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Slow time scales in a dense vibrofluidized granular material
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Modeling collective motion in nonconservative systems, such as granular materials, is difficult since a general
microscopic-to-macroscopic approach is not available: there is no Hamiltonian, no known stationary densities
in phase space, and not a known small set of relevant variables. Phenomenological coarse-grained models are a
good alternative, provided that one has identified a few slow observables and collected a sufficient amount of data
for their dynamics. Here we study the case of a vibrofluidized dense granular material. The experimental study of
a tracer, dispersed into the media, showed evidence of many time scales: Fast ballistic, intermediate caged, slow
superdiffusive, and very slow diffusive. A numerical investigation has demonstrated that a tracer’s superdiffusion
is related to slow rotating drifts of the granular medium. Here we offer a deeper insight into the slow scales of
the granular medium, and we propose a phenomenological model for such a “secular” dynamics. Based upon the
model for the granular medium, we also introduce a model for the tracer (fast and slow) dynamics, which consists
in a stochastic system of equations for three coupled variables, and is therefore more refined and successful than
previous models.
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I. INTRODUCTION

Granular materials stand as prototypes of physical systems
with both important industrial applications and fundamental
theoretical challenges [1,2]. When the external perturbation
is absent or very weak (and/or sparse in time), a granular
medium behaves as an athermal amorphous solid: In this
regime, theoretical approaches are scarce and can rarely be
compared quantitatively with experiments [3,4]. The situation
is different in the case of so-called vibrofluidized regime, i.e.,
when a continuous external perturbation is applied, for in-
stance by means of vibrating the box that contains the grains,
provided that maximum shaking accelerations are much larger
than gravity acceleration [5,6]. Actually such a regime can be
separated into several different phases, depending upon the
amount of grains in the container (typically measured through
the number of layers at rest, or the average density/packing
fraction) and the shaking parameters [7,8]. In the most dilute
and agitated phase, the so-called granular gas, quantitative
predictions are obtained through granular kinetic theory [2]
and granular hydrodynamics [9,10]. Those are bottom-up
theories where macroscopic/average quantities, such as the
transport coefficients, can be deduced from the knowledge of
the laws of interaction among the single grains, with the as-
sumption (true in the dilute Grad-Boltzmann limit) of molec-
ular chaos, or its revised version called the Enskog approxima-
tion [2,9,11–13]. In recent decades, kinetic theory of molecu-
lar systems has made important progress toward a quantitative
understanding of the liquid phase [14,15], with success in
explaining certain aspects of slow relaxations in supercooled
liquids [16,17]. A similar approach has been applied to vi-
brofluidized granular systems in order to obtain some pre-
dictions in nondilute phases [18,19]. This approach—based
upon a granular adaptation of mode coupling theory (MCT)
[17]—reproduces the qualitative behavior of the relaxation

of density correlations in the system, with the possibility of
marking a glass transition where relaxation times diverge:
at the qualitative level, everything appears similar to the
molecular (nondissipative) case. The diffusional properties of
a tracer are also qualitatively similar to molecular liquids, with
the standard ballistic → arrested → diffusive scenario for the
mean-squared displacement. Rheological properties and the
typical thinning-thickening scenario are also explained fairly
well with this approach, even if experiments may offer more
complex pictures [20].

Experiments in dense vibrofluidized granular liquids in a
cylindrical geometry (see Fig. 1) have shown the existence
of a complex dynamical scenario with collective phenomena
occurring along time scales larger than the cage time scale
[21,22]. The cylindrical geometry enhances the possibility of
observing such time scales: A cylinder implies the existence
of a direction of motion—the rotational one—with an infinite
horizon, i.e., without obstacles (only subject to friction). The
slow collective dynamics determines two observable phenom-
ena: the superdiffusion (SD) for the dynamics of a tracer im-
mersed in the granular medium [21], and persistent rotational
motion (PR) of large parts of the granular medium [22]: both
phenomena—strictly correlated—appear when the density is
increased and/or the steady vibrofluidization is reduced, and
they take place over time scales in the range of 10–103 s,
depending on the packing fraction and shaking parameters,
while interactions occur on time scales of 10−3–10−2 s. Inter-
estingly, these unprecedented SD and PR are superimposed to
the usually observed fast phenomena occurring over small and
medium time scales, such as subcollisional ballistic motion
and transient dynamical arrest due to caging. Such persistent
motion is not accounted for by the aforementioned granular
mode coupling theory, since velocities are factored out in that
theory.
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FIG. 1. (a) Setup of the experiment and of the simulation.
(b) mean-squared displacements of the tracer (in experiments and
simulations) and of the collective rotation of the granular medium
(only simulations; see Sec. IV for the definition). � = 39.8 for all
the cases shown.

The rotational experiments are not unique—in the con-
text of granular materials—to show some kind of collective
motion occurring over very long time scales. A long history
of slow convective phenomena exists in regimes where the
external vibration is exceedingly weak (below the gravity
threshold) [23,24], but we consider those cases substantially
different from the case considered here, since they display ba-
sically only long time scales (no fast phenomena are present).
More recently, a series of vibrofluidized experiments has
revealed the so-called “low-frequency oscillations” (LFO)
[25,26], with frequencies below 1 Hz, superimposed to stan-
dard fast relaxational behavior. LFO and SD/PR phenomena
occur over different ranges of frequency (LFO close to 1 Hz,
SD/PR close to 0.1 Hz), and their connection is still to be
analyzed.

It is also interesting to compare the slow collective motion
seen in these granular experiments with similar phenomena
observed in models and experiments with active matter, for
instance in dense populations of bacteria [27,28] and sperms
[29], or even within the dynamics of a single flagellum [30].

