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Fingering instability during fracture of a gel block subjected to shear loading
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We report here an alternative kind of fingering instability observed during fracture of an unconfined gel
consisting of two cuboids joined by a thin gel disk, and all prepared monolithically. When the blocks are sheared
across the joint, fracture ensues with the appearance of fingers at the fracture front. The spacing between the
fingers remains independent of the shearing speed, planar shape of the joint, and the shear modulus of gel.
Importantly this instability appears without any effect of confinement of the gel block, and its wavelength remains
dependent on the lateral size of the disk, in contrast to all known instances of fingering phenomena in confined
viscous, elastic, and viscoelastic systems.
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I. INTRODUCTION

Soft solids like crosslinked rubbers, elastomers, and gels
are used in a variety of engineering, scientific, and biomed-
ical applications, and how such materials would fail when
subjected to different kinds of loadings is a subject of much
interest. An example is the ubiquitous fingering instability that
mediates fracture of such material or their debonding from an
adherent when subjected to tensile loadings. When a flexible
adherent is lifted off a thin layer of incompressible, elastic,
and viscoelastic adhesive bonded to a rigid or flexible sub-
strate, the contact line that separates the adherent plate from
the adhesive layer appears wavy with a well-defined wave-
length and amplitude [1–5]. A similar instability phenomenon
is also observed when a rigid plate is pulled off a layer of ad-
hesive bonded to a rigid substrate; isotropic cavitation patterns
appear either at the bulk of the soft solid or at the interface of
the adhesive and adherent [6–8]. The former leads to cohesive
fracture of the material and the latter leads to interfacial or
adhesive failure. The contact line instability and the isotropic
instability phenomenon both have been studied extensively
in literature [9–13]. These instabilities appear for films with
thickness below a critical value as a response to stiff energy
penalty associated with the tensile stress that develops in the
elastic film [10,14,15]. Here the film is shown to be critically
confined, with confinement defined as the ratio of two length
scales: thickness of the film, h, and a lateral length scale, q−1.
In the context of the contact line instability, this length scale
represents the distance from the contact line within which
the stresses remain concentrated. For the isotropic instability,
the wavelength defines the lateral length scale. The instability
patterns appear when confinement, hq, diminishes below a
critical value: (hq)c < 0.33; once hq exceeds this threshold
limit, the instability disappears.

While in the above examples, the instability occurs at the
interface between two solid adherents, a similar instability
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occurs also at the interface of a soft solid and air. The experi-
ment here involves a layer of ultrasoft elastic gel (shear mod-
ulus ∼80–1060 Pa) bonded at its two planar surfaces to two
rigid parallel plates; when air is allowed to protrude into the
gel, periodically separated “balloon” shaped yet completely
reversible fingers appear along the gel-air interface [16–18].
This instability in soft solids looks very much similar to the
classical Saffman Taylor instability [19] occurring with liquid
inside the confined geometry of the Hele-Shaw cell. The
origin of instabilities in liquid and solid systems are however
different. Whereas in the former, negative pressure gradient
born out of viscous forces is balanced by the surface tension
of liquid resulting in the formation of fingers, in the latter,
it is the balance of air pressure and elastic stresses coupled
with the nonlinear elasticity of the gel that leads to instability.
In essence, the general feature of fingering instability in both
solid and liquid is found to be the thinness or the confinement
of the solid or liquid layer, which becomes evident also from
the linear dependence of the separation between fingers on the
thickness of the gel layer [1–5,19].

In contrast, we present here another instability for which
the requirement of critical confinement no longer remains
a necessary condition for the instability to occur, yet the
fingering phenomenon very similar to the ones described
earlier occurs. The phenomenon occurs during the fracture of
a hydrogel block consisting of two cuboidal portions joined
by a thin gel disk all prepared monolithically. When one of
the cuboids is sheared against the other across the disk joint,
fracture propagates beyond a critical shear load, although not
in the direction of application of load, but perpendicular to it.
The crack line does not remain straight but becomes undula-
tory with fingerlike structures having well-defined wavelength
and amplitude.

