintained as 7 under room temperature to keep a positive
charge on the alumina surface (isoelectric point at pH ∼ 9).
Separately, 375 μl of superparamagnetic iron oxide nanopar-
ticles (SPIONs, EMG 705, Ferrotec, Nashua, NH, USA) were
diluted with 40 ml of deionized water. The diluted dispersion
was added dropwise into the suspension with alumina parti-
cles. The negatively charged SPIONs electrostatically coated
the positively charged alumina microplatelets. Typically, the
adsorption was complete within 24 h as was determined
when the supernatant liquid was transparent. The magnetized
alumina was isolated through vacuum filtration in a Büchner
filter. The particles were dried in an oven at 60 ◦C for at least
12 h and were stored in a desiccator chamber with a humidity
below 10%.

Urethane (EBECRYL 230, Allnex) and isobornyl acrylate
(Sigma-Aldrich) were mixed with a weight ratio of 1:9.
The two resins were made photo-curable by adding both
1-hydroxycyclohexyl phenyl and (Sigma-Aldrich) phenylbis
(2,4,6-trimethylbenzoyl) phosphine oxide (Sigma-Aldrich) as
photo initiators at a weight ratio of 1% each. The resin was
mixed with a spatula and sonicated for 1 min. Magnetized
alumina at defined volume fractions was then added and
dispersed with an ultrasonic probe (Sonifier 250, Branson) for
2 min with output power 40 W and duty cycle of 20%. The
solution was transferred to a sonicate bath for another 20 min
of sonication to further ensure that the magnetized alumina is
homogeneously dispersed in the polymer resin. The sonicated
solution was then spread onto a glass slide with a transfer
pipet and covered by another glass slide with a photomask
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FIG. 1. Composites are fabricated on a glass slide with two glass
spacers at each ends (left) on which resin is spread (middle) and then
covered by another glass slide with a photomask (right). The uncured
sample is placed in a toggling magnetic field either in the x-z plane
for ‖ samples or in the y-z plane for ⊥ samples with the magnetic
field described by Eq. (1) or (2), respectively.

to form a sandwich mold. The glass slide and the photomask
were separated by 0.3-mm-thick glass spacers (see Fig. 1).

The mold was then placed into an oscillating magnetic
field created by solenoids powered with current controllers
that were themselves controlled by a LabVIEW [61] program.
Unlike rodlike magnetic particles that can fully align in a
static magnetic field, full alignment of platelets requires dy-
namic fields. A toggling magnetic field is created through the
superposition of a constant magnetic field in the z direction
and an oscillating magnetic field in either the x direction (for
‖ samples) or the y direction (for ⊥ samples). In particular,
the strength of the magnetic field measured in Oersted [Oe]
for ‖ and ⊥ samples are set according to the following set of
equations:

H‖ = 240 [Oe] sin(ωt )x̂ + 140 [Oe]ẑ, (1)

H⊥ = 240 [Oe] sin(ωt )ŷ + 140 [Oe]ẑ. (2)

Here the angular frequency ω = 2π f with frequency f =
1.5 Hz was chosen to be above a critical frequency found in
previous work [60]. These two configurations create toggling
fields to align the magnetized alumina platelets in the x-z
plane (for ‖ samples) or in the y-z plane (for ⊥ samples).
When this type of toggling field is applied to a suspension
of magnetized alumina platelets, the platelets rotate to align
their two long axes into the plane in which the magnetic field
toggles, thereby minimizing the Gibbs free energy of the sys-
tem. Due to the ultrahigh magnetic response, the magnetized
alumina could be aligned within the x-z plane in 10 s. After
magnetized alumina was assembled, ultraviolet (UV) light
emitted from a UV lamp (6 W, 365 nm) was applied 10 cm
above the sample curing the unmasked area. Samples with
different volume fraction of alumina microplatelets required
different curing time to obtain a testable thickness. Typically,
exposure of 17 s, 23 s, 35 s, 40s, 50 s, 60 s, 70 s, 75 s,
and 90 s was required to cure 0%, 1%, 2%, 3%, 4%, 5%,
6%, 7%, and 10% filled samples, respectively. Next, the mold
was carefully peeled apart leaving the sample stuck to the
glass slide with the photomask. The surface of the sample
was cleaned with isopropanol (Sigma-Aldrich) and was then
flipped over and subjected to the same UV light for 1 min
of short postcuring before it was peeled off by a razor blade
and transferred to a container. For further postcuring, the light
of a digital light processing (DLP) projector placed 25 cm
away from the sample was used to postcure each side of
the sample for 15 min. Afterwards, the notch position was

marked 1 mm ahead of the tip before the sample was placed
in an oven at 90 ◦C. The notch was made by a sharp razor
blade after the sample was heated for 20 min and became
soft. The notched sample was further heat treated in the oven
at 90 ◦C for another 2 h to relax the residual stress that may
have been created at the crack tip during notching. During the
heat treatment, glass slides were used to cover the sample to
prevent warping.

B. Characterization of particle dispersion
in experimental samples

To visualize the microstructure, fabricated composites
were freeze fractured in liquid nitrogen to expose a cross
section without any plastic deformation. These cross sections
were observed in a scanning electron microscope (SEM) as
shown in Fig. 2(a) and Fig. 2(b) for samples with ‖ (0◦) and
⊥ (90◦) platelet orientations, respectively. Investigation of the
microstructure shows that the ceramic platelets are homoge-
neously distributed with average nearest-neighbor separation,
〈r〉, around 11 μm. This interparticle spacing was established
through analytic predictions and graphical analysis. We cal-
culated the pair correlation (radial distribution) function, g(r),
for the platelets by graphically identifying platelet centers in
the 90◦ case using IMAGEJ [62] analysis software supplied by
the NIH, shown in Fig. 2(c). The pair correlation indicates
that there is almost no correlation between particle positions
at long or short range, indicating that there is no clustering
or ordering. In other words, the alumina is randomly and
homogeneously distributed. The mean nearest-neighbor dis-
tance, which cannot be determined by g(r), was estimated
using the analytical expression for homogeneous particle
suspensions 〈r〉 	 (Vp/ fv )1/3 = n−1/3 where Vp is a single
platelet’s volume, and n = fv/Vp is the platelet number den-
sity. To calculate the platelet number density, n, we assumed
that the platelets were disks with volume Vp = πa2t , where
the platelet radius was a = 7.5 μm and thickness was t =
0.3 μm. The analytically calculated nearest-neighbor separa-
tion 〈r〉 is dependent on the platelet volume fraction as shown
in Fig. 2(d). For the 4% volume fraction sample shown in
Fig. 2, the analytic equation predicts roughly 〈r〉 ∼ 11 μm.
To verify this prediction, and since we are unable to use g(r),
we employed a custom algorithm to calculate the average
distance to the nearest neighbor from each particle over a
variable angular resolution. This algorithm is depicted in
Fig. 2(e) in which only the closest particle over a scan across
an angle of α is considered. All of the closest particles are
then averaged over 360◦. This approach produces the results
shown in Fig. 2(f) for different angular resolutions of α. To
avoid edge effects, boundaries are made periodic by arraying
particle positions in x and y. This algorithm indicates the sep-
aration between nearest neighbors is 〈r〉 ∼ 11 μm for 4vol%
indicating a reasonable agreement with the analytical model.