In this paper, with the help of discrete-element simula-
tions reproducing the original experiment in [21], we aim
to elucidate some phenomenological stochastic models with

few coarse-grained variables that are able to describe the SD
and PR phenomena [31]. These models are an extension and
improvement over a previous one proposed in [32], which
was built to reproduce only the SD tracer behavior: The
limitations of that model are that it is not entirely coherent
with the observed tracer power spectra and does not describe
the granular medium (i.e., it cannot account for PR). These
models share minimality (in the spirit of Occam’s razor). In
fact, they include only linear couplings and additive indepen-
dent noises, allowing for an exact analytical treatment: their
goal is to characterize the existence of many time scales in
the system, and for this purpose nonlinearity is not a crucial
ingredient. A more general (not limited to linear coupling)
Langevin approach has also been considered by applying
a Langevin modeling recipe to the experimental data [33].
Linearly coupled models have been used before in granular
modeling: For instance, they are able to characterize the fail-
ure of the fluctuation-dissipation relation for the dynamics of
a tracer in certain models [34,35], but they have shown certain
limitations when compared with experiments [36]. Linear
modeling used for the purpose of quantifying nonequilibrium
features has also been used recently in the single-flagellum
dynamics of active particles [30].

The paper is organized as follows. In Sec. II we give a brief
account of the existing stochastic models for this particular
granular setup. In Sec. III the ingredients of the simulations
are explained. In Sec. IV we show how the collective ro-
tation of the granular medium is well reproduced by the
superposition of two independent collective variables obeying
linear Langevin equations with well-separated time scales. In
Sec. V we build upon the previous observation and describe
the motion of a rotating tracer as a third rotating variable
coupled to the granular medium, resulting de facto in a three-
variable model that shows a close adherence to experimental
and numerical power spectra. In Sec. VI we make a more
extensive comparison of the two models with numerical and
experimental data in order to rationalize the dependence of
the models’ parameters on the physical parameters of the
system. A more general discussion of the salient features of
the proposed models, together with conclusive perspectives,
is given in Sec. VII.

II. EXISTING LANGEVIN MODELS

A simple and old model of diffusion in dense liquids is the
so-called itinerant oscillator model, where the tracer is caged
in a (harmonic) potential well, whose minimum’s position is
not fixed but slowly diffuses [37,38]: This model helped in
rationalizing spectra from neutron scattering experiments on
liquids [39]. If diffusion of the potential minimum is slower
than the particle’s diffusion inside the well, then the behavior
of the tracer’s mean-squared displacement (MSD) shows a
transient plateau (equivalent to the dynamical arrest or caging)
followed by ordinary diffusion. If the dynamics inside the
well is underdamped, the first part of the tracer’s MSD time
dependence is ballistic ∼t2. The after-cage part, however, is
always of the ordinary diffusive type ∼t as the tracer is slaved
to the dynamics of the minimum’s position, which is purely
diffusive. The extension of this model proposed in [32] was
aimed at obtaining long superdiffusive regimes after the cage
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time. To obtain this result, an underdamped dynamics was
considered also for the position of the well’s minimum. Such
an extension takes the form of four coupled equations for the
angular velocity and position of the rotating tracer, ω(t ) and
θ (t ), respectively, and for the angular velocity and position
of a collective slow variable, which represents the effect of
a large group of particles surrounding the tracer (the cage),
ω0(t ) and θ0(t ), respectively:

Iω̇(t ) = −γω(t ) − k[θ (t ) − θ0(t )] +
√

2γ T η(t ), (1a)

I0ω̇0(t ) = −γ0ω0(t ) + k[θ (t ) − θ0(t )] +
√

2γ0T0η0(t ), (1b)

θ (t ) =
∫ t

0
ω(t ′)dt ′, θ0(t ) =

∫ t

0
ω0(t ′)dt ′. (1c)

In the above equations, η(t ) and η0(t ) are independent
Gaussian white noises with zero average and unitary variance,
namely 〈η(t )η(t ′)〉 = δ(t − t ′) and 〈η0(t )η(t ′)〉 = δ(t − t ′).
The parameters I and I0 are the inertia of the tracer and
of the surrounding medium, γ and γ0 are the dissipation
felt by the two variables, and T and T0 are “temperatures”
(assuming unitary Boltzmann constant kB = 1); see [35] for
a discussion of their physical interpretation. The coupling
between the tracer and the collective variable, in this model,
is represented by the term −k[θ (t ) − θ0(t )], which is linear in
the positions. With large enough values of I0, the inertia of the
cage, the model—which is analytically solvable—reproduces
long-time ballistic superdiffusion.

A problem of this model, however, is its inability to entirely
reproduce the velocity power density spectrum (PDS), which
is put in evidence in Fig. 2. We recall the definition used here
for velocity power spectrum,

S( f ) = lim
tTOT→∞

1

2πtTOT

∣∣∣∣
∫ tTOT

0
ω(t )e2π f idt

∣∣∣∣
2

(2)

FIG. 2. Comparison of the tracer’s velocity power spectra (PDS)
in experiments/simulations and the ones predicted (just for the
experiments) by Eqs. (1) and (3). The two models fail in reproducing
the data in region (II) in the same way. Both experiments and
simulations are performed with N = 2600. The peak close to 100 Hz
seen in the experimental spectrum is directly related to the driving
frequency and internal mechanical resonances of the setup; see [21]
for details.

(where tTOT is the total simulation time), which is also equiv-
alent to the Fourier transform of the autocorrelation function
in the steady state 〈ω(t )ω(0)〉. The experimental/numerical
power spectrum—read from high frequencies to low
frequencies—shows four main regions (labels are marked in
Fig. 2): (IV) at very high frequency a power-law decay (slower
than the pure Lorentzian case ∼ f −2 expected for exponen-
tially decaying velocity autocorrelations), (III) a bumplike
peak at smaller frequencies representing the almost periodic
oscillations inside a cage, (II) a plateau at even smaller fre-
quencies (suggesting a range of time scales where the process
rapidly loses memory), and finally (I) at the smallest observ-
able frequencies (unless day-long experiments are conducted)
a decay analogous to the high-frequency one. This decay at
very small frequencies is in fact interpreted, in the above
model, as the high-frequency decay of a very slow Ornstein-
Uhlenbeck process described by ω0(t ). The most evident
discrepancy between theory and experiments/simulations is
in the central plateau region (II): the inertial itinerant oscillator
model is not able to reproduce it.