II. MATERIALS AND METHOD

Materials. Acrylamide monomer was pur-
chased from Hi-Media and was used as the main
monomer. N,N′methylenebisacrylamide and N,N,N′,N′
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FIG. 1. (a) Schematic depicts the mold in which the gel block was prepared. (b) The schematic of the experiment depicts a monolithic gel
block comprised of two rectangular blocks joined by one or more number of tiny gel disks. A portion of the block remains supported on the
load cell, whereas the hanging side is loaded vertically down at a controlled rate using a microstage. Gel disks of different shapes are used in
experiments. (c)–(e) Sequence of images depicts the progress of fracture for disk joints of different array sizes: 1 × 1, 2 × 2, and 10 × 10. The
images are captured at different vertical displacement, �, of the hanging side of the block. A gel of modulus μ = 40 kPa is subjected to shear
at a constant speed of V = 31.25 μm/sec.

tetramethylenediamine (TEMED) were purchased from Loba
Chemicals and were used as the crosslinker and promoter,
respectively. Ammonium persulfate (APS) was purchased
from Merck and was used as the initiator. These materials
were all used as received without further purification.
Deionized millipore (DI) water was used for all purposes.
Silicone oil of kinematic viscosity 100 cSt was used for
lubricating the contact surface between the transparency sheet
and the gel.

Method of preparation of gel samples. Hydrogel blocks,
each consisting of two cuboidal portions of dimensions
40 × 28 × 16 mm3 and 28 × 28 × 16 mm3 were prepared in-
side a mold [20], as shown in Figs. 1(a) and 1(b). The
gel was prepared by crosslinking an aqueous solution of
gel prepolymer solution of acrylamide monomer, N,N′-

methylenebisacrylamide (2.67% w/w of monomer), TEMED
(4% w/w of monomer), and ammonium per sulfate (0.45%
w/w of monomer), all dissolved in deionized millipore (DI)
water. The monomer to water ratio was varied in the pre-
polymer solution, from 35:65 to 10:90, to generate gel hav-
ing shear modulus 40–7 kPa. The prepolymer solution was
crosslinked (for ∼4 min) inside the mold with a thin trans-
parency sheet (thickness ∼50–100 μm) placed at the juncture
of the two blocks [20]. An array of holes of different shapes
and sizes but of total cross-sectional area 157 mm2 were
drilled into the transparency sheet. After crosslinking, the
monolithic gel block consisted of the two cuboidal portions
that were connected by gel disks of size and shape as that of
the holes in the transparency sheet; this gel desk had the thick-
ness of that of the transparency sheet. The crosslinked gel was
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gently removed from the mold, along with the transparency
sheet, and was immersed inside a pool of water for 7–10 min
to cool it down to ambient temperature. The gel samples, thus
prepared, were used in further tests.

Method of carrying out fracture experiments. The gel block
consisted of two cuboids: the larger one was fully accom-
modated inside a housing made of the acrylic sheet, whereas
the smaller one was allowed to hang freely under gravity as
shown in Fig. 1(b). Vertically downward load was exerted on
the hanging portion of the gel along x. Its top surface was
pushed vertically down at different rates: 3.75–125 µm/sec
using a motorized actuator, thereby exerting a shear load
across the gel disk. The load was measured using a load
cell interfaced with a computer. The transparency sheet was
wetted with silicone oil to minimize the frictional resistance
during shearing of the gel [20].

III. RESULTS AND DISCUSSION

The optical micrographs in Figs. 1(c)–1(e) capture the
events leading to fracture in a sample which is a square joint.
A representative movie of the phenomenon can be seen at
the link provided in the Supplemental Material [21]. Here,
fracture first initiates towards the top edge of the gel, but
soon gets arrested. Instead, lateral secondary cracks emerge
almost simultaneously from the two side edges and propagate
towards each other along the z direction, i.e., normal to the
application of the load. These two cracks eventually coalesce,
leading to a complete fracture of the gel block into two
pieces. The crack lines do not remain straight, but consist
of equally spaced fingerlike protrusions, and propagation of
crack essentially occurs via growth of these fingers, which
essentially remain pinned at the vicinity of their trough.

