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Mpemba effect in driven granular Maxwell gases
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A Mpemba effect refers to the counterintuitive result that, when quenched to a low temperature, a system
at higher temperature may equilibrate faster than one at intermediate temperatures. This effect has recently
been demonstrated in driven granular gases, both for smooth as well as rough hard-sphere systems based on
a perturbative analysis. In this paper, we consider the inelastic driven Maxwell gas, a simplified model for
a granular gas, where the rate of collision is assumed to be independent of the relative velocity. Through
an exact analysis, we determine the conditions under which the Mpemba effect is present in this model. For
monodispersed gases, we show that the Mpemba effect is present only when the initial states are allowed to be
nonstationary, while for bidispersed gases, it is present for some steady-state initial states. We also demonstrate
the existence of the strong Mpemba effect for bidispersed Maxwell gas, wherein the system at higher temperature
relaxes to a final steady state at an exponentially faster rate leading to smaller equilibration time.
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I. INTRODUCTION

A classic lore associated with everyday experience is that
under certain conditions, hot water freezes faster than cold
water. Even though this intriguing effect has been known since
Aristotelian times [1,2], it has been named the Mpemba effect
after E. B. Mpemba, who was the first to study it systemat-
ically [3]. This out-of-equilibrium relaxation behavior is in
stark contrast to quasistatic relaxations, where systems with
different initial conditions evolve in time through equilibrium
states and therefore their temperatures never cross.

Several mechanisms were suggested to explain the
Mpemba effect in water. These include conceptually simple
mechanisms, as supercooling [4], convection [5], and evap-
oration [6], as well as more sophisticated explanations as the
anomalous relaxation of the hydrogen bond [7,8]. Others have
argued that the effect does not exist in water [9]. Regardless
of the true status of the effect in water, a similar effect was
experimentally observed in a wide range of physical systems
ranging from magnetic alloys [10] and clathrate hydrates [11]
to polylactides [12].

In addition to experiments, various numerical tools and
model systems were used to shed light on such anomalous
relaxations. To better understand the effect in water, detailed
molecular dynamic simulations were performed [7,13,14].
In these simulations, the system is made of up to several
thousand molecules, with pairwise interactions that model
the interactions between the water molecules. The initial
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configuration of the system is commonly sampled from the
Boltzmann distribution of the hot or warm temperature, and
the dynamic follows a standard molecular dynamic protocol
that corresponds to the cold temperature. A different numeri-
cal approach was applied on spin systems, for both ordered
[15] as well as glassy [16] models. Using a Monte Carlo
simulation, the value of some order parameters were tracked
during the relaxation process of systems that were sampled
from the equilibrium distribution of a hot and a warm tempera-
ture, and evolved under Markovian dynamics that corresponds
to a cold temperature. If, during the relaxation process the
corresponding order parameters of the hot and cold systems
intersect, then the Mpemba effect exists in the system.

On the analytic front, two different approaches were used
to address the Mpemba effect so far. In Refs. [17–19], the
Mpemba effect was defined and evaluated through the dis-
tance between probability distributions during the relaxation
process. To this end, the probability distribution describing the
system is initiated at the equilibrium (Boltzmann) distribution
of the hot or warm temperature. The system is then quenched
into an environment with a cold temperature, and thus the
probability distribution of the system evolves in time toward
the equilibrium of the cold temperature. By tracking the
distance, in probability space, between the time dependent
probability and the final equilibrium, the Mpemba effect can
be identified, and the exact conditions for its existence were
derived. Moreover, this framework naturally suggest a rich
class of related phenomena, including the inverse Mpemba
effect [17] where a cold system heats up faster than a warmer
system; the strong Mpemba effect [18] where a specific initial
temperature results in a jump in the relaxation rate; and non-
monotonic optimal heating protocols [15] where the optimal
heating protocol has a precooling stage.
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A different theoretical framework was used in the con-
text of driven granular gases [20–22]. A granular gas is a
dilute composition of particles that move ballistically and
interact through momentum conserving binary inelastic col-
lisions. These dissipative systems approach a steady state
when externally driven to compensate for the kinetic energy
which is lost in the inter-particle collisions. For the driven
granular system with smooth monodispersed particles which
interact via binary collisions with a rate proportional to the
magnitude of the relative velocities of the colliding particles,
it was shown that the total energy of a system with a higher
initial energy attains the final low energy state before a
similar system with an intermediate initial energy [20]. The
effect was achieved by independently varying the deviation
of the velocity distribution from a Gaussian, characterized
by the coefficient of the second Sonine polynomial a2. In
this approach, the system was initiated in a nonstationary
distribution, and relaxed toward the corresponding steady
state (which is not an equilibrium distribution) associated with
the parameters of the system. The Mpemba effect then exists
in the system if a nonequilibrium system which is further
away from equilibrium, namely has more energy in its initial
state, equilibrates faster than an initial condition which is
closer to the equilibrium state. The Mpemba effect was also
demonstrated for a rough granular gas, where a much larger
range of initial energies result in anomalous relaxations [21]
as well as for a gas of viscoelastic particles [22]. In both the
rough and smooth granular gas, the velocity distribution at
all times was approximated by a Gaussian or Gaussian and
first order corrections, respectively, making the calculations
perturbative in nature.

Do the results in the various frameworks for different
systems correspond to the same effect? This is a key question,
for which the answer is yet unknown. In this manuscript, we
partially address a specific difference that plays an important
role in both the numerical and analytical results developed
so far—the initial condition of the system. In the Markovian
framework, the initial condition of the hot and warm systems
is an equilibrium distribution corresponding to the initial tem-
perature [17–19]. In contrast, in the granular gas approach the
initial distributions are not a steady state of the system for any
(effective) temperature but are rather transient distributions
with different amount of total energy. These distributions
relax toward the steady-state distribution by energy exchange
between the particles as well as with some bath [20,21]. A
similar difference in the initial conditions exists between the
various molecular dynamic simulations calculated for water
molecules: in [14] the system was initially sampled from
a hot or warm temperature and then quenched to a cold
environment, whereas in [13] the initial condition is not the
equilibrium distribution of any temperature, but rather an
altered distribution of the final temperature.

To address this specific difference between the two ap-
proaches, we consider the inelastic Maxwell model for granu-
lar gas in which the collision rates are assumed to be indepen-
dent of the relative velocity [23,24]. The model thus presents
a simpler system of granular gas keeping the essential physics
intact, while allowing for exact calculation. We investigate the
existence of the Mpemba effect for both monodispersed and
bidispersed systems. In Maxwell gases, the equations for the

relevant two-point correlations is known to form a closed set
of equations [25–27]. By analyzing these equations in detail,
we determine the parameter regime in which the Mpemba
effect can be seen in these systems. In particular, we show that
while transient initial conditions are required for the effect
to be present in monodispersed gas, the bidispersed system
shows the Mpemba effect for steady-state initial conditions.
This allows us to use the Markovian approach for the Mpemba
effect in driven granular gas, and therefore identify the exis-
tence of the strong effect in this system, where for a specific
initial steady state the relaxation rate is smaller than from any
other initial steady state.