C. Mechanical testing procedures and crack path mapping

Using our composites, we conducted mode I tensile testing
experiments of notched specimens in the two different ge-
ometries depicted in Fig. 3 with platelets oriented at different
angles (α�) defined as the angle between the platelets tangent
in the x-y plane and the horizontal x axis (perpendicular to
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FIG. 2. (a, b) SEM cross sections taken from fractured samples reinforced with 4% alumina oriented ‖ (a) and ⊥ (b), obtained from freeze
fracture to avoid kinking. (c) Plot of the pair correlation (radial distribution) function g(r) vs platelet separation r calculated using graphically
identified platelets in a ⊥ sample. (d) Analytical prediction of nearest-neighbor spacing using the relationship 〈r〉 ∼ n−1/3. (e) Schematic of
the algorithm for locating nearest neighbors with a certain angular resolution α disregarding more distant particles. (f) Results of the custom
algorithm showed a slight dependence on the angular resolution but were in reasonable agreement with the analytical expression for a volume
fraction of 4%.

the tensile direction). For shorthand notation, we refer to
α� = 0 and α� = π/2 as parallel (‖) and perpendicular (⊥)
orientations, respectively. The ‖ orientation has a smaller
fracture energy than the ⊥ orientation and produces straight
propagating cracks for both the short and long sample ge-
ometries. In addition, the short sample geometry suppresses
kinking entirely for the ⊥ orientation. It can therefore be used
to measure experimentally the fracture energy for straight
propagating cracks for both the ‖ and ⊥ orientations and
to quantify the fracture energy anisotropy as described in
Sec. II D. In contrast, the long sample geometry promotes
kinking for the ⊥ orientation and is used to study the effect of
the magnitude of the fracture energy anisotropy on crack path
selection. Mode I loading was produced by symmetrically
gripping the samples at two opposite boundaries as commonly
done in polymeric [63] and biological [64] materials. The
samples were mounted in tensile grips of a universal tester
(Instron-5966 with 500 N load cell) with a data recoding
frequency of 10 Hz. The gripping regions are shown by the
gray areas in Fig. 3. Care was taken to ensure the grip
configuration and clamping force did not play a role in the
measured properties propagating cracks far from the clamps.

During the tensile loading, the bottom clamp remained
fixed while the top clamp raised up at 20 mm/min. For
long samples, the out-of-plane motion was partially restrained
by two glass slides separated by 1 mm. Our experimental
observations (in both short and long samples) verify that the
clamping did not introduce mode II at the crack tip and influ-
enced the kinking only through change of the T stress. In both

phase-field simulations and experiments, small deviations in
the initial kink angle can have either small positive or negative
angles, confirming that there is no bias.

The crack propagation was captured by a mounted phone
camera with a recording ratio of 30 frames/s. After the test, an
image of the cracked sample was taken with a 1 cm grid paper
underneath it, and the crack shape was measured in ImageJ
[62]. The coordinates of the dots were quantified and mapped
into a new coordinate system with the origin located at the
notched front. We calculate the initial kink angle θ∗ as the
linear fit to the first 2 mm of the crack path.

D. Estimation of fracture energy and elastic
modulus anisotropies

To justify use of the isotropic elastic theory later in Sec. III,
we estimate the elastic modulus anisotropy using the stiff-
nesses of the ⊥ and ‖ short samples at given fv . To calculate
the anisotropy of the elastic modulus E⊥/E‖, we used the
experimentally measured load versus displacement curves to
extract the stiffness S of short samples with different platelet
orientations, which generally depends only on the sample
geometry, loading configuration, and elastic properties. We
extract S from a linear fit

f

h
= Sδ, δ < δc, (3)

of the measured load per unit thickness of the sample
f /h, where h is the sample thickness, plotted versus the
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FIG. 3. Schematic representation of (a) long and (b) short sam-
ples. The gray hatched areas were mounted in Instron grips. The
orientation of platelets α� is schematically shown in the long sample.
Parallel (‖) and perpendicular (⊥) orientations correspond to α� = 0
and α� = π/2, respectively.

displacement δ of the top grip up to an upper limit δ <

0.025 mm chosen below the onset of fracture δ = δc for
all samples. We find that, for given fv , the slopes of load
displacement curves for the ⊥ (S⊥) and ‖ (S‖) samples remain
almost constant and equal to each other, which allows us to
approximate the elastic properties as being isotropic for both
⊥ and ‖ samples.

Next, we estimate the fracture energy � by equating the
elastic energy stored in the sample per unit thickness

B(δc) = 1

2

∫ δc

0

f (δ)

h
dδ (4)

at the onset of fracture, δ = δc, with the energy released by the
creation of new fracture surfaces �(Lx − a) when the crack
propagates a distance Lx − a, where a is the initial length of
the crack and Lx is the total length of the sample. Short sam-
ples (Fig. 3 with a = 13 mm and Lx = 25 mm) were chosen
to extract the fracture energy because, due to T-stress effects
quantified later in this article, propagation remains straight in
those samples. Equating the energy released with the work to
fracture per unit thickness B(δc) yields the fracture energy

� = B(δc)

(Lx − a)
. (5)

Furthermore, since � has a twofold anisotropy owing to the ar-
chitecture of our composites, the magnitude of this anisotropy

A ≡ �⊥
�‖

(6)

TABLE I. Independently measured elastic modulus E and maxi-
mum tensile strength σc and calculated fracture energy estimate (see
Sec. II D) along with their associated standard errors for the polymer
matrix and the 5% composite. The corresponding values reported for
the alumina platelets from Ref. [71].

Material E [GPa] σc [MPa] � [kJ/m2]

Alumina platelets [71] 380–410 210–500a 0.022–0.095b

Polymer matrix 0.444 ± 0.011 22.53 ± 0.78 0.84 ± 0.15
5% ⊥ composite 0.603 ± 0.021 25.22 ± 0.97 1.3 ± 0.16
5% ‖ composite 0.472 ± 0.08 14.16 ± 1.3 0.33 ± 0.06

aFlexural strength.
bEstimated from KIC .

can be estimated from the measured work to fracture in
two short samples with platelets oriented parallel (�‖) and
perpendicular (�⊥) to the crack axis. The anisotropy is found
to be an increasing function of platelet volume fraction fv
as reported in Sec. III B. The above procedure to determine
the fracture energy and its anisotropy assumes that our
composites are ideally brittle materials such that fracture is
the only mechanism to dissipate the stored elastic energy. The
validity of this assumption is supported by the fact that the
threshold value of fv necessary to induce crack kinking in
long samples agrees reasonably well with the value predicted
theoretically using the corresponding value of fracture energy
anisotropy determined by the above procedure.

The anisotropy of elastic modulus and fracture energy
calculated from Eq. (3) and Eq. (6), respectively, are later used
to justify the use of isotropic elasticity and anisotropic fracture
toughness in Sec. III C to perform phase-field simulations
and to compare their results to the experimental observations.
Furthermore, we used Eq. (5) to estimate the fracture energy
of the pure polymer matrix and 5% ⊥ and ‖ samples from their
associated load-displacement curves (see Sec. III A), which
are reported in Table I. The fracture energy was in turn used
to calculate estimates of the fracture process zone used in
the phase-field simulations. To obtain the fracture process
zone, we used the elastic modulus measured in independent
uniaxial measurements using ASTM-D638V, which are also
summarized in Table I.