Images in Fig. 2 depict typical fracture planes for rect-
angular and pentagonal single disk joints of different side
length, a = 5 − 20 mm. Here too fracture was found to occur
via appearance and growth of fingers. The morphological
evolution of the fingers was examined using high frame
rate video photography, which showed that [Figs. 2(i)–2(m)]
this instability appears via nucleation of small perturbations
spanning the lateral width of the joint. These perturbations
grow and coalesce, eventually attaining the final form when
the fingertip reaches nearly half of the width of the joint.
The perturbations were not found to branch out in contrast
to similar fingering instability in viscoelastic films [22–24].
The fingers in their final form were found to remain equally
spaced with the distance λ between them increasing with the
size of the disk joint, a. Furthermore, λ was almost the same
for different disk shapes as long as their linear dimension,
a(or diameter d for circle), was nearly constant. Experiments
were carried out also with 2 × 2 and higher-order arrays
of disk joints, as presented in Fig. 1(c). These results too
show that the wavelength of fingers and their length both get
smaller with decrease in the width, a, of individual disks.
While, for array sizes exceeding 7 × 7, λ at the fracture
plane of individual disks could not be estimated accurately,
the data presented in Fig. 2(h) (symbols ◦ and �) show that
for arrays of disk joints up to size 7 × 7, λ was found to scale
linearly with a: λ = 0.15a. This fit included the data obtained
from experiments carried out using the gel of different mod-

ulus: 7–40 kPa, suggesting that λ remains nearly independent
of μ. Similarly, experiments carried out with the shearing
speed, V , varied over two orders of magnitude from 3.75 to
312.5 μm/sec show that λ remains unaffected by V unlike
fingering instability in confined viscous and viscoelastic films
[19,22–24] implying purely elastic origin of the instability.

It is worth noting that the planar shapes of the disk joint so
far described were all characterized by a single length scale:
the length of the sides of the polygons or the diameter of the
circle. In order to understand how the wavelength of the insta-
bility would vary for planar shapes which are characterized by
two or more different length scales, a few more experiments
were carried out using samples for which the aspect ratio of
the planar shapes of the joining disks was different from 1.
Figure 3 shows examples of such shapes that are characterized
roughly by two different length scales, p and q. These samples
were all prepared using the gel of shear modulus, μ = 30 kPa,
and were subjected to fracture tests as presented in Fig. 1(a).
Similar to previous cases, here too fracture occurred in two
stages, first via propagation of the primary crack and then
the secondary lateral crack. The optical images presented
here represent an intermediate stage of propagation of the
secondary crack, characterized by the protruding fingers. It is
worth noting that, for elongated shapes, e.g., for the rectangle
[Fig. 3(a)] and the ellipse [Fig. 3(b)], the secondary crack
and the fingers from the two sides of the disk did not appear
exactly facing each other; but in contrast to shapes with
p/q ∼ 1, they appeared laterally staggered. This observation
implies that, for these shapes, the shear deformation was
possibly not exactly uniform throughout the cross section of
the joint. Nevertheless, the wavelength data for all these disk
shapes were found to superimpose on those obtained earlier
as shown in Fig. 2(h), when plotted against an effective planar
length scale a ∼ √

pq, suggesting inherent nonlinearity in the
problem. So for regular geometries for which p ∼ q = a, the
wavelength scaled linearly with it.

Effect of thickness of disk joint. In order to examine if
the thickness h of the gel disk also affects the instability,
experiments were done using the gel of modulus μ = 30 kPa
and disk thickness h varying over 50 − 600 μm. Results from
these experiments (Fig. 4) show that for h > 450 μm fracture
is primarily mediated by the primary crack that propagates
almost whole through the area of the disk in the direction of
application of the load. For a smaller value of h, the lateral
secondary crack propagates with the appearance of the fingers.
For h varying over an order of magnitude, the characteristic
gap between the fingers was nearly independent of it. This
result implies that although the appearance of the instability
depends on the thickness of the gel disk, the morphology of
the instability remains independent of it.