The remainder of the paper is organized as follows. We
define the model in Sec. II. In Sec. III, we show that the
time evolution of the two-point velocity-velocity correlation
functions do not involve higher-order correlations and form a
closed set of equations. The time evolution of the two-point
correlations thus have exact solutions. In Sec. IV, we define
the Mpemba effect and demonstrate its existence in driven
monodispersed systems. Section V contains the detailed anal-
ysis for the existence of the Mpemba effect in bidispersed
granular systems. We also demonstrate the existence of the
inverse Mpemba effect and a stronger version of the Mpemba
effect in similar systems. Section VI contains the summary of
results and a discussion of their implications.

II. MODEL

In this paper, we analyze both monodispersed- as well as
bidispersed-driven inelastic Maxwell gases. We first define the
bidispersed gas, and then indicate the limits when it reduces
to a monodispersed gas. Consider NA particles of type A, each
of mass mA, and NB particles of type B, each of mass mB.
Let NA + NB = N . Each particle has a scalar velocity vi,k ,
where i = 1, . . . , N and k ∈ {A, B}. These velocities evolve in
time through binary collisions and external driving. A pair of
particles of type k and l , where k, l ∈ {A, B}, collide with rate
λkl/N . The factor 1/N in the collision rates ensures that the
total rate of collisions between Nk[Nk − 1]/2 pairs of similar
type of particles and that between NANB pairs of different type
of particles are proportional to the system size N . During a
collision, momentum is conserved, but energy is dissipated.
Let vi,k and v j,l denote the precollision velocities and v′

i,k , v′
j,l

denote the post-collision velocities. Then

v′
i,k = vi,k − (1 + rkl )

ml

mk + ml
(vi,k − v j,l ),

v′
j,l = v j,l + (1 + rkl )

mk

mk + ml
(vi,k − v j,l ),

(1)

where k, l = A, B, rkl ∈ [0, 1] is the coefficient of restitution
for the collision, and mk and ml are the masses. There are
three coefficients of restitution: rAA, rBB, and rAB depending
on whether the pair of colliding particles are of type AA, BB,
or AB. It is convenient to define

αkl = 1 + rkl

2
, k, l = A, B, (2)

where 1/2 � αkl � 1.
In addition to collisions, the system evolves through ex-

ternal driving. We implement a driving scheme that drives
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the system to a steady state, and has been used in earlier
studies [25,26,28]. Each particle is driven at a rate λd . During
such an event, the velocity of the driven particle is modified
according to

v′
i,k = −rwvi,k + ηk, −1 < rw � 1, k = A, B, (3)

where rw ∈ (−1, 1] is a parameter and ηk is noise drawn from
a fixed distribution φk (ηk ). There is no compelling reason
for φk (ηk ) to be Gaussian. However, we restrict ourselves to
distributions with zero mean and finite second moment σ 2

k
given by

σ 2
k =

∫ ∞

−∞
dη η2φk (η), k = A, B. (4)

The physical motivations for the form of driving may be found
in Refs. [29,30]. Without loss of generality, in all the plots, we
set the driving rate λd = 1, so that time is measured in units
of λ−1

d .
In the model, the spatial degrees of freedom have been

neglected. This corresponds to the well-mixed limit where the
spatial correlations between particles are ignored. In addition,
we have assumed that the collision rates are independent of the
relative velocity of the colliding particles. This corresponds to
the so-called Maxwell limit.

Let Pk (v, t ), where k = A, B, denote the probability that a
randomly chosen particle of type k has velocity v at time t . Its
time evolution is given by

d

dt
Pk (v, t ) = λkk (Nk − 1)

N

∫∫
dv1dv2Pk (v1, t )Pk (v2, t )δ[(1 − αkk )v1 + αkkv2 − v]

+ λkk̄Nk̄

N

∫∫
dv1dv2Pk (v1, t )Pk̄ (v2, t )δ[(1 − Xk̄ )v1 + Xk̄v2 − v] − λkk (Nk − 1)

N
Pk (v, t )

− λkk̄Nk̄

N
Pk (v, t ) + λd

[
−Pk (v, t ) +

∫∫
dηkdv1φk (ηk )Pk (v1, t )δ[−rwv1 + ηk − v]

]
, (5)

where

k̄ =
{

B, if k = A,

A, if k = B,
(6)

and

Xk = αABμk where μk = 2mk

mA + mB
, k = A, B, (7)

with μk ∈ (0, 2) and αAB is defined in Eq. (2).
The monodispersed Maxwell gas is obtained by taking the

limit NA = N with (NA − 1)/N → 1, NB = 0, rAA = r and
setting all other coefficients of restitution to zero. The rate of
interparticle collisions is denoted by λ and the rate of driving
for the particles by λd . If P(v, t ) denote the probability that a
randomly chosen particle has velocity v at time t then its time
evolution, for a monodispersed gas is given by

d

dt
P(v, t ) = −λP(v, t ) − λd P(v, t )

+ λ

∫∫
dv1dv2P(v1, t )P(v2, t )

× δ[(1 − α)v1 + αv2 − v]

+ λd

∫∫
dηdv1φ(η)P(v1, t )

× δ[−rwv1 + η − v], (8)

where

α = 1 + r

2
. (9)

III. CALCULATION OF THE
TWO-POINT CORRELATIONS

In this section, we define the relevant two-point correla-
tion functions for both monodispersed and bidispersed gases.
The evolution equations for these correlation functions were

derived in Refs. [25,27]. We summarize these derivations and
then develop a solution that will be useful for demonstrating
the Mpemba effect. Sections III A and III B contain the deriva-
tion for monodispersed and bidispersed gases, respectively.

A. Monodispersed Maxwell gas

We first discuss the case of monodispersed Maxwell gas.
Consider the following two-point correlation functions:

E (t ) = 1

N

N∑
i=1

〈
v2

i (t )
〉
,

C(t ) = 1

N (N − 1)

N∑
i=1

N∑
j=1, j �=i

〈vi(t )v j (t )〉, (10)

where E (t ) is the mean kinetic energy of a particle, and C(t )
is the equal time velocity-velocity correlation between a pair
of particles. In the steady state, the interparticle two-point
correlation function is known to be zero [26]. However, for
the purpose of demonstrating the Mpemba effect, we con-
sider nonzero correlations, which correspond to nonstationary
states. The time evolution of these correlation functions can
be obtained in a straightforward manner from Eq. (8) and can
be compactly represented in matrix form as [25]

d�(t )

dt
= −R�(t ) + D, (11)

where �(t ) = [E (t ),C(t )]T , D = [λdσ
2, 0]T , and R is

given by

R=
[
λc(1 − r2)+λd

(
1 − r2

w

) −λc(1 − r2)

− λc (1−r2 )
N−1

λc (1−r2 )
N−1 +λd (1 + rw )

]
.

(12)
Note that while R11 and R22 are positive, R12 and R21 are
negative.
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Equation (11) for the correlation functions forms a closed
set of linear equations and does not involve higher-order
correlation functions. This allows for a complete solution.
Equation (11) can be solved exactly by linear decomposition
using the eigenvalues λ± of R:

λ± = R11 + R22 ±
√

(R11 − R22)2 + 4R21R12

2
. (13)

Here, the eigenvalues λ± > 0 with λ+ > λ−. The solution for
E (t ) and C(t ) can then be obtained as

E (t ) = K+e−λ+t + K−e−λ−t + K0,

C(t ) = L+e−λ+t + L−e−λ−t + L0,
(14)

where the coefficients K+, K−, K0, L+, L− and L0 are given in
Eq. (A1) of Appendix A.