E. Phase-field modeling

The phase-field model couples the elastic displacement
field u = (ux, uy) to a scalar phase field φ that varies smoothly
from φ = 1 in the pristine material to φ = 0 in the fully
broken material over a length scale ξ , which sets the size of
the process zone around the crack tip where linear elasticity
breaks down. The total energy of the domain � ⊂ R2 is
described by the functional

Fξ (u, φ) =
∫

�

g(φ)W[e(u)] dx dy

+ �⊥
4Cφξ

∫
�

[w(φ) + ξ 2Ai j (∂xiφ) (∂x j φ)] dx dy,

(7)
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where the first and second terms on the right-hand-side cor-
respond to the elastic strain energy and the anisotropic frac-
ture energy [31], respectively. We define the fracture energy
anisotropy matrix as

Â =
[
A−2 0

0 1

]
, (8)

Ai j = Qik

(π

2
− α�

)
Qjl

(π

2
− α�

)
Âkl, (9)

where Q is the rotation matrix defined as

Q(θ ) =
[

cos(θ ) − sin(θ )
sin(θ ) cos(θ )

]
, (10)

and we denote by α� the angle between the plane of the
platelet and the horizontal axis. We can rewrite Eq. (7) using
(8)–(10) as

Fξ (u, φ) =
∫

�

g(φ)W (e(u)) dx dy

+ �⊥
4Cφξ

∫
�

w(φ) dx dy

+ �⊥ξ

4Cφ

∫
�

{[1 + ε sin2(α� )](∂xφ)2} dx dy

+ �⊥ξ

4Cφ

∫
�

{[1 + ε cos2(α� )](∂yφ)2} dx dy

+ �⊥ξ

4Cφ

∫
�

[ε sin(2α� )(∂xφ)(∂yφ)] dx dy, (11)

where we have defined ε = (1 − A2)/A2. With the choice
Cφ = ∫ 1

0

√
w(φ) dφ, and for ⊥ orientations (i.e., α� = π/2)

the fracture energy is �⊥ for propagation along the x direction
parallel to the parent crack and perpendicular to the platelet
faces and �‖ = �⊥/A for propagation along y parallel to the
faces. In particular, for ⊥ orientations, Eq. (11) results in an
anisotropic fracture energy of the form [31]

�(θ ) = �⊥
√
A−2 sin2(θ ) + cos2(θ ). (12)

Furthermore, W (e(u)) is the elastic energy density de-
fined for isotropic linear elastic solid as W (e(u)) =
[Ci jkl ekl (u)ei j (u)]/2 where ei j (u) = (∂x j ui + ∂xi u j )/2 is the
strain tensor and the elastic constitutive tensor for plane-
stress elasticity is given as Ci jkl = λδi jδkl + μ(δilδ jk + δikδ jl )
where λ = Eν/(1 − ν2) and μ = E/[2(1 + ν)] are the Lame
coefficients for elastic modulus E and Poisson’s ratio ν.

In addition, we use the specific forms of the function
g(φ) = 4φ3 − 3φ4 and w(φ) = 1 − g(φ) [29,31] to model the
propagation of a fracture from a single flaw by prohibiting the
initiation of new cracks in the undamaged (φ = 1) material.
We note that the phase-field model of fracture introduced in
Ref. [29] incorporated a double-well potential in the energy
functional (7). While the combination of such a double-well
potential and gradient square terms is necessary to produce
a finite interface energy between stable or metastable phases
in traditional phase-field models of phase transformations, a
double-well potential turns out to be unnecessary to produce a
finite fracture energy in the framework of phase-field models
of fracture that converge to the Griffith energy in the ξ → 0

limit [29–31]. In this limit, the first and second terms on the
right-hand side of Eq. (7) correspond to the elastic energy in
the material and the fracture energy, respectively. Therefore,
we use here the same formulation as in Ref. [31] that cor-
responds to the limit of vanishing height of the double-well
potential of the formulation of Ref. [29].

The Euler-Lagrange equations are derived variationally
from the energy functional (7) in the form of vanishing
Fréchet derivatives

δFξ

δu
= 0, (13)

δFξ

δφ
= 0, (14)

which correspond to the quasistatic limit of crack propagation
where the displacement field is instantaneously relaxed at
each infinitesimal step of crack advance and the crack exten-
sion force equals the fracture energy [G = �(θ )]. Equations
(13) and (14) are implemented in their weak form and dis-
cretized using the Galerkin finite element method [32]. The
discrete equations are solved using distributed data structures
provided by libMesh [65] and linear algebra solvers in PETSc
[66,67]. We note that Eq. (14) also corresponds to the τφ → 0
limit of the gradient dynamics of the Ginzburg-Landau form
[29,31]

τφ

∂φ

∂t
= −4Cφξ

�⊥

δFξ

δφ
, (15)

where the crack velocity ∼(ξ/τφ )[G − �(θ )] [31] and hence
the Griffith limit G = �(θ ) is recovered in that limit. The
sample geometries depicted in Fig. 3 are meshed using a tri-
angular Delaunay mesh with average edge size ∼27.5 μm. To
perform the numerical simulations, we imposed the boundary
conditions associated with the grips as ux = 0, uy = ±δ on all
nodes in contact with the grips (i.e., the gray shaded areas in
Fig. 3), and the sharp notch was simulated by imposing φ = 0
at the tip of the v-shaped notch. Typical simulation included
∼500 kDOFs and was run on 40 physical cores of 2.2 GHz
Intel Xeon E5-2630 CPU for ∼24 h. Simulations were carried
out with the estimate ν = 0.2 and the input parameters A
and ξ .

Finally, we calculate the initial kink angle θ∗ by measuring
the angle of the line that connects the crack tip to the initial
notch tip at the first time step where the crack is propagated
a distance larger than 2ξ . The standard deviation of measure-
ment is calculated as the maximum change in angle as the
result of discretization.

F. Dimensional analysis of the phase-field model

Since accurate values of the fracture energies �⊥ and �‖
cannot be calculated directly from the experimental mea-
surements, we show in this section that the crack path is
affected only by the ratio of these energies (the fracture en-
ergy anisotropy A = �⊥/�‖) and not their individual values.
If we define the dimensionless coordinates x̄ = x/L (where
we choose L = Lx to be the sample width), dimensionless
displacement ū = u/

√
�⊥L/E , and dimensionless elasticity

tensor C̄ = C/E , using Eq. (7) we can write the dimensionless

013004-6



CRACK PATH SELECTION IN ORIENTATIONALLY … PHYSICAL REVIEW E 102, 013004 (2020)

energy as

F̄ξ (ū, φ) = Fξ (ū, φ)

�⊥
=

∫
�

g(φ)W̄[e(ū)] dx̄ dȳ

+ 1

4Cφ

∫
�

[
w(φ)

ξ̄
+ ξ̄Ai j∂x̄iφ ∂x̄ j φ

]
dx̄ dȳ, (16)

where W̄[e(ū)] = C̄i jkl ēkl (ū)ēi j (ū)/2, ēi j (ū) = (∂x̄ j ūi +
∂x̄i ū j )/2, and ξ̄ = ξ/L. Therefore it is easy to see that the
crack path predicted by this model depends only on the
sample geometry and loading configuration, the relative size
of process zone with respect to the sample size ξ/L, Poisson’s
ratio ν, and the fracture energy anisotropy A = �⊥/�‖.