A second attempt to obtain a meaningful Langevin model
for the angular velocity of the rotating tracer has been done
in [33]. Its advantage is that it is the result of a general con-
structive method of Markovian model-building based upon
the experimental data [the experimental time series of ω(t )]
and some guess about other possibly relevant variables (when
data present non-Markovian character, other variables must be
identified in order to obtain a proper Markovian embedding
[31]). In such a method, one is also able to verify that the cho-
sen variables are consistent with the Markovian hypothesis.
Such an advantage results in a more compact model, with a
smaller number of parameters:

ω̇(t ) = −A1ω(t ) − A2[θ (t ) − θ0(t )] +
√

2Bη(t ), (3a)

ω̇0(t ) = −A0ω0(t ) +
√

2B0η0(t ), (3b)

θ (t ) =
∫ t

0
ω(t ′)dt ′, θ0(t ) =

∫ t

0
ω0(t ′)dt ′, (3c)

where η(t ) and η0(t ) are Gaussian noises with unitary vari-
ance. This model is a particular limit of the model guessed
in [32], where the term k[θ (t ) − θ0(t )] is negligible with
respect to the other terms in Eq. (1b): indeed with the present
definition, ω0 evolves with a slow dynamics that does not
admit fluctuations on the fast time scale of θ1, so that such
a term is necessarily negligible. All other parameters are
strictly related to the parameters of the model in Eq. (1): A0,
A1, A2, B, and B0 should be directly compared with γ0/I0,
γ /I , k/I , γ T/I2, and γ0T0/I2

0 , respectively. This model well
reproduces the mean-squared displacement of the tracer with
its final superdiffusive part, while its comparison with the
power spectrum is unsatisfying in the central part, as in [32];
see Fig. 2.

Models in Eqs. (1) and (3) both involve two independent
white noises, but they are nevertheless a three-dimensional
linear model in which the Markovian vector is X (t ) =
{z(t ), ω(t ), ω0(t )} with z(t ) = θ (t ) − θ0(t ). One may wonder
if it is possible to obtain satisfying results with a two-variable
linear model. We know from the data that a minimum request
is a PDS with two stationary points (a minimum and a
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maximum) for f > 0. In the Appendix we show that this kind
of functional form is not compatible with the most general
form for a two-variable linear model. In view of this, using
a three-variable model is an unavoidable choice if one wants
to reproduce the experimental data through stochastic linear
models.

III. MICROSCOPIC MODEL

Simulations of the granular experiments are implemented
through the LAMMPS package with its module dedicated to
granular interactions [40]. LAMMPS is an optimized package
that solves the molecular-dynamics equations of motion and
in our case incorporates the interactions of discrete elements
methods to treat macroscopic (nonmolecular) particles such
as the spherical grains of the experimental setup. Specifically,
all interactions among the bodies in the simulation, including
interactions with the boundaries representing the experimental
box, obey the Hertz-Mindlin model [41–43]: The latter is a
soft potential that takes into account normal and tangential
forces, both composed of elastic and dissipative contributions.
Thus, our particles are spheres of mass mi, radius Ri, and mo-
mentum of inertia Ii = 2

5 miR2
i with spatial coordinates 	ri that

travel with translational velocities 	vi and rotational velocities
	ωi. We specify that the flat boundaries of the box are consid-
ered as spheres with infinite mass and radius. When centers
of mass of two particles are closer than the sum of their radii,
a collision takes place, which is the only situation in which
the interaction forces are nonzero: in that case, particles i and
j compenetrate to each other, and a relative velocity at the
surface of contact is defined as 	gi j = (	̇ri − 	ωi × Ri	n) − (	̇r j +
	ω j × Rj 	n), where 	n = (	ri − 	r j )/|	ri − 	r j |; we call 	gN

i j and 	gT
i j

the two projections, respectively normal and tangential, to this
surface of contact. Now the equations of motion read

	̇gN = 	F N/meff, (4a)

	̇gT = 7

2meff
	F T , (4b)

where meff
i j = mimj/(mi + mj ) while 	F N

i j = 	n(	n · 	Fi j ) and
	F T
i j = 	Fi j − 	F N

i j are, respectively, the normal and tangential

component of the force 	Fi j between the particles. Both of
these contributions are made of an elastic and a dissipative
term, tuned by coefficients that depend upon the properties of
the specific modeled material. To be more compact, we avoid
writing here the full form of these terms, reported and ex-
plained in detail in the supplemental material of our previous
study [22]. In the same reference, it is possible to find also the
specific numerical values used to tune our simulations. The
simulation setup mimics fairly well the experimental setup
of [21] with all its specific components and materials as the
cylindrical box with the conical base and the blade used as
an intruder. The good quantitative agreement between the
experimental and the numerical observations for the intruder
has been shown in [22] (see also Fig. 1 here). In the same
paper, simulations without the blade have also been performed
in order to study the collective motion of the granular medium,
inaccessible in the experiments. These studies confirmed that
the PR phenomenon displayed by the granular medium is
not affected by the presence of the tracer. Nevertheless we

specify here that, except when explicitly declared, all the data
relative to the collective motion shown in this paper (see 	

defined in the next section) come from simulations performed
without the blade. To conclude this section, we mention that
during the present numerical study an error in the source code
of LAMMPS has been found [44]. In particular, the tangential
force during the collision was always applied at the surface
of the particles (i.e., at a distance Ri from the center), and
this naturally led to an unphysical resultant torque during
contact. This error is actually critical from a physical point
of view because it breaks the conservation of the total angular
momentum expected in internal (sphere-sphere) interactions.
Nevertheless, we have corrected the code and run all the
simulations again verifying that this error does not affect our
old and new results in a significant way. Moreover, from the
LAMMPS stable release of 5 June 2019 the granular module has
been updated and the error fixed [45].