B. Bidispersed Maxwell gas

For the case of bidispersed Maxwell gas, we can define
two-point correlation functions, EA and EB for the mean
kinetic energies of type A and B particles, and three two-
point velocity-velocity correlation functions Ci j , where i, j ∈
(A, B):

EA(t ) = 1

NA

NA∑
i=1

〈
v2

i,A(t )
〉
,

EB(t ) = 1

NB

NB∑
i=1

〈
v2

i,B(t )
〉
,

CAB(t ) = 1

NANB

NA∑
i=1

NB∑
j=1

〈vi,A(t )v j,B(t )〉,

CAA(t ) = 1

NA(NA − 1)

NA∑
i=1

NA∑
j = 1
j �= i

〈vi,A(t )v j,A(t )〉,

CBB(t ) = 1

NB(NB − 1)

NB∑
i=1

NB∑
j = 1
j �= i

〈vi,B(t )v j,B(t )〉. (15)

The time evolution for these correlation function can be
obtained from Eq. (5), as derived in Ref. [27] when only one
type of particle is driven. We generalize these calculations
to the case where both types of particles are driven. The
time evolution equations are linear and form a closed set of
equations as shown in Appendix (A 2).

In the steady state, in the thermodynamic limit, the in-
terparticle two-point correlation functions Ci j , where i, j ∈
(A, B) are zero, as shown in Ref. [27]. If in the initial state,
these correlations are zero, then it remains zero for all times.
We will be only considering such initial states. Unlike the
monodispersed case, we will show that the Mpemba effect is
possible for initial states that are steady states. In that case, we
can ignore these correlations, and write the time evolution of
mean kinetic energies of A and B type particles, i.e., EA and
EB, respectively, in a compact form (see Appendix A 2 for

detailed calculations) as

d�(t )

dt
= R�(t ) + D, (16)

where

�(t ) = [EA(t ), EB(t )]T , (17)

D = [
λdσ

2
A , λdσ

2
B

]T
, (18)

and R is a 2 × 2 matrix, whose entries are given by

R11 = λABνBX 2
B − λAAαAA(1 − αAA)νA

− 2λABνBXB − λd
(
1 − r2

w

)
,

R12 = λABνBX 2
B ,

R21 = λABνAX 2
A ,

R22 = λABνAX 2
A − λBBαBB(1 − αBB)νB

− 2λABνAXA − λd
(
1 − r2

w

)
,

(19)

where νA and νB are the fraction of A and B type particles,
respectively. We note that the linearity in the evolution equa-
tions [Eqs. (11) and (16)] for the energy arises naturally for
Maxwell gases (both monodispersed and bidispersed) when
compared to the granular gas models studied earlier [20,21],
wherein the nonlinear evolution equation limits analytical
treatment unless linearized using perturbative methods [20].
Similar exact linear evolution equation has been analyzed in
the case of Markovian Mpemba effect [17] where the vector
denoting the probabilities of various states evolves according
to an equation similar to Eqs. (11) and (16).

IV. THE MPEMBA EFFECT IN MONODISPERSED
MAXWELL GAS

In this section, we derive the conditions for the Mpemba
effect to be present in the monodispersed-driven Maxwell gas,
based on an analysis of Eq. (14) for the solution of E (t ) and
C(t ). More precisely, we define the Mpemba effect as follows.
Consider two systems with two different granular tempera-
tures, or kinetic energies [the terms “granular temperature”
and “kinetic energies” are used interchangeably]. We let these
systems evolve to a steady state at the same final temperature,
that is lower than the initial temperatures. If the hotter system
cools faster (the energy-time plots show a crossing), then we
say that the system shows the Mpemba effect.

We now proceed to find out the criteria for the Mpemba
effect to be present in the monodispersed Maxwell gas. Con-
sider two systems labeled as P and Q. Let their initial condi-
tions be denoted by [EP(0),CP(0)] and [EQ(0),CQ(0)] with
EP(0) > EQ(0). Both systems are then driven to a common
steady state. This is achieved when the systems P and Q are
driven with the same driving strength (σ ) which is chosen
such that the mean kinetic energy of the common steady state
is lower than the initial mean kinetic energies of P and Q,
while keeping all the other parameters of both the systems
constant.

If this system shows a Mpemba effect, then the trajectories
EP(t ) and EQ(t ) must cross each other, such that there is a
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time t = τ at which

EP(τ ) = EQ(τ ). (20)

Substituting into Eq. (14), we obtain the relation

KP
+e−λ+τ + KP

−e−λ−τ = KQ
+ e−λ+τ + KQ

− e−λ−τ , (21)

whose solution is

τ = 1

λ+ − λ−
ln

[
KP

+ − KQ
+

KP− − KQ
−

]
, (22)

which in terms of the initial conditions reduce to

τ = 1

λ+ − λ−
ln

[
R12
C − (λ− − R11)
E

R12
C − (λ+ − R11)
E

]
, (23)

where


E = EP(0) − EQ(0), (24)


C = CP(0) − CQ(0). (25)

For the Mpemba effect to be present, we require that τ > 0.
Since λ+ > λ−, the argument of logarithm in Eq. (23) should
be greater than one. We immediately obtain the criterion

(λ+ − R11)
E < R12
C. (26)

Note that R12 < 0, and λ+ > R11 [see Eq. (12)]. Since 
E >

0 by definition, we conclude that Eq. (26) can be satisfied only
if 
C < 0, i.e., the two-point velocity-velocity correlation of
the hotter initial system CP(0) is sufficiently smaller than that
of the cooler counterpart CQ(0). Note that if the two systems
P and Q were initially in a steady state, then in the thermody-
namic limit the correlations vanish, i.e., 
C = O(1/N ), and
the inequality in Eq. (26) cannot be satisfied. Thus, for the
Mpemba effect to be present in the monodispersed gas, the
initial condition of the cooler component cannot be a steady
state of the system.

In Fig. 1, we demonstrate the time evolution of the energies
of two systems with initial conditions that satisfy Eq. (26).

 1

 3
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 8

 0  2  4

P

Q

E
 / 

E
fi

n
al

t

FIG. 1. The time evolution of the mean kinetic energy, E of
the monodispersed Maxwell gas for two systems P and Q with
initial conditions EP(0) = 4, EQ(0) = 2, CP(0) = 3 and CQ(0) =
23, which satisfy the conditions for the Mpemba effect as described
in Eq. (26). The choice of the other parameters defining the system
are r = 0.5, rw = 0.5 and σ = 1. P relaxes to the steady state faster
than Q, though its initial energy is larger. The time at which the
trajectories cross each other is τ = 0.1334, as given by Eq. (23).
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FIG. 2. The 
E/
C–r phase diagram showing regions where
the Mpemba effect is observed for monodispersed Maxwell gas
(see Sec. IV), where r is the coefficient of restitution. All other
parameters are kept constant. The region below the critical line show
the Mpemba effect.