G. Determination of the T stress in short and long samples

To assess the role of the T stress in crack kinking we have
to calculate the T stress in long and short samples. The results
of these computation are later used in Sec. III C for quanti-
tative comparison of analytical predictions of crack-kinking
behavior with experiments and phase-field simulations. For a
crack along the x axis in an isotropic homogeneous elastic
media, the near crack tip stress fields for plane stress can be
written as

σxx(r, θ ) = KI√
2πr

cos

(
θ

2

)[
1 − sin

(
θ

2

)
sin

(
3θ

2

)]

− KII√
2πr

sin

(
θ

2

)[
2 + cos

(
θ

2

)
cos

(
3θ

2

)]

+ T + O(
√

r), (17)

σyy(r, θ ) = KI√
2πr

cos

(
θ

2

)[
1 + sin

(
θ

2

)
sin

(
3θ

2

)]

+ KII√
2πr

sin

(
θ

2

)
cos

(
θ

2

)
cos

(
3θ

2

)

+ O(
√

r), (18)

where KI , KII are the stress-intensity factors (SIFs), T is T
stress, and (r, θ ) are the polar coordinates centered at the crack
tip. Using Eqs. (17) and (18), it is easy to see that the T stress
can be calculated from the divergent stress fields at the crack
tip as

T = σxx(r, 0) − σyy(r, 0). (19)

To accurately estimate the T-stress value and mimic the
razor blade notch in the experiments, we replaced the wide
prenotches in the two samples (dashed blue lines in Fig. 3)
with a sharp notch with opening angle 1◦ and refined the
mesh around the crack tip to capture the singularity. To
estimate the T stress in the two samples, we numerically
calculate KI for given imposed vertical displacement δ. The
mode I SIF KI = √

GE (for plane stress) was calculated
by first calculating the energy release rate G using the G-θ
method [68], which replaces the J integral by a surface
integral (a volume integral in three dimensions) using
Stokes’ theorem. Figure 4 shows the results of the numerical
simulation where we plotted [σxx(r, 0) − σyy(r, 0)]

√
Lx/KI

against the dimensionless distance from the crack
tip r/Lx near the crack tip (Lx = 55 mm in the long

(a)

(b)

FIG. 4. Results of numerical simulations for (a) the long sample
(L = 55 mm) showing convergence for calculated value of T stress
T

√
L/KI ∼ 0.9 for three different mesh size h/L = 2.5 × 10−4, 5 ×

10−5 , 10−3 and (b) the small sample (L = 25 mm) showing conver-
gence for calculated value of T stress T

√
L/KI ∼ −1.37 for three

different mesh size h/L = 1 × 10−4, 3.162 × 10−5, 10−3.

geometry and Lx = 25 mm in the short geometry; see
Fig. 3). It should be noted that, since the simulations are
performed in a finite domain, the divergent stress forms
are accurate only in the vicinity of the crack tip. Moreover,
since we are using C0 continuous elements with no enrich-
ment, the stress fields are not accurate at very short distances
near the tip r/Lx < O(h/Lx ) where h is the mesh size.

III. RESULTS

A. Experimental results for ‖ and ⊥ platelet orientations

Figure 5 shows the results of mode I fracture experiments
in different geometries with ‖ and ⊥ platelet orientations and
volume fraction of platelets fv from 0 to 0.07. In the long
sample geometry, crack kinking occurs with perpendicular
oriented platelets for sufficient volume fraction, while in the
short sample cracks propagate straight across for all volume
fractions in this range. Examination of crack paths on a
microscale (Fig. 5, right columns) revealed that the crack front
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(a)

(b)

(c)

FIG. 5. Results of pure tensile fracture experiments for 5% platelet volume fraction bicomposites illustrating stark differences between
microscale and macroscale crack paths and the strong influence of sample geometry on macroscale paths. The left column shows the macroscale
crack paths in fractured samples for different platelet orientations illustrated in the middle column, and the right column shows SEM images of
microscale crack paths at different magnification. (a) Long sample with platelets oriented parallel to the crack propagation axis. The macroscale
crack path is straight and the microscale fracture path travels along the platelet faces. The same behavior is observed in short samples (results
not shown). (b) Long sample with platelets oriented perpendicular to the crack propagation axis. The macroscale crack path is strongly kinked,
and the microscale fracture path travels along a staircase with vertical sections parallel to the platelet faces (top two images or right column)
and horizontal sections perpendicular to the faces (bottom two images of right column). (c) Short sample with the same platelet orientation
as in panel (b) In contrast to panel (b), the macroscale crack path remains straight even though the platelets deflect the crack on a microscale.
Platelets do not break and deflect cracks on a microscale in all samples.

did not penetrate the platelets that are orders of magnitude
stronger and stiffer than the matrix as shown in Table I. As a
result, the crack front propagated around platelets following
a tortuous microscale path. Examination of crack paths on a
macroscale (shown in Fig. 6 and quantified in Fig. 7) revealed
that, for the ⊥ orientation, cracks propagated straight in all
short samples over the range of volume fraction fv � 0.07
(Fig. 7), despite being sporadically deflected on a microscale
[see Fig. 5(c), right column]. In contrast, in long samples
cracks exhibited a clear transition from straight to kinked
propagation over the same range of fv . Several experiments
were conducted in both sample geometries to show that crack
paths were highly reproducible. Those observations demon-
strate that microscale crack deflection, common in composites
with hard particles embedded in a softer matrix, is not gen-

erally a sufficient condition for macroscale deflection, which
depends in a nontrivial way on both the microstructure ( fv)
and sample/loading geometry.

As a first step towards crack path prediction on a
macroscale, we recorded load-displacement curves [Fig. 8(a)]
to measure mechanical properties of composites relevant for
fracture, including the anisotropies of the fracture energy and
elastic modulus respectively defined as the ratios �⊥/�‖ and
E⊥/E‖ of those quantities for the ⊥ and ‖ orientations. We
used short samples in which cracks propagate straight on the
macroscale, thereby allowing us to perform a direct measure-
ment of �⊥/�‖ for all volume fractions, which is not feasible
in long samples that exhibit kinking. E⊥/E‖ was computed
as the ratio of the slopes of the load-displacement curves
for small displacements and �⊥/�‖ as the ratio of the areas
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FIG. 6. Experimentally observed macroscale crack paths in short and long samples for different volume fractions of alumina platelets
oriented perpendicularly to the crack propagation axis (⊥ orientation). The crack paths are digitized and mirrored to y > 0 to show consistency
of the initial crack-kinking angle θ∗. Crack paths remain straight in all short samples but kink in long samples above a critical volume fraction
of approximately 3%.

under those curves up to fracture initiation. We note that the
work to fracture, which is commonly used as an approximate
measure of toughness [8,69,70], was not used here to measure
the fracture energy for a given orientation, but only the ratio
�⊥/�‖ for the ⊥ and ‖ orientations. Since the same short
sample geometry is used to compute the areas under the force-
extension curves for those two platelet orientations, and crack
propagate straight in this geometry for fv < 0.07 (thereby
producing the same fracture surface area), the ratio of work to
fracture is equal to the ratio of fracture energies for those two
orientations as discussed in Sec. II D. Simple calculation of
fracture energy release rate (for straight propagation) shows
that for given imposed displacement δ, it decreases with
increasing crack length in the long geometry while it increases
in the short geometry. Therefore, while cracks propagate
stably in the long samples, in the short sample the fracture
is abrupt. The kinetic energy released during unstable crack
propagation in this short sample geometry is expected to be a
negligibly small fraction of the fracture energy. While we do

FIG. 7. Measured crack-kinking angle θ∗ from the experimental
results in Fig. 6.

not measure the kinetic energy, the fracture energy anisotropy
determined by neglecting its contribution allows us to make
modeling predictions in good agreement with experiments.
We interpret this agreement as indicative that the work to
fracture yields a reasonable estimate of the fracture energy
anisotropy �⊥/�‖. While those slopes measure the stiffnesses
of the samples and generally depend on sample geometries,
the ratio of stiffnesses for the ⊥ and ‖ orientations is identical
to the ratio E⊥/E‖ since identical geometries are used for
both orientations. Results in Fig. 8(d) [Figs. 8(b)–8(c) for
individual measurements] show that, when fv increases from
0 to 7%, �⊥/�‖ increases about 600% while E⊥/E‖ increases
only by about 20%. This suggests that the fracture energy
anisotropy is predominantly responsible for crack kinking in
long samples, but leaves open the question of why it is absent
in short samples over the same range of fv . Figure 8(c) shows
that the strong increase of the anisotropy �⊥/�‖ of the fracture
energy with increasing fv is mainly due to a sharp decrease of
�‖. We interpret this sharp decrease as resulting from the weak
bonding between the platelets and the matrix, which creates
interfaces with lower fracture energy than the matrix that are
energetically favored paths for cracks on the short scale of the
microstructure. Those weaker interfaces in turn contribute to
an overall decrease of the average macroscale fracture energy
in the composites compared to the matrix.