IV. COLLECTIVE VARIABLE (TWO TIME SCALES)

The results presented in [22] demonstrate that the SD
phenomenon displayed by the rotating tracer is a direct con-
sequence of the PR phenomenon exhibited by the granular
medium: While on small time scales the rotating tracer has
its own dynamics with short free flights and rapid bounces
against the boundaries of a local cage of surrounding grains,
on long time scales the tracer is dragged by a persistent col-
lective rotation of the surrounding medium. Such a medium
rotation is measured through a global angular velocity
defined as

	(t ) = 1

N

N∑
i=1

θ̇i(t ), (5a)

θi(t ) = arctan

(
yi(t )

xi(t )

)
, θ̇i(t ) = [ri(t ) × vi(t )]z

r2
i

, (5b)

where N is the number of granular particles, vi is the velocity
of particle i, and ri is the position of particle i with respect
to a coordinate system such that the origin lies on the axis
of rotational symmetry of the setup. The time integral of the
global angular velocity represents a global absolute angle


(t ) =
∫ t

0
	(t ′)dt ′. (6)

Such a variable, when density is increased and vibroflu-
idization is weakened, exhibits long persistent drifts in both
the clockwise and the anticlockwise direction. This implies
the appearance of superdiffusion for its mean-squared angle
〈�
2〉(t ) = 〈[
(t ′ + t ) − 
(t ′)]2〉 ∼ tβ with β > 1, as seen
in Fig. 1. Conversely, the power spectrum of the global
angular velocity 	(t ) shows a power-law decay at very low
frequency. We recall that ordinary diffusion (β = 1) at long
times must correspond, in the power spectrum of the velocity,
to a plateau at low frequencies. The low-frequency decay is
the symptom of persistent motion at long time scales.

In this section, we propose a model for the dynamics of
the collective granular rotation. The model is based upon the
same principles applied before to the motion of the tracer,
i.e., that persistent memory can be reproduced by considering
(at least) an auxiliary slow variable. An analysis of the data
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TABLE I. Numerical values of the fitted parameters for the collective variable in simulations via Eqs. (10b)–(10d) with α = 0 and the
tracer in experiments and simulations via Eqs. (11). The first and second rows refer to the same simulation with the blade.

τ1 (s) q1 (s−2) τ2 (s) q2 (s−2) τ (s) q (s−2) α

�=19.5 Tracer Simulations 9.6 × 10−2 5.7 × 10−3 1.1 × 104 2.0 × 10−2 7.3 × 10−4 4.4 × 10−1 5.0
� = 19.5 Coll. Var. Sim. with blade 5.8 × 10−3 1.1 × 10−3 1.1 × 104 8.1 × 10−4

� = 19.5 Coll. Var. Simulations 5.8 × 10−3 1.1 × 10−3 3.1 × 104 1.8 × 10−4

� = 30.6 Coll. Var. Simulations 1.1 × 10−2 1.4 × 10−3 3.9 × 103 9.9 × 10−5

� = 39.8 Coll. Var. Simulations 1.2 × 10−2 2.0 × 10−3 1.2 × 103 6.1 × 10−6

� = 59.8 Coll. Var. Simulations 1.4 × 10−2 3.6 × 10−3 1.1 × 103 5.4 × 10−6

� = 19.5 Tracer Experiments 1.03 × 10−1 1.0 × 10−3 4.6 × 103 4.2 × 10−1 2.8 × 10−3 4.5 × 10−1 6.8
� = 23.0 Tracer Experiments 1.06 × 10−1 1.1 × 10−3 7.0 × 103 5.1 × 10−1 2.8 × 10−3 5.1 × 10−1 5.0
� = 26.8 Tracer Experiments 1.09 × 10−1 1.2 × 10−3 2.0 × 101 4.7 × 10−3 3.0 × 10−3 6.2 × 10−1 3.7
� = 30.6 Tracer Experiments 1.10 × 10−1 1.4 × 10−3 4.0 × 101 3.4 × 10−3 3.3 × 10−3 7.3 × 10−1 2.8
� = 39.8 Tracer Experiments 1.11 × 10−1 2.0 × 10−3 1.1 × 101 2.5 × 10−3 4.2 × 10−3 9.5 × 10−1 2.1

coming from numerical simulations showed, however, that in
this particular case the modeling is even easier.

The model we propose for the dynamics of 	(t ) is the
sum of two independent variables, a fast and a slow one.
This direct superposition is different from the model in [32]
where the tracer’s velocity is always (harmonically) coupled
to the slow variable, even at small time scales. In that case,
the slow variable represents cage dynamics and the coupling
describes the natural confining interaction between the cage
and the tracer. However, such a cage dynamics is not present
in the collective rotation (no cage exists for the rotational
mode of the whole granular medium) and therefore there
is not a simple mechanism coupling fast and slow motion:
at a first level of approximation we can consider them to
be decoupled. We choose for simplicity two independent
Ornstein-Uhlenbeck (OU) processes with two different char-
acteristic times τ1 = I1/γ1 and τ2 = I2/γ2 and, in general, two
different temperatures T1 and T2. In summary, the model is
described by

	(t ) = 	1(t ) + 	2(t ), (7a)

I1	̇1(t ) = −γ1	1(t ) +
√

2T1γ1η1(t ), (7b)

I2	̇2(t ) = −γ2	2(t ) +
√

2T2γ2η2(t ). (7c)

In fact, the model can be rewritten with a smaller number
of parameters: the only coefficients that count are τi and qi =
Ti/Ii with i = 1, 2.

We are in the presence of a sum of two independent
variables, therefore the PDS and the MSD are simply the sum
of the two individual OU contributions:

〈�
2〉(t ) = 2q1τ1t + 2q1τ
2
1

(
e− t

τ1 − 1
)

+ 2q2τ2t + 2q2τ
2
2

(
e− t

τ2 − 1
)
, (8a)

S( f ) = q1τ1

π [1 + (2π f τ1)2]
+ q2τ2

π [1 + (2π f τ2)2]
. (8b)

Our idea is then to consider one of the two characteristic
times much larger than the other (τ2 
 τ1). To make clear
now the meaning of the two variables, we expect the slow
component of the collective variable, 	2, to behave similarly