Though the initial energy of P is larger, it relaxes to the
steady state faster than Q. As predicted by Eq. (23), the two
relaxation trajectories cross at some finite time.

Keeping all other parameters fixed, and allowing only the
coefficient of restitution to vary, we can identify the region
of phase space (initial condition) where the Mpemba effect is
observable, based on Eq. (26). This is shown in Fig. 2. Clearly,
as r decreases to zero, the correlations need to be large for
the Mpemba effect to be present. On the other hand, that in
the near elastic limit r → 1, it is much easier to observe the
Mpemba effect, as the only requirement is that 
C and 
E
are anticorrelated. However, we note that even in this case,
nonzero correlations imply that the system is not in a steady
state.

V. THE MPEMBA EFFECT IN BIDISPERSED MAXWELL
GAS

In Sec. IV, we discussed the possibility of the Mpemba
effect in monodispersed gas. The Mpemba effect was only
present when the initial states where different from the steady
states at that corresponding temperature. We now generalize
the analysis to bidispersed gases, based on an analysis of
Eq. (16), and show the presence of the Mpemba effect even
when the initial states are restricted to steady states.

In a bidispersed gas, the temperatures of the two compo-
nents are generally different [see Appendix A 2]. We denote
them by EA and EB. We denote the total kinetic energy of the
system by Etot, where

Etot = EA + EB, (27)

and the difference in energies by Ediff:

Ediff = EA − EB. (28)

We define the Mpemba effect in bidispersed gases similarly
to the definition in the monodispersed gases. To this end, we
consider two systems P and Q where Etot of P is larger. Both P
and Q are initially in their steady states. We then quench both
systems to a lower temperature. The Mpemba effect is present
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in this case when the Etot trajectories of the two systems cross
each other.

We next consider separately the cases of one or both
components driven. The reason for this separation is that in
some experiments only one component is driven [31–36],
whereas in others both components are driven [37–42]. The
respective analysis may be found in Secs. V A and V B.

A. One component is driven

Consider a bidispersed-driven Maxwell gas where only
component A is driven with driving strength σ . The time
evolution equation [see Eq. (16)] for the correlation functions
can be expressed in terms of Etot and Ediff as

dE(t )

dt
= − χE(t ) + D, (29)

where

E(t ) = [Etot(t ), Ediff(t )]T , (30)

D = [λdσ
2, λdσ

2]T , (31)

and χ is a 2 × 2 matrix with components χ11, χ12, χ21 and χ22

as given in Eq. (B2). The details of the calculation are shown
in Appendix B. Equation (29) can be solved exactly by linear
decomposition using the eigenvalues λ± of χ:

λ± = 1
2 [(χ11 + χ22) ±

√
(χ11 − χ22)2 + 4χ12χ21]. (32)

It is straightforward to show that λ± > 0 with λ+ > λ−.
The solution for Etot(t ) and Ediff(t ) is

Etot(t ) = K+e−λ+t + K−e−λ−t + K0,

Ediff(t ) = L+e−λ+t + L−e−λ−t + L0,
(33)

where the coefficients K+, K−, K0, L+, L− and L0 are as given
in Eq. (B4).

We now consider two systems labeled as P and
Q with different initial conditions [EP

tot(0), EP
diff(0)] and

[EQ
tot(0), EQ

diff(0)] where EP
tot(0) > EQ

tot(0). Both the systems
are quenched to a common steady state whose total energy
is smaller than the initial total energies of P and Q. This is
achieved when the systems P and Q are now driven with the
same driving strength (σ ) for the component A, while keeping
all the other parameters same for both the systems.

The Mpemba effect is present when the trajectories EP
tot(t )

and EQ
tot(t ) cross each other at some finite time t = τ at which

EP
tot(τ ) = EQ

tot(τ ). (34)

Substituting into Eq. (33), we obtain

KP
+e−λ+τ + KP

−e−λ−τ = KQ
+ e−λ+τ + KQ

− e−λ−τ , (35)

whose solution is

τ = 1

λ+ − λ−
ln

[
KP

+ − KQ
+

KQ
− − KP−

]
, (36)

which in terms of the initial conditions reduce to

τ = 1

λ+ − λ−
ln

[
χ12
Ediff − (λ− − χ11)
Etot

χ12
Ediff − (λ+ − χ11)
Etot

]
, (37)
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FIG. 3. The time evolution of the total energy, Etot(t ) for two
systems P and Q of the bidispersed Maxwell gas where only one
component is driven with initial conditions: EP

tot(0) = 22, EQ
tot(0) =

14, EP
diff(0) = 18 and EQ

diff(0) = 4 such that EP
tot(0) > EQ

tot(0), which
satisfies the condition for the Mpemba effect as described in Eq. (39).
The choice of the other parameters defining the system are mB =
2mA, rAA = rAB = rBB = rw = 0.5, νA = 0.2, νB = 0.8 and σ = 1. P
relaxes to the steady state faster than Q, though its initial energy
is larger. The time at which the trajectories cross each other is
τ = 0.807 as given by Eq. (37).

where


Etot = EP
tot(0) − EQ

tot(0),


Ediff = EP
diff(0) − EQ

diff(0).
(38)

Following the same argument as for the case of monodis-
persed Maxwell gas in Sec. IV, Eq. (37) leads to the criterion
for the crossing of the two trajectories as

χ12
Ediff > (λ+ − χ11)
Etot. (39)

In Fig. 3, we consider such a situation where Eq. (39) is
satisfied. The trajectories cross at the point as predicted by
Eq. (37). It is clear that though P has larger initial energy, it
relaxes faster.

In Fig. 4, we identify the region of phase space (initial
condition) where the Mpemba effect is observable, based on
Eq. (39). In the figure, the variation with rAB is shown. The
region below the line in the phase diagram shows the Mpemba
effect whereas the other region does not show the effect.

In the above analysis, the systems P and Q have the
same parameters once the quench is done. However, in the
initial states, the parameters—reaction rates, coefficients of
restitution, driving strength—could be different for P and
Q. These parameters, though not explicitly mentioned, enter
through the initial values Etot and Ediff. As a result, one can
tune the parameters appropriately to obtain initial steady states
that satisfy the condition given by Eq. (39) and hence show the
Mpemba effect.

We now ask a more refined question. Let us suppose that
the systems P and Q have the same parameters throughout
(both initially, as well as after the quench) except for the
driving strength, which is different initially and the same
after the quench. Can the Mpemba effect be present in this
case, when only component A is driven? The condition for
the Mpemba effect to be present is the same as that derived
for the more general case [see Eq. (39)]. However, when all
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FIG. 4. The 
Etot/
Ediff–rAB phase diagram showing regions
where the Mpemba effect is observed for the bidispersed Maxwell
gas, where only one component of the gas is driven (see Sec. V A)
and rAB is the coefficient of restitution. All other parameters are kept
constant. The choice of the other parameters defining the system
are mA = 2mB, νA = νB = 0.5 and rAA = rBB = rw = 0.5. The region
below the critical line shows the Mpemba effect whereas the region
on the other side of the critical line does not show the Mpemba effect.

parameters other than driving strength are kept identical, the
ratio 
Etot/
Ediff in the initial steady states has a simple
form:


Etot


Ediff
= 1 + λABνAX 2

AQ
1 − λABνAX 2

AQ
> 1, (40)

where Q is defined in Eq. (A13). Note that Q > 0 and
hence the ratio in Eq. (40) is always larger than one. On the
other hand, the ratio 
Etot/
Ediff should always be less than
χ12/(λ+ − χ11) for one to observe the Mpemba effect and it
can be shown that the maximum value of the quantity is one.
Thus, Eq. (40) does not satisfy the required condition for the
existence of a Mpemba effect.

