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Particle adhesion to rough surfaces
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While particle adhesion to smooth surfaces is well understood, real surfaces are not perfectly smooth, and
the effects of surface roughness on adhesion are not easily characterized. We develop a theory for the effects
of surface roughness on the strength of particle adhesion due to van der Waals forces, in the Derjaguin-Muller-
Toporov (DMT)-type adhesion regime. We first address a well-defined rough surface created by embedding
spheres in a smooth substrate, which had been previously examined experimentally. We derive an analytic
expression for the adhesive force of particles to this well-defined surface, with the key distinction from the
previous work being the inclusion of interactions from surface asperities not in direct contact with the particle.
We show that our theory is in good agreement with experimental results in the DMT regime. Within appropriate
limits, we extend our theory to general rough surfaces and verify the theory by comparing to the exact numerical
results. We show that the interactions from surface asperities not in direct contact with the particle are the
dominant contribution to the adhesive force under some conditions, and our theory predicts the experimental and
numerical adhesion forces very accurately.
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I. INTRODUCTION

Systems of fine particles, or “dusts,” are characterized by
small particle masses and small gravitational forces. Dusts
are therefore easily lofted into the air and can travel long
distances. On the other hand, dusts easily adhere to surfaces
since adhesive forces can dominate over the aerodynamic
forces that loft particles. Particle adhesion to surfaces affects a
broad spectrum of natural and industrial processes, including
granular flow [1], fluidized beds [2], and medical drug deliv-
ery [3,4]. Of particular interest to us is how particle adhesion
affects dust release during a loss of vacuum scenario in toka-
mak fusion devices; the dust, created by plasma instabilities
eroding reactor surfaces [5–7], is radiologically hazardous due
to absorption of tritium from the reactor fuel [8–10]. For all
of these applications, we must understand the adhesive force
between particles and surfaces.

Particle adhesion depends on the nature of particle con-
tact with the surface. In general, a particle deforms elasti-
cally to increase the contact area—and thus the attractive
interaction—with the surface. The extent of deformation, and
how the deformation changes as the particle is lifted off,
depends on the balance between the particle-surface attractive
forces and the elastic modulus of the particle. When elastic
deformation dominates, detachment occurs in a discontinuous
“snap-off” manner, as the particle remains deformed with a
finite contact area until detachment; this regime is described
by Johnson-Kendall-Roberts (JKR) theory [11]. Conversely,
when elastic deformation is less important, detachment occurs
continuously, as the deformation decreases to zero just before
detachment; this regime is described by the Derjaguin-Muller-
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Toporov (DMT) theory [12]. The transition between these two
regimes is described by the Tabor parameter [13],

μ =
(

Reγ
2

K2d3
c

)1/3

, (1)

where γ is the work of adhesion, K is the effective elastic
constant, and dc is the contact separation between the particle
and surface (on the order of angstroms). The effective radius is
given by Re = RR2

R+R2
, where R is the radius of the particle and

R2 is the radius of curvature of the surface that the particle is
contacting. The JKR regime occurs at μ � 1, and the DMT
regime occurs at μ � 1. For a sphere interacting with a flat
surface, Re = R, and the JKR regime occurs for particles that
are larger and/or have a lower elastic modulus, while the DMT
regime occurs for particles that are smaller and/or have a
higher elastic modulus [14,15].

The adhesion between a particle and a smooth surface is
well understood, and in the DMT regime, the adhesive force
F S

V is given by [16,17]

F S
V = HR

6d2
c

, (2)

where H is the Hamaker constant. However, real surfaces
have at least some roughness. Usually surface roughness
reduces the adhesion force between two contacting bodies
[13,18,19]. In fact, surface roughness has been used as a
means to intentionally reduce particle adhesion [20,21]. On
the other hand, roughness can also enhance particle adhesion
[22,23]. The reduced adhesion occurs when the particle sits
atop surface asperities, while the enhanced adhesion occurs
when the particle sits in a valley.