FIG. 3. Collective motion. First comparison between model pre-
dictions and numerical data (N = 2600, � = 19.5–59.8). MSD and
PDS refer to the same signal. The simple model in Eqs. (7) fits
well the numerical data for both the PDS and the MSD. The fitted
parameters are reported in Table I.
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to the filtered variable

	s(t ) = 1

τ f

∫ t+τ f

t
	(t ′)dt ′, (9)

obtained with a moving average of 	(t ) over a time τ f such
that τ2 
 τ f 
 τ1. To verify this conjecture, we proceed in
two ways: first, we try to fit the numerical MSD and PDS via
Eqs. (8), and then we show that the superdiffusive part at late
times of the collective MSD coincides with the MSD of the
filtered variable 〈�
s(t )2〉, where 
s(t ) = ∫ t

0 	s(t ′)dt ′.
In Fig. 3 we show how Eqs. (8) can fit the numerical data

for two particular cases of control parameters (N = 2600,
� = 19.5–59.8), postponing a more systematic analysis to
Sec. VI. To obtain the theoretical lines, we first performed a fit
of the PDS via Eq. (8b) and then used the parameters inferred
in this way also for the MSD [Eq. (8)]. We can see that the
model properly predicts the behavior of the two observables.
In the PDS there is a good agreement at all the frequency
regimes except for the high-frequency decay, where a linear
model can only predict a f −2 behavior while the data show
f −α with 2 > α > 1. The MSD also exhibits an almost perfect
agreement between data and model predictions at all time
scales. We conclude that the idea of decomposing the total
collective variable into two independent contributions that act
at two well-separated time scales is reasonable. Looking at the
numerical values of the fitted parameters in Table I, one can
can verify that τ2 ∼ tTOT 
 τ1.

In Fig. 3(b) we show the MSD of 	 and 	s for two values
of �, one cold case and one hot case at similar density. For
the cold case, i.e., at low �, we see that 〈�
(t )2〉 is ballistic
at all times except for the initial ones (the fast component
is very weak so the slow one emerges immediately). In the
warmer case, we can clearly distinguish the two contributions
to the total MSD: the fast one that dominates the first times
with its ballistic part and then diffuses, and the slow one that
dominates the late times with superdiffusion. Regarding the
filtered MSDs, we can see that in both cases it emerges in
the total one exactly at the beginning of the superdiffusive
regime, at late times. In principle, it is not obvious that the
filter used for 	s is able to isolate the slow component of
a sum of two signals. We can clearly expect that 〈�
s(t )2〉
has to overlap the total MSD for t > τ f , but how can we
be sure that it is really describing the MSD of 	2(t ), i.e.,
the slow component of 	? We try to answer to this question
with Fig. 4, where we study the effect of the filter on two
qualitatively different signals for several choices of τ f . We
first discuss the MSD of the collective variable in a dilute
case (N = 300), where we have an ordinary ballistic-diffusive
behavior with just one relevant time scale [22]. We can see that
in this case the filter lowers the energy of the ballistic part and
stretches the ballistic part up to times t ∼ τ f where the filtered
MSD reunites with the original one. In the dense case (e.g.,
low �), the MSD has the ballistic-diffusive-superdiffusive
behavior with two relevant time scales (the fast τ1 and the
slow τ2 of the aforementioned model), but we can consider
a third one τ ∗ defined as the time for which the slow variable
starts to dominate the total MSD (so the time when the late
superdiffusion starts, close to τ2). In this case, the filter acts
as in the previous one, but for τ f > τ ∗ it reaches a kind
of saturation and leaves the shape of the MSD unchanged

FIG. 4. MSD of the total signals and the filtered ones for several
τ f ’s and two values of N with fixed � = 39.8.

(see the yellow and cyan-dashed lines that overlap). This
implies that for τ f > τ ∗, the time in which 〈�
(t )2〉 and
〈�
s(t )2〉 reunite coincides with τ ∗ and no longer with τ f . In
view of these last analyses, we can conclude that if in our data
a contribution of a slow variable is present, this filter operation
tends to isolate it.

To sum up, in this section we have provided evidence of
two main facts:

(i) The collective variable behaves as the sum of two
independent OU processes with different characteristic times
	(t ) = 	1(t ) + 	2(t ).

(ii) A running average 	s(t ) = τ−1
f

∫ t+τ f

t 	(t ′)dt ′, with τ f

larger than the time τ1 in which the fast component dominates,
successfully isolates 	2(t ), i.e., the slow component of 	.

V. MOTION OF A ROTATING TRACER
(THREE TIME SCALES)

Once we have a satisfying model for the collective granular
motion, a model for the tracer’s motion can be studied on
a solid basis, with the aim of improving the model in [32].
The final model for the tracer appears as a system of three
equations for three variables (where actually two of them are
independent from each other). To build this model, we have
considered that the tracer is moving in a complex granular
fluid: Such a fluid has two characteristic time scales, as
explained in the previous section. The coupling between the
tracer and the background granular fluid can be modeled in
two different ways: as a conservative interaction that depends
upon a relative position between the tracer and a represen-
tative fluid particle, or as a viscous interaction that depends
upon the relative velocity between the tracer and the fluid.
The first choice was adopted in [32], but our present study
convinced us that the second choice gives a better comparison
with data. For a viscous interaction we were inspired by
[35], where a linear model for a massive granular tracer
in a granular fluid (in a planar, not cylindrical, geometry)
was considered. The tracer—characterized by velocity V (t )—
was coupled with the fluid—characterized by local velocity
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U (t )—through a viscous drag term proportional to V (t ) −
U (t ). Depending on the specific region of the parameter space,
this model can reproduce both ordinary Brownian motion and
cage effects with the ballistic-caged-diffusive behavior in the
MSD and the backscattering peak in the PDS. Therefore, it
only lacks the superdiffusion at late times to properly describe
the phenomenon of interest here. As we explained in Sec. II,
we cannot expect such a complex behavior from a linear
model with two variables, therefore we have to insert a third
one, trying to be as little artificial as possible. To do so, we
leave the equation for the tracer unchanged and complicate
the expression of the auxiliary variable making it coincide
with the collective variable 	 relative to the subset of the
granular particles in the bulk that actually influence the tracer
dynamics. This quantity is always modeled by Eqs. (7) and
defined by Eq. (5a) but with the mean operation extended just
on the aforementioned subset of grains. We expect for it the
same qualitative behavior (but in general not quantitative) of
the global collective variable studied in the previous section:
for this reason, we decided not to introduce a new symbol for
it.