So far we have discussed the possibility of having the
Mpemba effect in a bidispersed Maxwell gas where only one
component is driven. We showed that, as compared to the
monodispersed gas, for initial states that correspond to steady
states, the bidispersed gas shows a Mpemba effect for a wide
range of parameters. However, when the two systems P and
Q are identical except for the driving strength, the Mpemba
effect is not possible for steady-state initial conditions. We
now generalize the calculations to a bidispersed gas where
both components are driven, and show that even for systems
that differ only by the driving strength, the Mpemba effect can
be observed.

B. Both components are driven

Next we consider a bidispersed Maxwell gas where both
the components of the gas are driven. Here, type A and B
particles of the bidispersed Maxwell gas are driven at the
same rate λd but with different driving strengths σA and σB,
respectively. The time evolution of the quantities Etot and Ediff

are given by Eq. (29) with the column matrix D of the form

D = [
λd

(
σ 2

A + σ 2
B

)
, λd

(
σ 2

A − σ 2
B

)]T
. (41)

 1

 27

 30.5

 0  2  4  6

P

QE
to

t /
 E

fi
n

al

t

FIG. 5. The time evolution of the total energy, Etot(t ) for two
systems P and Q of a bidispersed Maxwell gas where both com-
ponents are driven with initial steady-state conditions: EP

tot(0) =
150.4, EQ

tot(0) = 132, EP
diff(0) = 75.2 and EQ

diff(0) = 30.5 such that
EP

tot(0) > EQ
tot(0), which satisfies the condition for the Mpemba effect

as described in Eq. (39). The choice of the other parameters defining
the system are mB = 10mA, rAA = rBB = rw = 0.5, rAB = 0.6, νA =
0.2, νB = 0.8, σA = 2 and σB = 1. P relaxes to the steady state faster
than Q, though its initial energy is larger. The time at which the
trajectories cross each other is τ = 0.39 as given by Eq. (37).

The solutions for Etot(t ) and Ediff(t ) are obtained in a similar
way as in Eq. (33), but the coefficients K+, K−, K0, L+, L− and
L0 are now given by Eq. (B6).

Our main aim is to look for the existence of a Mpemba
effect by considering two systems with identical parameters,
except for the driving strengths. To this end, we consider two
such similar systems, P and Q, driven with different noise
strengths, thus attaining different initial steady states with
different initial total energies.

Let system P have higher initial total energy compared to
Q. Both systems are then driven to a common steady state with
a lower energy compared to the initial steady state of systems
P and Q. This is achieved when P and Q are driven with the
same driving strengths (σA and σB) for the components A and
B. The cross-over time τ for the crossing of the trajectories of
EP

tot(t ) and EQ
tot(t ) is obtained using Eq. (37), and the criterion

for the occurrence of the Mpemba effect is given by Eq. (39).
An example of such a crossing is shown in Fig. 5.

In Fig. 6, based on Eq. (39), we identify the region of
phase space (initial condition) where the Mpemba effect is
observable. In the figure, the variation with rAB is shown. If
the ratio 
Etot/
Ediff falls in the region below (above) the
line in the phase diagram [see Fig. 6], then the system exhibits
(does not exhibit) the Mpemba effect. For steady-state initial
conditions, the ratio 
Etot/
Ediff depends on parameters as
given by Eq. (C1). Note that the ratio 
Etot/
Ediff is also a
function of the driving strengths, σA and σB [see Eq. (C1)]. It
turns out that the driving strengths can be appropriately tuned
to access the entire region of phase space (initial condition) in
which the Mpemba effect is observable.

C. The inverse Mpemba effect

The inverse Mpemba effect refers to the phenomenon that,
when quenched to a high temperature, an initially colder
system heats faster than a system at intermediate temperature.
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FIG. 6. The 
Etot/
Ediff–rAB phase diagram showing regions
where the Mpemba effect is observed for the bidispersed Maxwell
gas, where both components of the gas are driven (see Sec V B)
and rAB is the coefficient of restitution. All other parameters are kept
constant. The choice of the other parameters defining the system are
mB = 2mA, νA = 0.2, νB = 0.8, rw = 0.6 and rAA = rBB = 0.5. The
region below the critical line gives the set of initial steady states that
show the Mpemba effect whereas the region on the other side of the
critical line correspond to initial states that do not show the Mpemba
effect.

The analysis for showing the Mpemba effect in Sec. V B
can be generalized to show the inverse Mpemba effect in
the driven binary gas when both components are driven. We
prepare two systems P and Q in steady states such that the
total energy of P is larger than that of Q. Both systems are then
quenched, using suitable driving strengths for the individual
components of the bidispersed gas, to a common steady state
having a higher energy compared to the initial energies of
both P and Q. The cross-over time τ for the crossing of the
trajectories of EP

tot(t ) and EQ
tot(t ) is obtained using Eq. (37) and

the criterion for the occurrence of the inverse Mpemba effect
is given by Eq. (39). An example of such a crossing is shown
in Fig. 7.

The accessible steady states of the system that satisfy the
condition for the inverse Mpemba effect turns out to be the
same as that for the direct Mpemba effect and can be obtained
using Eq. (C1). Thus, Fig. 6 also illustrates that the valid
steady states of the system given by Eq. (C1) belongs to the
region of phase space (initial condition) given by Eq. (39)
where the inverse Mpemba effect is observable.

D. The strong Mpemba effect

We now explore the possibility of a strong Mpemba effect
in the binary Maxwell gas. The strong Mpemba effect refers
to the phenomenon wherein the system at higher temperature
relaxes to a final steady state exponentially faster, namely with
a larger exponential rate compared to other initial conditions.
Up to now, we had only considered the case where the
trajectories cross, which in general does not imply that the
decay rate at large times is different. The linear evolution
equation in Eq (16) allows certain set of initial conditions to
relax to the final steady state exponentially faster compared
to other initial states. The effect may be realized when the
coefficient (K−) associated with the slower relaxation rate in
the time evolution of total kinetic energy, Etot(t ) [see Eq. 33]
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FIG. 7. The time evolution of the total energy, Etot(t ) for two
systems P and Q of bidispersed Maxwell gas where both compo-
nents are driven with initial steady-state conditions: EP

tot(0) = 150.4,
EQ

tot(0) = 132, EP
diff(0) = 75.2 and EQ

diff(0) = 30.5 such that EP
tot(0) >

EQ
tot(0), which satisfies the condition for the inverse Mpemba effect as

described in Eq. (39). The choice of the other parameters defining the
system are mB = 10mA, rAA = rBB = rw = 0.5, rAB = 0.6, νA = 0.2,
νB = 0.8, σA = 8 and σB = 8. P relaxes to the steady state slower
than Q, though its initial energy is larger. The time at which the
trajectories cross each other is τ = 0.39 as given by Eq. (37).

vanishes. In what follows, we would like to probe the system
of bidispersed gas with both type of particles driven to look
for the presence of the strong Mpemba effect.