B. Phase-field modeling results for ‖ and ⊥ platelet orientations

To gain more insight into these results, we use the phase-
field method [29–31] described in Sec. II to model crack
paths on a macroscale using the experimentally measured
fracture energy anisotropy and a quantitative estimate of the
process zone size as input into the model. To estimate the
process zone size, we performed independent measurements
of material properties of the polymer matrix and 5% compos-
ite using simple uniaxial tension. We chose the tensile axis
parallel to the platelets corresponding to the ⊥ orientation
and perpendicular to them for ‖ orientation in our fracture
experiments. The elastic modulus E and tensile strength σc
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FIG. 8. (a) Illustration of load-displacement curves used to measure the fracture energy anisotropy by exploiting the fact that cracks
propagate straight in short samples for both ‖ and ⊥ platelet orientations. Curves for several 5 vol% samples are shown as gray lines. Fracture
occurs at higher load and displacement for the ⊥ orientation, reflecting a higher fracture energy. The colored lines and shaded regions illustrate
the area under the curve used for the calculation of the fracture energy anisotropy for one ‖ sample (dashed blue line) and one ⊥ sample (red
solid line). (b) Calculated stiffness of short samples for sample made of pure matrix (black circle) as well as samples with ‖ (blue squares)
and ⊥ (red diamonds) platelet orientations. (c) Estimated fracture energy from short samples for pure matrix (black circle) as well as ‖ (blue
squares) and ⊥ (red diamonds) platelet orientations. (d) Fracture energy anisotropy A = �⊥/�‖ (blue squares) and elastic modulus anisotropy
E⊥/E‖ (red diamonds) along with their standard errors versus volumetric percentage of alumina platelets fv over the whole range of fv where
cracks remain straight in short samples for both ‖ and ⊥ orientations.

were measured using the ASTM-D638V uniaxial tension test.
In addition to above uniaxial tests, the fracture energy �⊥
of the matrix and the 5% composite was estimated based on
the value of imposed displacement at the onset of fracture
δc in the experimental load-displacement curves of the short
samples (see Sec. II D). Table I summarizes the measured
elastic modulus E , tensile strength σc, and fracture energy of
different composite components and the resulting composite.
We further use the theoretical estimate ξ ∼ �⊥E⊥/σ 2

c⊥ that
follows from assuming that the maximum opening stress
σyy ∼ KI/

√
ξ at the crack tip is comparable to σc⊥.

The values of E and � determine only the physical magni-
tude of the imposed displacement δ ∼ √

�L/E that produces
the applied tensile load, where L is the sample width, but
do not affect the fracture behavior. The process zone size ξ

is estimated by assuming that the maximum opening stress
on the process zone scale σyy ∼ KI/

√
ξ is comparable to the

tensile strength of the material σc. Setting KI equal to its value
KIC⊥ = √

�E at the onset of propagation of a straight crack in
short samples yields the estimate ξ ∼ �E/σ 2

c . By performing
phase-field simulations we obtain the proportionality factor as

ξ 	 0.39
�E

σ 2
c

. (20)

A similar estimate has been previously obtained [72,73] by
a one-dimensional stability analysis of Eq. (7) for a broad
class of functions g(φ) and w(φ) that did not include the
present model. Combining Eq. (20) with our measurements
of the elastic modulus and the ultimate tensile strength along
with our estimate of fracture energy (compiled in Table I), we
estimate the process zone size as ξ 	 288 ± 62 μm for the
polymer matrix, ξ 	 300 ± 111 μm for the 5% ‖ composite,
and ξ 	 479 ± 97 μm for the 5% ⊥ composite (where the ±
signs signify standard errors). For the matrix, this ξ estimate is
comparable to the length of a craze region. For the composite,
it is much larger than the mean platelet spacing (	 10 μm)
consistent with previous estimates that ξ is approximately
5–50 times larger than the microstructure scale in diverse
composites [74]. This disparity of scale between ξ and the
platelet spacing suggests that, on a microscale where the crack
is a line (as opposed to a point in two dimensions), the crack
front extends spatially over several platelets. This view is
supported by the images of crack surfaces in Fig. 5 showing
that the crack is deflected by the randomly dispersed platelets.
Since, furthermore, crack deflection is more pronounced in
⊥ samples, where platelets obstruct crack propagation by
forcing 90◦ abrupt changes of the microscopic crack path,
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FIG. 9. Polar plots of the fracture energy �(θ ) =
�⊥

√
A−2 sin2(θ ) + cos2(θ ) [31] for different anisotropies A

and θ defined as the angle between the crack propagation axis and a
horizontal axis parallel to the parent crack (inset). Plots correspond
to the ⊥ orientation where platelet faces are perpendicular to the
parent crack axis.

as opposed to ‖ samples where the crack path can remain
approximately straight, we expect the spatial extent of the
crack front and hence ξ to be larger in ⊥ than ‖ samples
consistent with the estimate of Eq. (20). We should also
highlight that the reduction in the process zone size ξ from
⊥ to ‖ roughly follows the prediction from our phase-field
model, i.e., ξ⊥/ξ‖ = A. We use for all the computations ξ =
225 and 550 μm as the lower and upper bounds of process
zone size, respectively.

Since experimental samples are thin, we model fracture in
two-dimensional (2D) plane stress and focus on the crack-
kinking ⊥ orientation. Moreover, since E⊥/E‖ is weakly
dependent on fv , we assume that elasticity is isotropic and
model the anisotropy of the fracture energy with the simple
form in Eq. (12) where θ (Fig. 9 inset) is the angle between
the crack axis and the reference straight propagation axis
and A ≡ �⊥/�‖ is the fracture energy anisotropy. This form
is consistent with a 2D section of a transversely isotropic
material where � is isotropic in the plane of the platelets and
is symmetrical about the axis perpendicular to the platelets
with maximum �(0) = �⊥ and minimum �(π/2) = �‖. Polar
plots of � for different anisotropy values are shown in Fig. 9.

Fracture simulations were conducted for the same geome-
tries studied experimentally (Fig. 5, left column) varying
A over the range (1 to 5) determined from experimental
measurements of the fracture energy anisotropy around the
kinking transition (Fig. 7). The phase-field simulations results
are in remarkably good quantitative agreement with experi-
ments. The results of the phase-field simulations show that, in
the absence of fracture energy anisotropy the crack propagates
straight in both samples. This is not surprising since both
sample geometries and load configurations are symmetric
with respect to the horizontal axis and create no mode II
stresses.