We end up with a three-variable linear model defined by
the following equations:

Iω̇(t ) = −γ [ω(t ) − 	(t )] +
√

2T γ η(t ), (10a)

	(t ) = 	1(t ) + 	2(t ), (10b)

I1	̇1(t ) = −γ1	1(t ) − γcω(t ) +
√

2T1γ1η1(t ), (10c)

I2	̇2(t ) = −γ2	2(t ) +
√

2T2γ2η2(t ). (10d)

Here we see that the bulk collective variable 	 acts as a
local velocity field on the tracer whose velocity is ω(t ). At
the same time, the fast component of the collective variable
	1 is coupled with ω through a viscous constant γc. These
last two ingredients originate the observed broad cage effect.
The slow component 	2 is independent of the other variables,
and, as suggested by the numerical analysis, it will emerge
at late times in the MSD and at small frequency in the PDS.
Regarding the physical meaning of the coefficients, we have
for each variable an inertia Ii, a viscous coefficient γi, and
a temperature Ti. We note that the dilute limit (a simple OU
process for the tracer) is recovered by sending γ1/I1 → ∞ and
γ2/I2 → ∞, while the model for the collective variable alone
[Eqs. (7)] is obtained by setting γc = 0. As already noted in
previous studies [35,46], we recall here that Eqs. (10) are
equivalent to a generalized Langevin equation with exponen-
tial memory, which is consistent with a typical approximation
done for Brownian motion when, at high densities, the cou-
pling of the tracer with fluid hydrodynamics modes, decaying
exponentially in time (see [47], Chaps. 8.6 and 9.1), must be
taken into account.

From Eqs. (10), exploiting the formalism of the mul-
tivariate linear stochastic processes [48], we can compute
(see the Appendix) the PDS of the tracer. In Fig. 5 we
show a comparison with the experimental and numerical data,
finding good agreement in all the frequency regimes. The
improvement with respect to the model defined by Eqs. (1)
and (3) regards the form of the PDS. In the previous model,
the peak and the valley of the PDS are specular, i.e., their
position and width depend upon the same combination of

FIG. 5. Comparison between experimental/numerical data and
the model [Eq. (10)] for the PDS of the tracer for many values of
� and fixed N = 2600. See the caption of Fig. 2 for an explanation
of the peak close to 100 Hz in the experimental spectrum.

parameters, so they cannot be changed independently (Fig. 2).
The experimental and numerical PDS show instead that the
valley and the backscattering peak are never specular, and
in general this is coherent with the scenario suggested by
the numerical simulations. Indeed, the valley is actually the
crossover between the motion of the tracer inside the cage and
the movement of the cage itself that enslaves the tracer. Once
the presence of a persistent collective motion of the granular
medium is verified, we can say that the cage moves as the
collective variable on two time scales that are, with a good
approximation, independent. In this picture, it is thus reason-
able that the frequency (time) at which the slow component
emerges in the PDS (MSD) could change independently from
what is happening at the characteristic frequency (time) of the
backscattering (cage) effect and vice versa. This is possible
with Eqs. (10) by changing a combination of two parameters
and leaving the others fixed (Fig. 6).

Both for Eqs. (7) and (10), the number of independent
parameters needed is actually smaller than the one used, but
we have kept some redundancy for the purpose of presenting
clearer model equations. Now, rescaling all the equations by
the inertia Ii, we can rewrite the two models in a compact form
that is more suitable for the next section. For the tracer, we
have

ω̇(t ) = − 1

τ
[ω(t ) − 	(t )] +

√
2

q

τ
η(t ), (11a)

	(t ) = 	1(t ) + 	2(t ), (11b)

	̇1(t ) = − 1

τ1
[	1(t ) + αω(t )] +

√
2

q1

τ1
η1(t ), (11c)

	̇2(t ) = − 1

τ2
	2(t ) +

√
2

q2

τ2
η2(t ), (11d)

where τi = Ii/γi, qi = Ti/Ii, and α = γc/γ1. Regarding the
model for the collective variable alone, we note that the
rescaled form of Eqs. (7) (for the granular bulk dynamics
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FIG. 6. Four different shapes of S( f ), obtained by plotting the
PDS of ω(t ) computed from model (10) or different arbitrary choices
of the parameters where τi = Ii/γi, qi = Ti/Ii, and α = γc/I1. We
demonstrate that it is possible to change the broadness of the valley
independently of that of the backscattering peak and vice versa.

when the tracer is absent) coincides with Eqs. (11b)–(11d)
once we set α = 0.

The last aspect of the proposed model we want discuss
concerns the physical meaning of couplings between variables
in a system of Langevin equations. First we note that also
without the introduction of auxiliary variables the effect on the
tracer of the surrounding fluid is intrinsically contained in the
Langevin approach. Indeed, also for ordinary Brownian mo-
tion [Eq. (11a) without 	(t )] the characteristic time τ and the
stationary variance q depend on the properties of both tracer
and fluid [49]. The need for additional variables emerges just
in the presence of multiple time scales in the tracer dynamics.
In view of this, referring to Eqs. (11), we can say that from
an energetic point of view the effect of the granular medium
on the tracer can be contained in q alone. Indeed, provided
that τ � τ1 and q 
 q1, the fluctuations in the steady states
of ω are not affected by the introduction of 	1. We can expect
that this limit holds in our system because the inertia of the
local collective variable I1 is reasonably higher than that of the
blade I . We will confirm this expectation in the next section,
in which our fitting procedure shows that q and the variance
of ω are almost coincident as in a single variable process.

These features are independent of α in Eq. (11c), so in
this limit α represents the adimensional strength of a coupling
that affects just the memory and not the energy of the tracer
dynamics. In other words, the introduction of 	1 changes
the shape of the PDS of ω leaving its integral unaltered
[we remember here that if 〈ω〉 = 0, then

∫ ∞
0 df S( f ) = 〈ω2〉].