Setting the coefficient K− [given by Eq. (B6)] to zero, we
obtain

Etot(0) = χ12

λ+ − χ11
Ediff(0) − c, (42)

where

c = λd
[
(χ12 − λ+ + χ11)σ 2

A − (χ12 + λ+ − χ11)σ 2
B

]
λ−(λ+ − χ11)

. (43)

For a system with all other parameters kept fixed, solution
of Eq. (42) in terms of Etot(0) and Ediff(0) provides the set
of initial states whose relaxation is exponentially faster than
the set of generic states. Note that the set of initial states that
satisfy Eq. (42) lie on a straight line.

Among these initial states one would like to determine the
ones which are steady states. Remember that the steady-state
ratio of Etot(0)/Ediff(0) for a system is given by

Etot(0)

Ediff(0)
= f (σA, σB), (44)

where f (σA, σB) is given by Eq. (C2) and is only a function
of driving strengths (σA and σB) as all other parameters are
kept constant. One observes that valid steady states with initial
energies, Etot(0) and Ediff(0) that satisfy the condition for
the strong Mpemba effect [see Eq. (42)] can be obtained by
appropriately tuning the driving strengths σA and σB.

Thus, for a system of bidispersed Maxwell gas where
both components are driven, there exists steady-state initial
conditions which satisfy the condition given by Eq. (42) and
hence approach the final steady state exponentially faster
compared to any other similar system whose initial energies
lie slightly below or above the line. An example of the strong
Mpemba effect is shown in Fig. 8. The figure shows the
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FIG. 8. The time evolution of the total energy, Etot(t ) for two
systems P and Q of bidispersed Maxwell gas, both components
are initially in steady states, with EP

tot(0) = 47.8, EQ
tot(0) = 43.8,

EP
diff(0) = 45.6 and EQ

diff(0) = 39 such that EP
tot(0) > EQ

tot(0). These
initial values satisfy both the conditions for the Mpemba effect
as described in Eq. (39) as well as those for the strong Mpemba
effect (for system P) as described in Eq. (42). The choice of the
other parameters defining the system are mB = 10mA, rAA = 0.5,
rBB = 0.4, rw = 0.6, rAB = 0.35, νA = 0.2, νB = 0.8, σA = 2, and
σB = 1. P equilibrates to the final state at an exponentially faster rate
compared to Q. Inset: The trajectories for P and Q cross at a time
τ = 0.73, as given by Eq. (37).

evolution of the total energy Etot as a function of time t for two
bidispersed systems P and Q that have identical parameters
except for the initial driving strength after being quenched
to a lower temperature by changing the driving strength to
a common lower value. The initial state of the system P
is chosen in such a way that [Etot(0), Ediff(0)] satisfies the
condition for the strong Mpemba effect [Eq. (42)], and hence
evolves to the final state with a single faster relaxation rate.
On the other hand, in system Q, the initial state does not
satisfy the strong Mpemba effect condition, thus it relaxes
differently, and asymptotically evolves with the slower rate.
Further, as the initial condition of the two systems P and Q
happen to satisfy the relation for the existence of the Mpemba
effect [Eq. (39)], the trajectory of the system P with higher
initial energy crosses that of Q with lower initial energy. The
crossing time τ could be obtained using Eq. (37) which is
captured in the inset of the figure.

VI. CONCLUSION

In summary, through an exact analysis of the driven
monodispersed and bidispersed Maxwell gases, we derived
the conditions under which the Mpemba effect, the inverse
Mpemba, and the strong Mpemba effect can be observed. In
Maxwell gas, the rate of collision between particles is inde-
pendent of the relative velocity. In addition, the well-mixed
limit is assumed such that spatial correlations are ignored. The
equations for the two-point correlations close among them-
selves resulting in a coupled set of linear equations allowing
for an exact solution. This linearity happens to be natural
to the model and thus does not require any approximations
that have been employed in models where the collision rates
are velocity dependent. To demonstrate the existence of the

Mpemba effect, we determine the conditions under which
a hotter system relaxes faster than a cooler system when
quenched to a temperature lower than both. For the case of
monodispersed Maxwell gas, we showed that the Mpemba
effect is possible only if the initial states do not correspond to
steady states. On the other hand, for bidispersed Maxwell gas,
there is a range of parameters for which the Mpemba effect
exists, even when the states from which the quench is done
are restricted to valid steady states. In a similar framework,
we also demonstrated the existence of the inverse Mpemba
effect where a system is heated instead of cooled, i.e., a system
at a lower initial temperature relaxes to a high temperature
state faster than another system with an intermediate initial
temperature. We also showed the existence of a stronger
version of the Mpemba effect, where a system equilibrates to
a final steady state at an exponentially faster rate.

The exact analysis allows us to identify the reason behind
the Mpemba effect in these systems. First, we note that,
though the system evolves stochastically, the evolution of
the history-averaged correlation functions is deterministic.
The evolution equations are first order differential equations,
therefore two trajectories in the correlation functions-time
phase space cannot intersect. However, for the monodispersed
gas, the state of the system is defined by two quantities:
energy and interparticle correlation function. In this three
dimensional space (third dimension being time), two trajec-
tories cannot cross. Nevertheless, when projected onto the
lower dimensional energy-time plane, trajectories may cross,
leading to the Mpemba effect. If the initial states correspond
to steady states, then the interparticle correlations are exactly
zero and remain zero during time evolution, constraining the
correlation function-time plane to be two dimensional. Thus,
a necessary condition for the Mpemba effect to be observed
is a nonzero interparticle correlations, or alternatively non-
stationary initial states. On the other hand, for bidispersed
gases, there are two kinetic energies and three interparticle
correlation functions. Since the energy-time dimensions are
themselves three dimensional, it is possible to observe the
Mpemba effect when the correlations are set to zero, as in a
true steady state. Note that for the present study, we have cho-
sen intersection of total energy as an indicator of the Mpemba
effect. This is a natural choice, as this is the quantity that is
easiest to track in an experiment. It is possible to characterise
the state of the system by more macroscopic quantities. For
example, by temperature T and second Sonine coefficient,
a2 in the expansion of velocity distribution function around
Gaussian, as studied for the case of granular systems of hard
sphere particles [20].

Our results are analogous to those found in the perturbative
treatment of the most realistic granular systems [20,21]. In
these calculations, the Mpemba effect can be seen in monodis-
persed systems when the initial conditions do not correspond
to any steady state, but rather to some transient states that are
close to the final steady state. This is achieved by choosing
appropriate initial velocity distribution functions for the two
systems. For the case of rough granular gas, calculations
were carried out by considering states with Gaussian velocity
distribution at all times which may not hold good for nonequi-
librium systems. In contrast, the analysis in the present work
does not make any assumption regarding the nature of velocity
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distribution in the steady state of the granular system. There-
fore, extending the calculations of Refs. [20,21] to smooth
bidispersed gas would be a promising area for future study.
One can also search for exponentially faster relaxation proto-
cols in these systems as studied in Refs. [15,18]. In addition,
the results in this paper, particularly the case of bidispersed
Maxwell gas where both components are driven, suggest that
driven binary gases are a good candidate for observation of
the Mpemba effect in granular experiments.