Gel fracture experiment in normal mode. Several character-
istics of this instability corroborate with that of the fingering
phenomenon observed when a flexible adherent is lifted off a
confined elastic adhesive bonded to a rigid or flexible substrate
[1,4,5,25], although, unlike the latter, the experiment here is
essentially in shearing mode, i.e., in KII mode and not in
the KI mode. In order to examine if the fingering instability
during fracture of our gel would occur also during KI , i.e.,
the normal mode of loading, the experiment, as in Fig. 5(a)
was carried out. Here the hanging part of the gel block was
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FIG. 2. Images (a)–(d) and (e)–(g) correspond to 1 × 1 arrays of square joints of size a = 5 − 20 mm and pentagonal joint of size:
a = 7 − 15 mm, respectively. (h) Wavelength λ of instability is plotted against size a of disk joints. Symbols ◦ and � represent arrays of
square and pentagon, respectively; the array sizes vary from 1 × 1 to 10 × 10. Symbols • represent 1 × 1 arrays of circular joints of diameters,

d = 10 − 20 mm. Symbols , , , and represent disk joints as in Fig. 3. In all these cases, gel blocks of shear modulus μ = 30 kPa
are sheared at V = 31.25 μm/sec. Symbol � represents 1 × 1 square array of μ = 7 kPa and V = 31.25 μm/sec. Symbol � represents 1 ×
1 arrays of circles of different d , but of μ = 30 kPa. Symbols � and ♦ represent 1 × 1 array of circles of d = 14.14 mm and μ = 30 kPa
and 40 kPa, respectively. These joints were sheared at speed varying from V = 3.75 to 312.5 μm/sec; the error bars represent the standard
deviation in λ values. The solid line represents the best fit of the data according to the solution of Eq. (4). (i)–(m) Sequence of images captured
at different times depicts the evolution of fingers on the crack front when gel with μ = 30 kPa is sheared at V = 31.25 μm/sec.

013002-4



FINGERING INSTABILITY DURING FRACTURE OF A … PHYSICAL REVIEW E 102, 013002 (2020)

FIG. 3. Experiments were carried out using planar shapes of
joints for which the aspect ratio was different from 1. The arrow
denotes the direction in which the shear load was applied. The p/q
ratio for images (a) to (d) were 4.0, 2.24, 1.36, and 0.68, respectively.

pulled in a displacement controlled experiment off the portion
of the gel that remained housed inside the holder. A crack was
found to initiate from the loaded side of the disk joint and
to propagate whole through its area (as shown by the dashed
arrow). However, unlike previous experiments, here the crack
front was unwavy and straight [Figs. 5(b)–5(d). Experiments

with disks of different shapes showed this behavior suggesting
generality of the result. This observation can be rationalized
by considering that the thickness of the gel block, measured
normal to the plane of the disk joint, 2 × H = 32 mm, exceeds
the lateral dimension of the gel disk, d = 12.5 mm, imply-
ing that the gel block is essentially unconfined. For a soft
elastomeric layer, which is less than critically confined, the
fingering instability does not occur when fractured in the KI

or the lift-off mode. Yet, fingers do appear when the gel block
is loaded in the shearing or the KII mode without any apparent
confinement of the gel.

Fingering instability in unconfined systems has been ob-
served earlier with liquid films subjected to body or surface
forces, e.g., the free surface of a liquid flowing down an
inclined plane under gravity [26–28], a circular liquid disk
dispensed on a spinning plate subjected to centrifugal force
[29,30], and the surface of a liquid layer subjected to thermal
Marangoni stress [31,32]. A similar phenomenon is observed
also at the interface of a liquid and a soft solid. For example,
Marangoni stresses induced by an aqueous surfactant solution
dispensed on the surface of agarose and gelatin gel is found
to cause fracture on the gel surface which propagates via
protruding fingers [33–35]. The common feature in all these
examples is that the fingering instability occurs without any
confinement of the film and, therefore, the wavelength of
instability is mediated by the surface tension and/or gradient