Remarkably, studying the derivative of S( f ), it is possible to
see that α > 0 is a necessary condition for the occurrence
of the backscattering effect. So, in our model, this effect is
possible only if the tracer is coupled with a variable that is
influenced by the tracer itself. This fact is compatible with
the intuitive physical mechanism with which backscattering
is rationalized: The surrounding fluid is perturbed by the
intruder, and the latter feels with some delay in time the

effect of this perturbation. In view of this mutual influence,
we find even more appropriate the definition of 	 as a local
field in Eqs. (10) and (11). Indeed, even if the whole granular
medium can be reasonably unperturbed by the intruder, there
will always be a local fraction of it that interacts reciprocally
with the tracer giving rise to the backscattering effect.

This clarifies also the way in which the tracer is coupled
with 	2 that is not affected by ω. Indeed, the cage of surround-
ing grains has two main effects: Confining the tracer with
backscattering (coupling between ω and 	1 with reciprocal
influence) and dragging it into the slow dynamics (coupling
between ω and 	2 without reciprocal influence).

VI. PHYSICAL MEANING OF
THE MODEL’S PARAMETERS

In this section, we attempt to systematically fit our model’s
parameters with the results of the numerical simulations and
experiments. This task has two main motivations. First, it may
suggest a way to infer or guess the model’s parameters (or
their behavior when physical parameters are varied) in general
situations. Second, it makes more robust the identification of
the model: A fuzzy or unintelligible behavior of the model’s
parameter would be the symptom of a weakness of the model
itself.

For this purpose, we report in Table I the fitted parameters
obtained for the collective variable (simulations) via Eqs.
(11b)–(11d) with α = 0 and for the tracer (experiments and
simulations) via Eqs. (11) for many values of �. We first
concentrate on the numerical data for the collective variable
	. From Eqs. (7) and (11) it is clear that the sum of two inde-
pendent OU processes depends on four parameters: τ1, q1, τ2,
and q2, where τi is the characteristic time of the single process
and qi is its variance. In Sec. IV we verified that Eqs. (7)
properly reproduce the functional form of the numerical PDS
and MSD. Now we want to study how the fitted parameters
behave as a function of �. In particular, we are interested in
verifying whether their numerical values reflect the physical
intuitions upon which the model with two variables is based.
In Fig. 7 we can clearly see that τ1 and q1 are increasing with �

while τ2 and q2 are decreasing. The behavior of q1 is intuitive
because we can reasonably think that this parameter grows
with the “temperature” of the physical external driving (the
shaker). The behavior of τ2 and q2 corroborates our intuition
that reducing � induces the emergence of a slow time scale
whose persistency time (τ2) and intensity (q2) grow. The mi-
croscopic origin of this fact can be understood by considering
the dynamical heterogeneity present in this system (see, for
instance, [22]): local temperature and pressure may vary a
lot in space. When a collective motion emerges, we find
that a great fraction of particles participates—as a condensed
state—in the collective motion, and a smaller one still exhibits
a gaslike behavior. We can actually imagine that the slow
contribution 	2 to the total variable 	 is mainly due to the
particles in this condensed phase, whose number could be
thought of as proportional to the effective inertia of 	2. At
this point it is clear that increasing � reduces the fraction of
particles in the condensed phase and consequently reduces τ2.
The growth of τ1 with � does not have an easy explanation
in our opinion. In dilute kinetic models, the dissipative drag
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FIG. 7. Fitted parameter for the collective variable (simulations)
vs � with fixed N = 2600. Fit has been done via PDS [Eq. (8b)]
relative to Eqs. (11b)–(11d) with α = 0. Numerical values of the
parameters are also reported in Table I.

(here the inverse of τ1) is often related to the mean collision
frequency (mediated through a ratio of masses and other
factors): however, this quantity may have opposite trends
when � grows, i.e., it may increase because there is more
energy (faster collisions) or it may decrease because there is
a larger mean free path. Apparently, the second phenomenon
dominates the first. The connection between dissipation and
collision frequency, however, is reasonable for dilute gases but
certainly not obvious in condensed phases.

Regarding the experimental data of the tracer, from
Eqs. (11) we see that the number of free parameters for a fit is
seven, and they are τ, q, τ1, q1, τ2, q2, α. We recall that q, q1,
and q2 would be equal to the stationary variances of ω, 	1, and
	2, respectively, if these variables were not coupled. In our
model with couplings one must consider the covariance matrix
σ (see Appendix A 2), which is related to the noise amplitudes
through a relation that also involves the coupling matrix [48].
However, in view of the discussion about couplings at the
end of Sec. V, and with the aim of reducing the freedom in
the fitting procedure, we decided to set q to coincide with
the variance of ω measured in experiments. We then verify
a posteriori how good is this approximation. In Fig. 8(a) we
compare the experimental 〈(ω − 〈ω〉)2〉 with the theoretical
one calculated with fitted parameters, and we verify that our
assumption is reasonable. The behavior of q together with that
of τ , τ2, and q2 shown in the same figure [panels (b), (c), and
(d)] is coherent with the phenomenology already explained
for fast and slow parts of the collective variable of Fig. 7
(we remind the reader that 	2 is totally independent from
the other variables, so q2 always coincides with the variance
of 	2). Indeed, the idea of our model is to consider the
tracer (ω) enslaved by the collective variable: At short times
it feels the effect of the fast component 	1 (high-frequency
decay and backscattering peak) while at late times 	2 starts

FIG. 8. Fitted parameters for experimental tracer vs � with fixed
N = 2600. Fit has been done via PDS [see Eq. (A7) in the Appendix]
relative to Eqs. (11). Numerical values of the parameters are also
reported in Table I.

to dominate the entire dynamics with its persistent ballistic
drifts. The motion of the tracer is then characterized by more
than one characteristic time scale. Looking at Eq. (10a), it is
quite natural to associate τ and q, respectively, with the char-
acteristic time and the variance of the short-time dynamics
of ω. It is therefore reassuring to find for these parameters
similar behaviors to those observed for τ1 and q1 in numerical
simulations [compare panels (a) and (b) of Figs. 7 and 8]. Also
the values of τ1 and q1 obtained from the experimental data
via Eqs. (11) (not shown in the figures but reported in Table I)
follow the same qualitative behavior. Regarding couplings,
our fitting procedure revealed the situation depicted at the end
of Sec. V. Looking at Table I and Fig. 8, we find that the
effect on the tracer of the auxiliary variables is negligible from
an energetic point of view [q  〈(ω − 〈ω〉)2〉] but not from a
memory one [α ∼ O(1 − 10) for all the fitted spectra].