Further, in the aim of demonstrating the existence of the
Mpemba effect in Maxwell gases, we have assumed that
energies evolve monotonically, by not explicitly accounting
for the possibility that when a hot system is quenched to
a lower temperature, the temperature could drop below the
final temperature. To include scenarios with nonmonotonic

evolution of energy into the present framework, one may
have to look at the behavior of the absolute values of the
coefficients K− [17]. This extended case may be addressed in
future, to the present and other models of granular gases. One
may also look at the relation between the existence of such
non monotonic relaxation and the strong Mpemba effect, as
the presence of nonmonotonicity indicate a change in sign of
the coefficient K−.
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APPENDIX A: TIME EVOLUTION FOR TWO-POINT CORRELATIONS

In this Appendix, we solve for the time evolution equations of two-point correlations as defined in Secs. III A and III B for
the case of monodispersed and bidispersed Maxwell granular gas, respectively.

1. Monodispersed gas

For the monodispersed gas, the time evolution of mean kinetic energy, E (t ), and the two-point velocity-velocity correlation
function, C(t ), are given as in Eq. (14). The coefficients K+, K−, K0, L+, L− and L0 in Eq. (14) are given by

K+ = 1

γ

[
(λ− − R11)1(0)− R122(0) − (λ−− R11)

λ+
λdσ

2

]
, K− = 1

γ

[
−(λ+− R11)1(0) + R122(0)+ (λ+ − R11)

λ−
λdσ

2

]
,

K0 = 1

γ

[
λ− − R11

λ+
− λ+ − R11

λ−

]
λdσ

2, L0 = 1

γ

[
(λ+ − R11)(λ− − R11)

R12λ+
− (λ+ − R11)(λ− − R11)

R12λ−

]
λdσ

2,

L+ = 1

γ

[
(λ+ − R11)(λ− − R11)

R12
1(0) − (λ+ − R11)2(0) − (λ+ − R11)(λ− − R11)

R12λ+
λdσ

2

]
,

L− = 1

γ

[−(λ+ − R11)(λ− − R11)

R12
1(0) + (λ− − R11)2(0) + (λ+ − R11)(λ− − R11)

R12λ−
λdσ

2

]
,

γ = λ+ − λ−. (A1)

2. Bidispersed gas

For the case of bidispersed Maxwell gas, the two-point correlations are defined as in Eq. (15). First, we consider the general
case where both components of the gas are driven. The results can be extended for one component-driven bidispersed gas. We
can write for the time evolution of the two-point correlations using Eq. (5) in a compact matrix form as

d�(t )

dt
= R�(t ) + D, (A2)

where

�(t ) = [EA(t ), EB(t ),CAB(t ),CAA(t ),CBB(t )]T , (A3)

D = [
λdσ

2
A , λdσ

2
B , 0, 0, 0

]T
, (A4)

where k = A, B and the matrix R is given by

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

R2B − R1A − R3B − Rd R2B −2R2B + R3B 2R1A 0

R2A R2A − R1B − R3A −2R2A + R3A 0 −R1B

R3A
2NA

− R4
R3B
2NB

− R4
4R4+R3B−R3A

2 − R3A
2NA

+ R3A
2 − R3B

2NB
+ R3B

2
R1A

NA−1 0 R3B
R1A

1−NA
− R3B − Rd

1−rw
0

0 R1B
NB−1 R3B 0 2R1B

NB−1 − R3B

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (A5)
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The constants R1k, R2k, R3k, R4, Rd are given by

R1k = λkkαkk (1 − αkk )(Nk − 1)

N
, R2k = λABNkX 2

k

N
,

R3k = 2R2k

Xk
, R4 = λABXAXB

N
, (A6)

Rd = λd
(
1 − r2

w

)
.

In the steady state, in the thermodynamic limit, the interparticle two-point correlation functions Ci j , where i, j ∈ (A, B) are
zero, as shown in Ref. [27]. If in the initial state, these correlations are zero, then it remains zero for all times. We will be only
considering such initial states. In that case, we can ignore these correlations, and write for the time evolution of mean kinetic
energies EA and EB as

dEA(t )

dt
= EA(t )

[
λABνBX 2

B − λAAαAA(1 − αAA)νA − 2λABνBXB − λd
(
1 − r2

w

)] + EB(t )
(
λABνBX 2

B

) + λdσ
2
A ,

dEB(t )

dt
= EA(t )

(
λABνAX 2

A

) + EB(t )
[
λABνAX 2

A − λBBαBB(1 − αBB)νB − 2λABνAXA − λd
(
1 − r2

w

)] + λdσ
2
B . (A7)

It can be written in a compact form as in Eq. (16). To obtain the steady-state values, we set the time derivative of Eq. (A7) to
zero. The steady-state values for EA and EB are given by

EA = −λdσ
2
A

[ − λd
(
1 − r2

w

) − 2λABνAXA + λABνAX 2
A − λBBνB(1 − αBB)αBB

] + λABλdνBX 2
Bσ 2

B

F , (A8)

EB = λABλdνAX 2
Aσ 2

A − λdσ
2
B

[ − λd
(
1 − r2

w

) − 2λABνBXB + λABνBX 2
B − λAAνA(1 − αAA)αAA

]
F , (A9)

where

F = −λ2
ABνAνBX 2

A X 2
B + [ − λd

(
1 − r2

w

) − 2λABνBXB + λABνBX 2
B − λAAνA(1 − αAA)αAA

]
× [ − λd

(
1 − r2

w

) − 2λABνAXA + λABνAX 2
A − λBBνB(1 − αBB)αBB

]
. (A10)

One can do similar calculations to solve for the steady-state mean kinetic energies, for the case where only one component
(say A) is driven with driving strength (σ ) and at a rate (λd ). In that case, the mean kinetic energies of the components are given
by

EA = λdσ
2

λd
(
1 − r2

w

) + 2νAλAAαAA(1 − αAA) + λABνBXB(2 − XB) − X 2
A X 2

BνAνBλ2
ABQ

, (A11)

EB = EAλABνAX 2
AQ, (A12)

where

Q = 1

(2 − XA)XAνAλAB + 2αBBλBBνB(1 − αBB)
. (A13)

APPENDIX B: TIME EVOLUTION OF Etot AND Ediff: BIDISPERSED MAXWELL GAS

In this Appendix, we solve for the time evolution of the quantities Etot and Ediff for the case of bidispersed Maxwell gas. We
consider two cases: when only one component of the gas is driven and another case when both the components of the gas are
driven as described in Secs. B 1 and B 2, respectively.