FIG. 4. Thickness, h, of the disk joint (square) was varied and the gel block was subjected to shear loading as in the experiment of Fig. 1.
The arrow represents the direction in which the load was applied. Optical images represent the fracture plane at a typical intermediate state of
fracture. Gel blocks of shear modulus 30 kPa were used in these experiments. The dotted box in each case represents the boundary of the joint.
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FIG. 5. (a) Schematic shows the experiment in which the hang-
ing portion of the gel block (shear modulus μ = 30 kPa) is peeled off
the portion that remains supported inside the housing by application
of a lifting load. A motorized manipulator is used to exert the load
at a speed of V = 31.25 μm/s. The dotted arrow represents the
direction in which the crack propagates. (b)–(d) Sequence of images
depicts the progress of fracture along the plane of disk joints of three
different shapes.

in surface tension of the liquid. For a typical gel used in our
experiments, with elastic modulus, E = 6 kPa, and surface
tension, γ = 60 mJ/m2, the elastocapillary length can be cal-
culated as lc = γ /E = 10 μm, which is an order of magnitude
smaller than the wavelength of the instability observed in
experiments. This result suggests that the surface tension of
the gel does not determine the wavelength of the instability in
our experiments.

Analysis of initiation of primary and secondary crack. Ini-
tiation of primary and secondary cracks during shear loading
of the gel can be understood by considering an ideal situation
in which the supported portion of the gel block is subjected
to shear deformation along x over the cross-sectional area of
the disk joint by the hanging portion of the gel. Figure 6 elab-
orates the geometry in which the supported gel, represented
by an elastic half space, is indented by a flat punch having
a square cross section of the size 2α that is representative
of the hanging portion of the gel and the disk joint. The
elastic half space remains bounded at y = 0. Since the shear
deformation along x : u|y=0 remains uniform along the x and
z axes, the distribution of shear stress can be written as [35]

FIG. 6. Side view of indentation of an elastic half space in x − y
and z − y plane.

qxy = q0(1 − x2/α2)−1/2. The stress distribution results in a
singularity at the edge of the area of contact, which in the
limit, x → α, can be expressed as qxy ∼ q0

√
α/

√
2(α − x).

This stress singularity can induce shear fracture as it initially
happens from the top edge of the disk joint in our experiments
via nucleation of the primary crack. Interestingly, however,
the primary crack does not propagate whole through the cross
section of the joint but gets arrested possibly because of the
coupled effect of crack blunting and a competing secondary
crack that emanates from the side of the area of contact.
Initiation of the secondary crack from the side of the disk joint
can be rationalized by considering that shear loading of the
form qxy = q0(1 − x2/α2)−1/2 on the surface of the elastic half
space leads to a finite displacement along the −y direction,
i.e., normal to its surface [36]:

w|y=0 = − (1 − 2ν)q0α

2μ

α

x

{
1 −

(
1 − x2

α2

)1/2
}

. (1)

For an incompressible material with the Poisson ratio, ν →
0.5, the displacement w|y=0 vanishes, but for compressible
materials with finite compressibility, it remains finite. It has
been shown earlier [37] that acrylamide gel is compressible
with Poisson ratio varying over, ν = 0.45 − 0.47, which sug-
gests that w|y=0 is nonzero in our experiments. The negative
value of w|y=0 implies that this displacement corresponds to
an equivalent pulling stress σyy|y=0 on the elastic half space.
It is to be noted that equation w|y=0 remains uniform along
the z axis; drawing an analogy from the indentation of an
elastic half space by a rigid flat punch, it can be concluded
that the stress field σyy then varies along the z axis as [36]
σyy|y=0 = σy0(x)(1 − z2/α2)−1/2 in which the prefactor σy0(x)
can be deduced from Eq. (1) as [36]

σy0(x) = (1 − 2ν)q0

π (1 − ν)

α

x

{
1 −

(
1 − x2

α2

)1/2
}

. (2)

Since the tensile stress σyy|y=0 remains singular at z → α, the
secondary lateral crack can indeed nucleate at z = ±α and can
propagate along the z axis as observed in our experiments.
In other words, the compressibility of the material can lead
to mode I fracture as in a classical peeling or lifting plate
experiment although no peeling or lifting load is applied.