The results reported in Fig. 8 regard the experimental
tracer, but, as is shown for one case (� = 19.5) in Fig. 5,
we have also tested our model on the numerical data coming
from the simulations with the blade. We note that the good
agreement shown is obtained for values of τ1, q1, τ2, and q2

that are quite different from those coming from a direct fit of
the two components of the collective variable in simulations
with or without the blade (see the first, second, and seventh
rows of Table I). This is not surprising because, as already
stated at the end of Sec. V, the variable 	 actually coupled
to the tracer, in Eqs. (10) and (11), is a local collective
variable. The latter reasonably differs—quantitatively—from
the global one because of a considerable spatial heterogeneity
of granular temperature and diffusivity [22].

VII. CONCLUSIONS

In conclusion, we have proposed a series of linear stochas-
tic models to rationalize a series of experimental and numer-
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ical results. In the phenomenon we have tackled, vibroflu-
idized dense granular materials display persistent slow drifts
superimposed to fast collisional processes. We stress that
the proposed models are purely phenomenological. They can
be considered analogous to hydrodynamic models for dense
fluids (even granular fluids), where the transport coefficients
are not derived from microscopic parameters but are obtained
from empirical observations. An important added value of
phenomenological models for slow variables is to offer argu-
ments in favor of the idea of scale separations, which is not
always guaranteed in granular fluids [33,50,51].

We have built two main models. The first one is for the
motion of the angular drift of the granular medium, which is
a sum of two independent Langevin diffusions (i.e., Brownian
motion with inertia), characterizing fast and slow scales: the
independence is consistent with the lack of cage effects, which
are usually evidence of coupling between fast and slow scales.
The presence of inertia also in the slow mode provides the
main ingredient for persistent ballistic motion. The second
model is for the motion of a rotating tracer immersed in the
granular medium, which is the most accessible variable in
experiments. Such a model is built upon the idea that the

tracer is coupled with a local fraction of the surrounding
medium through a purely viscous interaction, similar to other
granular tracer models. Since both models contain several
independent parameters, it is not surprising that they repro-
duce all available data. Less trivial is the fact that the fitted
parameters behave in a coherent way and are consistent with
physical intuition, as shown in Sec. VI. We have also solved
an important inconsistency of a previous model for the tracer
[32], which was unable to describe the power spectrum at
medium time scales.

We hope to stimulate future theoretical investigations in
order to derive these models, or part of their parameters,
following a kinetic theoretical approach.
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APPENDIX: MULTIVARIATE LINEAR STOCHASTIC PROCESSES

1. Generic process with two variables

A generic multivariate linear stochastic process can be written as Ẋ (t ) = −AX (t ) + Bη̃(t ), where X (t ) is a vector of variables,
η̃(t ) is a vector of white noises with zero mean and unitary variance, while A and B are the matrices that define characteristic
times, diffusion coefficients, and eventually couplings of the variables. In two dimensions, assuming independent noises between
the variables, we have X (t ) = {x0(t ), x1(t )} and

A =
(

a b
c d

)
, B =

(
D1 0
0 D2

)
, η̃(t ) =

(
η1(t )
η2(t )

)
. (A1)

We can now compute the spectral matrix through the following relation [48]:

S( f ) = 1

2π
(A + i2π f )−1BBT (AT − i2π f )−1, (A2)

obtaining for the spectrum of a single variable [for example x0(t )]

S00( f ) =
1

2π
D2

1d2 + 2πD2
1 f 2 + 1

2π
D2

2b2

[16π4 f 4 + 4π2 f 2
(
a2 + 2bc + d2

) + a2d2 − 2abcd + b2c2]
. (A3)

Computing the first derivative, we find S′
00( f ) = P( f )/Q( f ), where P( f ) = c1 f 5 + c2 f 3 + c3 f with c1, c2 < 0. This polyno-

mial cannot have a double stationary point in the region f > 0, so there is not any choice of parameters that reproduce the
behavior of interest here, i.e., a low-frequency decay followed by a backscattering peak. These results do not change if we take
x1(t ) instead of x0(t ).

2. Model for the tracer

From Eqs. (10) we have Ẋ (t ) = −AX (t ) + Bη̃(t ) with X (t ) = {ω(t ),	1(t ),	2(t )} and

A =
⎛
⎝ μ −μ −μ

μ1 α 0
0 0 μ2

⎞
⎠, (A4)

B =
⎛
⎝

√
2μq 0 0
0

√
2μ1q1 0

0 0
√

2μ2q2

⎞
⎠, (A5)

η̃ =
⎛
⎝ η(t )

η1(t )
η2(t )

⎞
⎠, (A6)
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where μi = 1/τi = γi/Ii, qi = Ti/Ii, and α = γc/γ1. The covariance matrix σ is related to A and B through the relation Aσ +
σAT = BBT . We have computed the spectrum used for the fit of Secs. V and VI always through Eq. (A2) obtaining Eq. (A7)
where f̂ = 2π f ,

S00( f̂ ) = μ/π
[

f̂ 4q + f̂ 2
(
μ2

1q + μ1μq1 + μ2
2q + μ2μq2

) + μ2
1μ

2
2q + μ2

1μ2μq2 + μ1μ
2
2μq1

]
f̂ 6 + f̂ 4

(
μ2

1 + μ2
2 + μ2 − 2μα

) + f̂ 2
(
μ2

1μ
2
2 + μ2

1μ
2 + 2μ1μ2α + μ2

2μ
2 − 2μ2

2μα + μ2α2
) + μ2

2μ
2(α + μ1)2

.
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