1. One component is driven

We consider a bidispersed Maxwell gas where only one component, say A, is driven with a rate, λd and with a driving strength,
σ . Using the definitions of Etot and Ediff as given in Eqs. (27) and (28), respectively, we can write for the time evolution of these
quantities following Eq. (16) as

dEtot

dt
= χ11Etot + χ12Ediff + λdσ

2,

dEdiff

dt
= χ21Etot + χ22Ediff + λdσ

2,

(B1)

012906-11



BISWAS, PRASAD, RAZ, AND RAJESH PHYSICAL REVIEW E 102, 012906 (2020)

where

χ11 = −R11 + R12 + R21 + R22

2
,

χ12 = −R11 − R12 + R21 − R22

2
,

χ21 = −R11 + R12 − R21 − R22

2
,

χ22 = −R11 − R12 − R21 + R22

2
.

(B2)

Equation (B1) can be represented in a compact matrix form as in Eq. (29). The solution for the time evolution of Etot and Ediff

are given by

Etot(t ) = K+e−λ+t + K−e−λ−t + K0,

Ediff(t ) = L+e−λ+t + L−e−λ−t + L0,
(B3)

where the coefficients K+, K−, K0, L+, L−, and L0 are given by

K+ = 1

γ

[
(−λ− + χ11)Etot(0) + χ12Ediff(0) − χ12 − λ− + χ11)

λ+
λdσ

2

]
,

K− = 1

γ

[
(λ+ − χ11)Etot(0) − χ12Ediff(0) + χ12 − λ+ + χ11)

λ−
λdσ

2

]
,

K0 = 1

γ

[
χ12 − (λ− − χ11)

λ+
− χ12 − (λ+ − χ11)

λ−

]
λdσ

2, L0 = 1

γ

[
(λ+ − χ11)(λ− − χ11)

χ12λ+
− (λ+ − χ11)(λ− − χ11)

χ12λ−

]
λdσ

2,

L+ = 1

γ

[
− (λ+ − χ11)(λ− − χ11)

χ12
Etot(0) + (λ+ − χ11)Ediff(0) − (λ+ − χ11)(λ− − χ11)

χ12λ+
λdσ

2

]
,

L− = 1

γ

[
(λ+ − χ11)(λ− − χ11)

χ12
Etot(0) − (λ− − χ11)Ediff(0) + (λ+ − χ11)(λ− − χ11)

χ12λ−
λdσ

2

]
,

γ = λ+ − λ−. (B4)

2. Both components are driven

Here, we consider a bidispersed Maxwell gas where both the components, A and B, are driven with driving strengths σA and
σB, respectively. One can follow the calculations for the case of one component-driven bidispersed gas (see Sec. B 1) and write
the time evolution of Etot and Ediff in a compact representation as in Eq. (29) but the column matrix D takes the form

D = [
λd

(
σ 2

A + σ 2
B

)
, λd

(
σ 2

A − σ 2
B

)]T
. (B5)

The solution for Etot(t ) and Ediff(t ) are given by Eq. (B3) with the coefficients K+, K−, K0, L+, L− and L0 in Eq. (B3) given by

K+ = 1

γ

{
− (λ− − χ11)Etot(0) + χ12Ediff(0) − λd

λ+

[
(χ12 − (λ− − χ11))σ 2

A − (χ12 + (λ− − χ11))σ 2
B

]}
,

K− = 1

γ

{
(λ+ − χ11)Etot(0) − χ12Ediff(0) + λd

λ−

[
(χ12 − (λ+ − χ11))σ 2

A − (χ12 + (λ+ − χ11))σ 2
B

]}
,

K0 = λd

γ

{
(χ12 − (λ− − χ11))σ 2

A − (χ12 + (λ− − χ11))σ 2
B

λ+
− (χ12 − (λ+ − χ11))σ 2

A − (χ12 + (λ+ − χ11))σ 2
B

λ−

}
,

L+ = 1

γ

{
− (λ+ − χ11)(λ− − χ11)

χ12
Etot(0) + (λ+ − χ11)Ediff(0) − λd

λ+χ12

[
(λ+ − χ11)(λ− − χ11)

(
σ 2

A − σ 2
B

)]}
,

L− = 1

γ

{
(λ+ − χ11)(λ− − χ11)

χ12
Etot(0) − (λ+ − χ11)Ediff(0) + λd

λ−χ12

[
(λ+ − χ11)(λ− − χ11)

(
σ 2

A − σ 2
B

)]}
,

L0 = λd

χ12γ

[
(λ+ − χ11)(λ− − χ11)

(
σ 2

A − σ 2
B

)( 1

λ+
− 1

λ−

)]
,

γ = λ+ − λ−. (B6)
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APPENDIX C: STEADY-STATE EXPRESSION FOR �Etot/�Ediff

In this Appendix, we calculate the steady-state expression for the ratio 
Etot/
Ediff for a bidispersed Maxwell gas where
both the components, A and B are driven at a rate λd and with driving strengths σA and σB, respectively. The quantities 
Etot

and 
Ediff are defined as in Eq. (38). Using the results for the steady-state mean kinetic energies for components A and B [see
Eqs. (A8) and (A9)], one can calculate the ratio 
Etot/
Ediff as


Etot


Ediff
=

λABλd
{
νBX 2

B

[(
σ P

B

)2 − (
σ

Q
B

)2] + νAX 2
A

[(
σ P

A

)2 − (
σ

Q
A

)2]}
− λd

[ − λd
(
1 − r2

w

) − 2λABνAXA + λABνAX 2
A − λBBνBαBB(1 − αBB)

][(
σ P

A

)2 − (
σ

Q
A

)2]
− λd

[ − λd
(
1 − r2

w

) − 2λABνBXB + λABνBX 2
B − λAAνAαAA(1 − αAA)

][(
σ P

B

)2 − (
σ

Q
B

)2]
λABλd

{
νBX 2

B

[(
σ P

B

)2 − (
σ

Q
B

)2] − νAX 2
A

[(
σ P

A

)2 − (
σ

Q
A

)2]}
− λd

[ − λd
(
1 − r2

w

) − 2λABνAXA + λABνAX 2
A − λBBνBαBB(1 − αBB)

][(
σ P

A

)2 − (
σ

Q
A

)2]
+ λd

[ − λd
(
1 − r2

w

) − 2λABνBXB + λABνBX 2
B − λAAνAαAA(1 − αAA)

][(
σ P

B

)2 − (
σ

Q
B

)2]

. (C1)

One can also obtain the ratio of Etot(0)/Ediff(0) for a system (P) only using Eq. (C1) as

EP
tot

EP
diff

=

λABλd
[
νBX 2

B

(
σ P

B

)2 + νAX 2
A

(
σ P

A

)2]
− λd

[ − λd
(
1 − r2

w

) − 2λABνAXA + λABνAX 2
A − λBBνBαBB(1 − αBB)

](
σ P

A

)2

− λd
[ − λd

(
1 − r2

w

) − 2λABνBXB + λABνBX 2
B − λAAνAαAA(1 − αAA)

](
σ P

B

)2

λABλd
[
νBX 2

B

(
σ P

B

)2 − νAX 2
A

(
σ P

A

)2]
− λd

[ − λd
(
1 − r2

w

) − 2λABνAXA + λABνAX 2
A − λBBνBαBB(1 − αBB)

](
σ P

A

)2

+ λd
[ − λd

(
1 − r2

w

) − 2λABνBXB + λABνBX 2
B − λAAνAαAA(1 − αAA)

](
σ P

B

)2

. (C2)
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