For rough surfaces, the nature of the contact—whether
in the JKR or the DMT regime—depends on the amplitude
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FIG. 1. Using the Rumpf and Rabinovich models, the total van
der Waals force between a sphere and a rough surface can be
approximated by the sum of two parts: the interaction of the particle
with the asperity it is atop, represented as a sphere (blue dashed
circle), and the interaction of the particle with a smooth surface at, in
the Rumpf model, the center of the spherical asperity (green dashed
line), and in the Rabinovich model, the average height of the rough
surface (red dashed line).

and wavelength of roughness. In regard to the roughness
amplitude, the adhesion changes from JKR-like to DMT-like
as the roughness amplitude increases, in the case that the
roughness has a short wavelength (�R) [24]. In regard to
the roughness wavelength, the adhesion undergoes a transition
from JKR to DMT behavior as the roughness changes from
long to short wavelength [25]. In terms of Eq. (1), the effect
of roughness wavelength can be understood in that Re ≈ R
when the particle interacts with long wavelength roughness,
but that Re ≈ R2 � R when the particle interacts with short
wavelength roughness.

Simple analytic models have been developed to estimate
the van der Waals force between a spherical particle and
a rough surface in the DMT regime. These simple analytic
models are often advantageous as they are easier to apply
and do not require numerical methods to solve; thus, they
have been widely used to compare experiments to theory
(e.g., [20,22,26–34]). Rumpf considered a particle positioned
directly over an asperity, and developed a model for the force
that is the sum of two components [35]: (a) the force between
the particle and the single asperity located directly below the
particle, where the asperity is modeled as a sphere with the
same radius of curvature as the asperity, Ra; and (b) the force
between the particle and the remainder of the surface, which
is modeled by a smooth surface plane located at distance Ra

below the peak of the asperity.
This approach, shown schematically in Fig. 1, leads to the

force

FV,Rumpf = F S
V

[
1

1 + R/Ra
+ 1

(1 + Ra/dc)2

]
, (3)

where the first and second terms represent components (a) and
(b) described above, respectively. Rabinovich et al. improved
the Rumpf model by noting that the distance parameters in
the two terms of Eq. (3) should not be identical—while the
distance parameter in the first term is related to the radius
of curvature of the asperity Ra, the distance to the plane
representing the rest of the surface is instead related to a
roughness amplitude A [36,37]. This consideration led to a

new expression,

FV,Rabinovich = F S
V

[
1

1 + R/Ra
+ 1

(1 + A/dc)2

]
. (4)

Furthermore, Rabinovich et al. developed expressions for
Ra and A in terms of the rms roughness of the surface and
the peak-to-peak distance between asperities, λ [36], both
of which are determinable experimentally from analysis of
the surface topography [38]. Several experimental studies
have found that the Rabinovich model estimates the adhesion
force within an order of magnitude of the experimental data
[26–29,34,37].

The Rumpf and Rabinovich models use a planar surface
at some effective position to account for portions of the
surface beyond the one asperity directly below the particle.
The position of this planar surface represents an average
due to peaks and valleys in the surface. However, the van
der Waals force between atoms weakens very quickly with
distance (∼ 1/r7). Thus, interactions with peaks of the surface
dominate the adhesion force, while interactions with valleys
are generally insignificant. This effect is not captured by the
interaction of the sphere with a plane at a single intermediate
distance. In fact, the Rabinovich model has been shown to
significantly underestimate particle adhesion forces when R is
large relative to λ such that the particle is in close proximity
to multiple asperities [20,27]. On the other hand, Katainen
et al. developed an analytic model that does take into account
interaction with multiple asperities. However, the Katainen
model is for the JKR regime, and they consider the bottom
of the particle to have elastically flattened into a plane of
contact area Ac, and that the particle interacts with all surface
asperities that directly contact this plane [27].

There are two distinct approaches to addressing the theory
of the interaction between a particle and a rough surface. On
the one hand, the interaction can be studied for model surfaces
that are well characterized, to enable clear comparison of
theory with experiment or numerical solution [20,27,36,39].
On the other hand, analyses can address realistic surface
roughness that has more complexity, randomness, and distri-
butions of relevant length scales; such studies represent rough
surfaces using a Gaussian distribution of asperity heights
[40–43], using a fractal surface such that surface features
depend on the magnification of the surface [25,44–48], or by
reconstructing the rough surface in Fourier space [49,50]. We
follow the former approach in this paper.

Here we derive an improved analytic expression to model
the adhesive force of a particle to a rough surface in the DMT
regime. Our approach incorporates interactions from surface
asperities not in direct contact with the particle, which are
the dominant contributions in some situations but have been
neglected in previous simple models. While previous models
were developed based on physical intuition, we begin with
well-defined rough surfaces and the fundamental equations for
the van der Waals force, and derive an analytic expression
for the force. We validate our theory by comparing to experi-
mental results and exact numerical solutions for well-defined
rough surfaces. We address the adhesion force, rather than
the more general work of adhesion, since the adhesion force
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is more straightforward to compare to previous models and
experimental data.