In order to rationalize the presence of undulation at this
crack front, as shown by the schematic as in Fig. 7, we now
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FIG. 7. (a) Schematic of the xz plane shows the occurrence of
fingers along the x axis that propagates along z. Points A and A′

define two typical locations along the crack front. δb is the amplitude
of the perturbation. (b) The schematic shows a typical yz plane at the
vicinity of the crack front.

consider the stress field in the gel at the vicinity of the crack
tip. In the limit z → α, this stress field can be expressed
as σyy ∼ σy0(x)

√
α/

√
2(α − z). The expression for σyy|z→α

has the general form σyy|z→α = KI/
√

2π (α − z) in which the
numerator is replaced by the mode I SIF, KI = σy0(x)

√
πα.

The stress singularity inherent in the above expression implies
that for a brittle solid the radius of curvature at the crack
tip equates to zero. However, for deformable materials, one
expects significant crack blunting, leading to a tip having
parabolic shape of finite radius of curvature [14,37–41] ρz.
The exact nature of ρz has been a subject of significant study in
the context of fracture of materials of different types: elastic,
elastoplastic, and viscoelastic. The summary of these studies
is that the crack tip radius is a physical quantity that depends
upon both material and geometric parameters. For example,
for fracture of an elastoplastic material [41], it depends upon
the elastic modulus, E , yield stress of the material, σY , and
the fracture energy, �:ρz = E�/σ 2

Y . On the other hand, in
the context of peeling a viscoelastic adhesive tape off a rigid
substrate, considering that fracture energy depends upon peel
angle, θ , ρz is expected to vary with the peel angle [39,40]
as ρz = P(1 − cos θ )/ωE , where P is the peeling load and
ω is the width of the tape. For lifting a flexible plate off an
elastic adhesive material [14], ρz can be shown to decrease
with an increase in the crack length defined as the distance
of the crack front from the line of application of the lifting
load. Similar to these solids, for fracture of the soft gel in
our experiment too, ρz (Fig. 7) is expected to be a function
of the crack length, δb: constant for a straight crack (δb = 0)
that spans along the x axis but varying along the contour
length of an undulatory crack. While the undulatory contour
of the crack front can be expressed as a superposition of
several Fourier modes, for simplicity we can consider only
the dominant mode of wavelength λ, so that the crack length
can be defined as δb = (A/2)[1 + sin(2πx/λ)]; here A is the
amplitude of the dominant mode. Drawing analogy from the
lifting plate experiment [14], ρz can be expected to decrease
with the crack length δb, so that it is smaller at point A′
with respect to that at point A. As a first approximation,
ρz can be expressed as ρz(b) = ρz0(1 − cδb/α), where c > 0
is a proportionality constant. Since the stress at the crack
tip is expressed as [38–40] σyy|crack tip = KI/

√
2πρz, at lo-

cation A on the crack front it can be expressed as σyy|A =
KI/

√
2πρz0, whereas at A′, it can be expressed as σyy|A′ =

KI/
√

2πρz0(1 − cδb/a) ∼ KI (1 + cδb/2α)/
√

2πρz0. Thus the

effective SIF at A′ increases to K∗
I ∼ KI (1 + cδb/2α). Us-

ing this expression for SIF, the corresponding strain en-
ergy release rate can be written as GI = (1 − ν2)(K∗

I )2/2E ∼
(1 − ν2)K2

I (1 + cδb/2α)2/2E , where E and ν are respectively
the Young’s modulus and Poisson ratio of the material. This
relation suggests that, for a finite value of δb, the strain energy
release rate at A′ remains higher than that at A. Since the
velocity of crack propagation increases with the strain energy
release rate [42,43], any perturbation at the crack front is
expected to amplify with the crest point A′ propagating faster
than the through point A on the crack front, implying that
the system is inherently unstable so that any undulation at the
crack front is expected to grow.

We will now show that, with an increase in the amplitude
of the perturbations, their wavelength is also expected to
increase. This aspect can be understood by considering that
the strain energy release rate calculated over the contour
length of the propagating crack front equates to the fracture
energy of the material:

1

λ

∫ l

0

(1 − ν2)(K∗
I )2

2E
dl = G. (3)

Here

l =
∫ λ

0

√
1 + (∂δb/∂x)2dx

=
∫ λ

0

√
1 + (Aπ/λ)2cos2(2πx/λ)dx

is the contour length of the crack front over one wavelength
of the perturbation. During crack propagation, SIF attains a
critical value, KI , which remains independent of the lateral
location x. The expression for fracture energy can be rewritten
as [44]

G ∼ (1 − ν2)K2
I

2Eλ

∫ λ

0

√
1 +

(
Aπ

λ

)2

cos2

(
2π

λ
x

)
dx.