Consistent with the crack paths shown in Fig. 6, simu-
lations show that cracks propagate straight in short samples
(for A � 5.5) but exhibit a smooth transition from straight to

FIG. 10. Phase-field fracture paths for ξ = 225 μm (mirrored to
y > 0) showing a smooth transition from straight to kinked crack
propagation with increasing fracture energy anisotropy in (a) exper-
imental long samples and (b) long samples with reduced prenotch
length 12 mm, which decreases the T stress for short crack lengths.
Because of the small initial T stress the cracks propagate straight
initially for all values of A � 2.4.

kinked propagation in long samples [Fig. 10(a)] with increas-
ing anisotropy. In particular cracks in a long sample for A >

2.4 [see Fig. 10(a)] kink sharply upon propagation. We further
demonstrate the effect of the sample geometry by shortening
the wide prenotch [shown in blue in Fig. 3(a)] length in the
long samples as depicted in Fig. 10(b). The smaller prenotch
reduces the T stress but does not change its sign (T > 0). The
results of the phase-field simulations depicted in Fig. 10(b)
show that for high anisotropy where the crack kinks in the
original long sample, it propagates straight for a long distance.
The transition from straight propagation to kinked can be
understood intuitively in terms of competition between the
ability of the crack to release the stored elastic energy and the
energetic cost of creating a new surface growing a crack. Since
the maximum normal stresses in the specimen are oriented in
the y direction, a crack propagating along the x axis would
release the highest amount of energy. However, the energetic
cost of propagating perpendicular to the platelets increases
with increasing A ( fv). Therefore, the kinked crack path
provides a compromise to balance the cost of propagating in
an “easy direction” with a smaller amount of energy released.

This transition is further quantified in Fig. 11 where we
plot the initial kink angle θ∗ as a function A and superimpose
experimental measurements of θ∗ using Fig. 8(d) to relate fv
and A. This remarkable agreement between the experimental
measurements and the phase-field simulations (with isotropic
elasticity) establishes the role of fracture energy anisotropy in
deflecting the crack. However, the question remains: Why do
the cracks in the short sample propagate straight?
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FIG. 11. Comparison of simulated and experimentally observed
initial kink angles in long samples. Experiments are for different
volume percentages of platelets: pure matrix fv = 0 (black circle
error bar) and fv = 0.01–0.07 (red square error bars) where hori-
zontal and vertical error bars signify the standard error of fracture
energy anisotropy [Fig. 8(d)] and initial kink angle (Fig. 7), re-
spectively. Simulation results are shown for different anisotropies
with the associated standard deviation due to discretization for ξ =
550 μm (green diamonds) and ξ = 225 μm (blue triangles). Also
shown for comparison are the LEFM predictions without T-stress
corrections (black dashed line) and with T-stress corrections Eq. (24)
(shaded gray area corresponding to 225 � ξ � 550 μm and 0.06 �
T

√
ξ/KI � 0.09) for the long sample geometry (see Fig. 4).

C. Sample geometry effect

The effect of the sample geometry on crack kinking in
different isotropic specimens has been long observed [58,75–
78] where the crack can kink due to the effect of nonsingular
stresses around the crack tip. In their classic paper, Cotterell
and Rice [79] revealed the critical role of the sign of the T
stress [see Ref. (17)] on crack path stability by analyzing the
smooth trajectory of a curvilinear crack initially perturbed
by a small kink angle. Their analysis shows that trajectories
deviate exponentially away from the parent crack direction
for T > 0 (unstable propagation) or return parabolically to
this direction for T < 0 (stable propagation). One limitation
of this calculation is that it is conducted in a traditional linear
elastic fracture mechanics (LEFM) framework that neglects
the role of the process zone scale and thus cannot predict the
dependence of crack-kinking behavior on sample geometry
observed here in the experiments and phase-field simulations.
This strong geometrical effect is reflected in the fact that
crack kink in long samples but not short ones for identical
fracture energy anisotropies. As we show below, however,
this dependence can still be predicted in a LEFM framework
using the analysis of Amestoy and Leblond that includes a
T-stress correction to the energy release rate at the tip of a
kinked crack [59]. This relative magnitude of this correction
is proportional to the ratio T

√
ξ/KI of nonsingular (∼T )

and singular (∼KI/
√

ξ ) stresses on the process zone scale. A
main finding of the present work is that this ratio turns out
to be sufficiently important to affect crack-kinking behavior
even when the process zone size ξ is one to two orders of

magnitude smaller than the sample size, as in the composites
used here where sample sizes are on the cm scale (Fig. 3) and
ξ is estimated to be on the scale of a few hundred microns
[Eq. (20)].

Takei et al. [80] interpreted theoretically the observation of
forbidden propagation directions in tearing experiments using
an analogy with the Wulff construction of crystal equilibrium
shapes. This analogy predicts that propagation is forbidden
for orientations where the 1/�(θ ) curve is nonconvex or
equivalently S(θ ) ≡ �(θ ) + d2�(θ )/dθ2 < 0. For the form of
the fracture energy anisotropy used here, defined by Eq. (12),
S(θ ) ≡ �(θ ) + d2�(θ )/dθ2 > 0 for all A and θ . Conse-
quently, the onset of kinking cannot be simply interpreted here
using the criterion S(θ ) < 0. However, there is no contradic-
tion. The applicability of the Wulff construction for the tearing
experiments rests on the property that the energy release rate
G(θ ) is simply geometrically related to tearing force, while
in the present plane-stress configuration, G(θ ) is determined
by the stress intensity factors and has a different functional
dependence that allows for G(θ ) − �(θ ) to exhibit distinct
maxima at θ = 0, corresponding to straight propagation, and
at θ = ±θ∗ in perpendicular samples, corresponding to finite
kink angles. In addition, as shown here, consideration of the
form of �(θ ) alone is insufficient to predict kinking that is
also strongly influenced by the T stress and the process zone
size when the ratio of nonsingular and singular stress fields
T

√
ξ/KI is not negligibly small.

Similar to our results, Ayatollahi et al. [58] showed that for
double cantilever beams (DCBs) and compact tension (CT)
specimens made of (isotropic) PMMA, stability of cracks is
affected by the specimen size and geometry through the sign
and magnitude of T stress. In their study, they showed that
the crack stability is well predicted by the dimensionless T-
stress value T

√
ξ/KI for an appropriate choice of the process

zone size ξ . For the present experiments in anisotropic media,
crack kinking can be predicted quantitatively by phase-field
modeling, which phenomenologically regularizes stress field
divergences on a scale ξ determined from materials properties
and hence inherently captures T-stress effects.

Let us now turn to the analysis of crack kinking in the
LEFM framework using analytical expressions for the energy
release rate at the tip of a kinked crack that explicitly take
into account T-stress effects [59]. For this, we consider a short
extension of the parent crack of length s and kink angle θ

with respect to the parent crack axis. To predict θ , we use
the common assumption [1,2,31,51,80] that cracks propagate
in a direction that maximizes the rate of decrease of the total
energy, which is the difference G(θ ) − �(θ ) [see Eq. (12)]
between the energy release rate and the rate of increase of
fracture energy. We use known analytical expressions for the
stress-intensity factors (SIFs) at the tip of a kinked crack that
take in account the contribution of the T stress [59] to compute
SIFs at the tip of the kinked crack. Given the stress intensity
factor KI and T stress T of the parent crack [see (17) and (18)]
and the fact that KII ≡ 0 by symmetry, the SIFs at the tip of
the kinked crack can be written in the form

kI (θ ) = KI f11(θ ) + T
√

s g1(θ ), (21)

kII (θ ) = KI f21(θ ) + T
√

s g2(θ ), (22)
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where the analytical expressions for the function fi j (θ ) and
gi(θ ) are in Ref. [59]. To calculate the energy release rate
at the tip of the kinked crack G(θ ), we use the standard
expression [81]

G(θ ) = 1

E
[kI (θ )2 + kII (θ )2] (23)

valid for plane stress. Given the relative magnitude of the non-
singular to singular stresses T

√
s/KI , we need to determine

simultaneously the kink angle θ∗ and the load G(0)/�⊥ =
K2

I /(E�⊥) on the parent crack at which kinking occurs,
where �⊥ is the reference fracture energy at onset of straight
propagation at θ = 0. Those two unknowns are determined
by requiring that the angle that corresponds to a maximum
of G(θ ) − �(θ ) plotted versus θ in the range 0 < θ < π/2
also satisfies the condition G(θ∗) = �(θ∗) corresponding to
the onset of propagation of the kinked crack. Those two
conditions can be written in the succinct form

θ∗ = argmax
0 < K2

I /E � �⊥,

T
√

s/KI fixed.

[G(θ ) − �(θ )], (24)

When crack kinking does not occur (θ∗ = 0), crack propa-
gation occurs at a load corresponding to straight propagation
of the parent crack K2

I /E = �⊥. In this case G(θ ) − �(θ )
first crosses zero from negative to positive values at a max-
imum located at θ∗ = 0. In contrast, when kinking occurs
G(θ ) − �(θ ) first crosses zero at a maximum located at θ∗ �=
0 and, concomitantly, crack propagation occurs at a lower load
K2

I /E < �⊥ since straight propagation is energetically forbid-
den [G(0) < �(0)] in this case. We expect physically that the
crack extension length used for the purpose of calculating the
energy release rate at the tip of a nascent kinked crack should
scale like the process zone size, or s ∼ ξ . For the purpose
of making a quantitative prediction, we choose s = ξ . Even
though this choice is arbitrary up to a numerical prefactor of
order unity, we have found that it predicts quantitatively well
the effect of sample geometry on crack-kinking behavior in
both experiments and phase-field simulations.

To highlight the strong effect of T stress on the kinking
transition, we first plot the LEFM results for T = 0 shown
using a dashed black line Fig. 11. The results show that re-
gardless of the sample geometry a nonlocal kinking transition
occurs at Ac0 	 3.1 where for A > Ac0 the crack kinks at a
large angle θ∗ > 70◦. To quantify the T-stress effect in long
and short samples, we numerically computed the T stress from
an analysis of stress fields in the vicinity of the crack tip (see
Sec. II G). As previously shown in Fig. 4, these computations
yield −0.20 � T

√
ξ/KI � −0.13 in the short sample and

0.06 � T
√

ξ/KI � 0.09 in the long sample for the process
zone size ξ in the estimated range 225–550 μm. For the long
sample, this analysis (LEFM + T stress) predicts that the
positive T stress is destabilizing and shifts the kinking tran-
sition to smaller fracture energy anisotropy than predicted by
LEFM with vanishing T stress (Fig. 11), in good quantitative
agreement with both experimental and phase-field simulation
results. For the short sample geometry, the analysis predicts
that the negative T stress has a stabilizing effect and shifts
the kinking transition to larger anisotropy, consistent with the

(a)

(b)

FIG. 12. Crack kinking in the short sample. (a) Experimental
crack path in short sample geometry at 10% volume fraction (A 	 9)
showing crack kinking. (b) Results of phase-field simulation in the
short sample showing transition to kinking at A 	 5.75.

absence of kinking in short samples over the same range of
A < 5.

Our experimental, numerical, and analytical results thus
demonstrate that, unlike geometries considered by Ayatollahi
et al. [58], in the long sample geometry the geometry ef-
fect alone is not enough to destabilize straight propagation.
However, the added effect of fracture energy anisotropy can
result in the deflection of the crack. On the other hand,
while our short sample geometry stabilizes the crack path
for small fracture energy anisotropies, we can hypothesize
that cracks get deflected for large enough A. We tested
this prediction by repeating a fracture experiment in a short
sample for a higher volume fraction ( fv = 0.1 correspond-
ing to A 	 9) and phase-field simulations. Both experiment
Fig. 12(a) and simulations Fig. 12(b) produced kinking as
predicted, although the kinking occurred at a lower threshold
in simulations A 	 5.75 compared to the experiments. We
attribute the source of this discrepancy to the approximate
form of the fracture energy anisotropy function �(θ ) used.
Despite this discrepancy, we can conclude that the difference
in the observed crack paths between long and short sample
geometries stems in phase-field simulations from the combi-
nation of the process zone size and the sign and magnitude
of the T stress in the two samples. The results suggest that
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the same combination is controlling crack path selection in
the experiments even though the fracture processes on the
process zone scale are only phenomenologically modeled in
the phase-field approach.

The principle of local symmetry (PLS) that has been
widely used to predict crack paths in isotropic media was
extended to anisotropic media by Hakim and Karma [31].
In this context, it was reformulated as a force balance con-
dition that, like the PLS, has no intrinsic length scale and
does not involve the T stress. Hence, this condition cannot
predict the influence of the sample geometry on kinking in
the present simulations and experiments. Interestingly, in the
work of Ref. [31], this force balance condition was found
to predict crack-kinking behavior in phase-field simulations
well. However, those simulations imposed displacement fields
corresponding to singular stress fields on the sample bound-
ary, a procedure which intrinsically assumes that T = 0. We
have chosen here to use the maximum energy release rate
(MERR) criterion to predict crack kinking because it provides
a straightforward framework to incorporate the effect of the
T stress. In principle, it should also be possible to extend the
force balance condition of Ref. [31] to include T-stress effects.
However, since both the PLS and the MERR criterion are
known to predict nearly indistinguishable angles in isotropic
media in the absence of T stress [59], they may not yield very
different predictions in anisotropic media in the presence of T
stress.

Finally, as already noted, the energy release rate increases
with crack advance (i.e., dG/da > 0 where a is the crack
propagation length) in the short sample, thereby producing
a rapidly accelerating crack when δ > δc, while in the long
sample, dG/da < 0, crack propagation is quasistatic and
driven by slowly increasing δ. This raises the interesting
question of whether kinking behavior is affected by the sign
of dG/da, which generally controls whether straight propaga-
tion is energetically stable or unstable. The experimental and
simulation results in Fig. 12 show that, even in short samples
where dG/da > 0, cracks can kink for a larger value of the
fracture energy anisotropy. This supports the interpretation
that the absence of crack kinking in short samples for smaller
values of the anisotropy is caused by the stabilizing effect
of the T stress and not by the sign of dG/da at the onset
of fracture. The role of the sign of dG/da can be further
assessed by our simulations in long samples with shorter
initial crack lengths and hence smaller values of the T stress
for which our theory predicts stable straight propagation.
The results presented in Fig. 10(b) show that, even for high
anisotropy (A = 2, 2.5), crack propagation can be straight
in those samples even though propagation is quasistatic. We
conclude that the T-stress effect, and not the sign of dG/da,
is the dominant mechanism by which the sample geometry
influences kinking behavior.