The proportionality in the expression of G accounts for the
approximations made in defining KI . In the limit A → 0,
i.e., for a straight mode I crack without any undulation, G ∼
(1 − ν2)K2

I /2E . For fracture of a crosslinked gel, fracture
energy, G depends upon the number of bonds broken per unit
area and it remains constant irrespective of the undulatory
nature of the crack. The expression for wavelength can be
written in an implicit form as

λ = C
∫ λ

0

√
1 + (Aπ/λ)2cos2(2πx/λ)dx,

where C is the proportionality constant. Furthermore, since
the wavelength between the fingers is measured when the
length of the fingers reaches nearly half of the width of the
joint, the amplitude A can be replaced by α. The expression
for wavelength then yields

λ = C
√

(1 + (απ/λ)2)

×
∫ λ

0

√
1 − [(απ/λ)2/(1 + (απ/λ)2)]sin2(2πx/λ)dx.

(4)
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FIG. 8. Equation (4) was solved for different values of prefactor
C and α. For a given value of C, the λ vs 2α data were found to fall
on a straight line. Symbols ◦, �, and � represent C = 0.4, 0.15, and
0.1, respectively.

Note that the integral in the above expression defines the ellip-
tic integral of the second kind which is evaluated numerically
to obtain λ for a set of given values of prefactor C and α

(Fig. 8). The solid line in the plot of Fig. 2(h) also summarizes
the results from these calculations. For a given value of C,
the wavelength of the instability λ indeed increases with the
spatial dimension of α of the disk joint. For C = 0.15 the λ

vs α plot best fits the data obtained from experiments. While
the above analysis captures the experimental observations and
explains the scaling of wavelength, a more rigorous stability
analysis of the experiment will be required to capture the
dynamic evolution of the waves and to understand what
determines the prefactor.

IV. SUMMARY

To summarize, we have presented here a fingering instabil-
ity that occurs during fracture of a monolithic, multicuboidal

gel block when subjected to shearing load. Two portions of the
gel are sheared against each other across a disk joint, which
results in two undulatory mode I cracks propagating along
the plane of the disk in a direction normal to the direction of
application of the load. While several features of this instabil-
ity match closely with other well-known fingering phenomena
in confined, incompressible, elastic, and viscoelastic systems
subjected to peeling or lifting plate experiments, what distin-
guishes it from others is that it occurs at the bulk of an un-
confined gel block and the wavelength of the instability varies
linearly with the lateral dimensions of the plane in which they
appear. Importantly, the fingering instability does not appear
when the gel block is subjected to conventional peeling load
that drives mode I fracture in it. The origin of the instability
cannot be attributed to gradient in hydrostatic pressure, which
is known to drive fingering phenomenon in a confined liquid
system, as the cuboids are subjected to shearing stress across
the joining disk. This instability is different also from “bulk
elastic instability” in a soft confined gel in which balloon
shaped fingers appear even before fracture ensues [16,17].
Unlike these experiments, the gel materials used here are of
higher modulus and the instability occurs essentially in an un-
confined system. The phenomenon described here is different
also from elastocapillary instability mediated by the surface
tension of the solid [45]. This difference can be linked to
the difference in corresponding elastocapillary length, lEC ∼
γ /E , in these two different systems. Whereas in the previous
study [45], lEC ∼ 1.8 mm, here it was calculated to be 10 μm
or less, which is significantly smaller than all dimensions of
the gel and also the wavelength of the instability. Our analysis
shows that it is the finite compressibility of the gel material
that gives rise to stress concentration at the lateral edges of
the disk joining the two blocks and consequent propagation
of the crack; the difference in stress intensity that occurs along
the crack front amplifies any perturbation.
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