D. Crack kinking for other platelet orientations

To investigate the effect of sample geometry on crack
paths for other orientations than the ‖ and ⊥, we carried
out a series of experiments and phase-field simulations with
varying platelet orientation (i.e., varying angle α� of platelets
with respect to the horizontal axis) between 0◦ and 90◦ in

(a)

(b)

FIG. 13. (a) Comparison of experimental measurements, phase-
field simulations, and LEFM theory + T stress for the kink angle θ∗

as a function of the angle α� between the materials axis correspond-
ing to the lowest fracture energy and the x axis of the initial crack.
The comparison is shown for both short (red circles) and long (black
squares) 4% ( fv = 0.04) samples to highlight the role of the T stress
on crack kinking. In this plot, α� = 0◦ and α� = 90◦ correspond
to the ‖ and ⊥ orientations, respectively. The T stress is seen to
have a strong influence on kinking as seen by the large difference
of kink angles in short and long samples for a wide range of angles
larger than approximately α� = 45◦. Two values of fracture energy
anisotropy A = 2.5, 3 were used to assess the effect of the anisotropy
on kinking. (b) Illustration of crack paths from phase-field simulation
results for different α� values in the short samples.

both the short and long sample geometries. We chose a 4%
volume fraction of platelets ( fv = 0.04) for which cracks
propagate straight in short samples but kink in long samples
for α� = 90◦ due to the sample geometry effect. We also
performed additional 2D plane-stress phase-field simulations
in both geometries by rotating the fracture energy anisotropy
by an angle α� . The results are reported in Fig. 13 where we
plot the kink angle θ∗ as a function of α� [Fig. 13(a)] and show
some examples of computed crack paths in the short sample
[Fig. 13(b)]. The results in Fig. 13(a) show that the kink
angle differs significantly between the short and long samples
for angles larger than about 45◦, thereby demonstrating that
the sample geometry strongly affects cracks paths for a wide
range of other orientations than the perpendicular one. For
α� < 45◦, the geometry effect is small, and the crack path

013004-14



CRACK PATH SELECTION IN ORIENTATIONALLY … PHYSICAL REVIEW E 102, 013004 (2020)

follows approximately the low fracture energy direction (θ∗ 	
α�). To obtain the analytical prediction of kink angles (LEFM
+ T stress in Fig. 13), we extend Eq. (24) to maximize the net
energy release rate at fixed T

√
s/KI and α� in the situation

where the fracture energy anisotropy function �(θ ) is rotated
by an angle α� . Equation (24) becomes

θ∗ = argmax
0 < K2

I /E � �⊥,

T
√

s/KI fixed,

α� fixed,

[
G(θ ) − �

(
θ − α� + π

2

)]
, (25)

where the above maximization is carried out similarly to
the last section using s = ξ . The load G(0)/�⊥ = KI/(E�⊥)
is increased until the onset of propagation at θ∗ such that
G(θ∗) = �(θ∗ − α� + π/2). LEFM theory with the inclusion
of the T stress is seen in Fig. 13(a) to predict well the kink
angle dependence on platelet orientation for different sample
geometries.

As previously shown, the crack path propagates straight
in the short sample for ‖ and ⊥ orientations. However, at
intermediate angles 0 < α� < π/2 the symmetry of the sam-
ple versus the x axis is broken, and therefore cracks cannot
propagate straight for these platelet orientations. We can
further explain the transition cycle from straight propagation
to deflection and back, in the short sample geometry, using
the phase-field simulations results in Fig. 13. We observe
that initially for α� < 60◦ the kink angle θ∗ increases with
the platelet orientation α� . However, at larger α� > 60◦ [see
80◦ in Fig. 13(b), for example] the initial kink occurs at a
smaller angle followed by a subsequent straight propagation
where the crack path is stabilized as a result of the mode
II loading due to its vertical shift. Simply put, mode II
stresses create a configurational force acting perpendicular to
the crack axis that balances out the effect of fracture energy
anisotropy which tends to turn the crack axis into a direction
that minimizes the surface energy �(θ ) [31]. The discrepancy
of the kink angle θ∗ between phase-field simulations and
the experimental observation in the short sample highlights
the importance of the anisotropy function. In the absence of
additional measurements of fracture energy anisotropy for the
intermediate angles, our choice of the anisotropy function is
only a first reasonable estimate that we can partially corrob-
orate by nontrivial prediction of the onset of kinking with
increasing platelet volume fraction in long samples (Ac 	 2).
In future studies, it may be possible to measure the fracture en-
ergy for other orientations than ‖ and ⊥. Those measurements,
however, are difficult because cracks in short samples kink for
platelet intermediate orientations. Consequently, the fracture
energy cannot be extracted directly from force-displacement
curves. This difficulty could be potentially circumvented by
imposing mode II (for example, by offsetting the initial notch
vertically) to force the crack to propagate straight in a medium
of tilted platelets or by using numerical calculations to infer
the fracture energy from load-displacement curves for those
orientations.

IV. CONCLUSIONS

Our experimental and numerical results presented in this
article highlight the interplay between the fracture energy

anisotropy and sample geometry in crack path selection.
In this article, we combined experiments and simulations
to show that while the crack path remains complex at the
microscale, it is controlled at the macroscale by an emergent
fracture energy anisotropy. We further demonstrated both nu-
merically and experimentally that the onset of crack deflection
not only depends on the microstructure (e.g., volume fraction
and orientation of platelets) but also is strongly influenced
by the nonsingular T stress, which is a function of the ge-
ometry and loading configuration. Our numerical simulations
presented show how the phase-field fracture method can be
used in conjunction with the experimental measurement to
predict crack path in orientationally ordered composites.

Furthermore, our results suggest that in a natural composite
such as bone with a much higher volume fraction of platelets
( fv 	 0.4), aligned mineralized collagen should suffice to
produce crack kinking for propagation perpendicular to fibers
independently of the sample geometry as observed experi-
mentally [9], and that straight propagation in pathological
bone [10] is due to a dramatic reduction of fracture energy
anisotropy (i.e., A < Ac) caused by fiber misalignment. From
a materials engineering standpoint, the strength of polymers
reinforced by discontinuous ceramic filler is generally pre-
dicted with shear-lag theory in the literature [82], which
assumes that the matrix and filler will ultimately fail through
yielding and not through the brittle fracture of cracks prop-
agating from defects. This treatment infers that composites
are flaw tolerant during failure, a feature that is in poten-
tial disagreement with the low fracture energy exhibited by
many ceramic-filled polymer systems. In the current material
system, for example, 5% samples have order of a millimeter
critical flaw sizes, suggesting that the crack geometries tested
in this work reside in the brittle fracture regime and that
shear-lag theory would overpredict their performance. This
understanding should help interpret fracture experiments in a
wide range of composites.

Finally, Gao et al. [83] have developed a theoretical es-
timate to explain how natural biological materials such as
nacre and bone derive their superior strength from their
nanocomposite architecture. This estimate relies on two key
ingredients. The first is that most of the load is carried out
primarily by the mineral platelets, which generally occupy a
large volume fraction of the biocomposites, typically ranging
from 50% to 95%. The second is that, if platelets are thin
enough, they behave essentially as flawless perfect crystals
that do not break up to their theoretical strength. In contrast,
the engineered composites studied here operate in the opposite
regime of a low volume fraction of platelets (up to 10%) where
the load is carried out almost entirely by the soft polymer
matrix and not the platelets. As a result, the maximum tensile
strength of our engineered composites (σc ∼ 14 to 25 MPa in
Table I for 5% composites) is about three orders of magnitude
smaller than the theoretical strength of the platelets estimated
as E/30 ∼ 13 GPa [83]. Accordingly, our samples fail by
conventional crack propagation above a Griffith threshold,
which occurs on the microstructure scale by debonding of
the matrix from the intact platelets. The magnetic assembly
method used in the present study cannot produce brick and
mortar nacre-like regular composites because of strong inho-
mogeneities caused by platelet aggregation inside the polymer
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matrix prior to curing for fv larger than about 20%. Under-
standing the crossover between the low- and high-volume
fraction of platelets regimes warrants further investigation.
Rather than strength optimization, our study focused on the
role of the microstructure on crack path. In this regard, the
most striking findings are that a low volume fraction of
platelet suffices to produce crack deflection on a macroscopic
scale, and that whether or not deflection occurs depends on a
nontrivial way on the homogenized fracture energy anisotropy
and sample geometry through the combination of the T stress
and an emergent microstructure scale significantly larger
than the platelet size. Predicting that scale and the homog-
enized fracture energy in terms of composite microstructure
and properties remains an important challenge for future
studies.
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