II. WELL-DEFINED SURFACE: THEORY AND
COMPARISON TO EXPERIMENT

Naturally occurring rough surfaces are inherently irregular
and nonuniform, and this complexity prevents clear com-
parison between experiment and theory. To overcome this
challenge, Ramakrishna et al. [20,39] cleverly created a spe-
cial surface for systematic experiments addressing the effects
of surface roughness in a controlled and well-characterized
manner, by embedding spheres in a substrate.

Ramakrishna et al. created well-defined rough surfaces by
embedding silica spheres with radii of 6 nm into a silicon
substrate such that the embedded spheres protruded by 6 ± 2
nm. The surface density of embedded spheres, σ , varied from
σ = 0 to 450 μm−2. The experiments measured the adhesion
force of a 9-µm-radii polyethylene (PE) particle at various σ ,
and were performed in C10F18 to eliminate capillary forces.

In the experiments of Ramakrishna et al., the particle’s
large size and low elastic modulus would lead to the adhesion
in the JKR regime if the particle was contacting a flat surface.
However, on the rough surface, Ramakrishna et al. found that
as σ decreased from 450 to 245 μm−2, the contact mechanics
transitioned from JKR to DMT [39]. This conclusion was
based on the shape of the AFM force-distance curve, which
showed continuous lift-off at σ = 245 μm−2 but discontin-
uous lift-off at σ = 450 μm−2. This finding concurs with
previous theories that show that short length-scale roughness
causes a transition from the JKR to the DMT regime [25]—at
lower σ the isolated embedded spheres with nanometer-scale
size act as short length-scale roughness, while at high σ the
nearly constant bed of embedded spheres acts as long length-
scale roughness.

Since our analysis is for the DMT regime, we will use the
Ramakrishna et al. results that follow DMT contact mechanics
to assess the validity of our results.

A. Theory

We begin our analysis from fundamental considerations,
but point out that the key advance is the derivation of an
analytic expression for the adhesive force, in the DMT regime,
that incorporates interactions from surface asperities not in
direct contact with the particle. While these interactions have
been neglected in previous models, we show that they are in
some situations the dominant contributions to the adhesive
force.

We model the well-defined surface of Ramakrishna et al. as
a planar substrate with a grid of spheres of radius Ra embed-
ded in the substrate. The substrate is located at z = 0. The em-
bedded spheres are centered at positions (xa,i, ya,i, za,i ), where
the positions xa,i, ya,i are arranged in a square grid with lattice
parameter λ, and za,i = h − Ra such that the spheres protrude
above the substrate by height h. The Hamaker constants HSi

and HSiO2 characterize the van der Waals interactions between
the polyethylene particle and the silicon substrate and silica
embedded spheres, respectively.

The pairwise van der Waals interactions between atoms j
and k is described by an attractive energy of the form −C/r6

jk ,
where r jk is the distance between atom j and k, and C depends
on the type of atoms. The total force between the particle and
the surface in the z direction (perpendicular to the surface) is
obtained by summing all pairwise interatomic interactions,

FV =
∑

j

∑
k

6Czjk

r8
jk

, (5)

where j loops through atoms in the particle, k loops through
atoms in the surface, and z jk is the component of r jk in the z
dimension.

In a continuum approximation, the sum in Eq. (5) can be
represented as an integral,

FV =
∫∫∫

Xp

ρpdXp

∫∫∫
Xs

ρs
6C(zp − zs)

r8
dXs, (6)

where Xp and Xs are the coordinates of the particle and surface,
respectively, and ρp and ρs are the number densities of the
atoms in the particle and surface [17]. For a smooth surface,
the integral in Eq. (6) can be solved analytically in the limit
R � dc, with the solution given by Eq. (2).

For the well-defined surface used by Ramakrishna et al., an
analytic solution can be determined by splitting the integral
into two parts, one part being the force between the particle
and the substrate, and the other part being the forces between
the particle and each embedded sphere, i,

FV =
∫∫∫

Xp

ρpdXp

∫∫∫
Xsub

ρsub
6CSi(zp − zsub)

r8
dXsub

+
∞∑

i=1

∫∫∫
Xp

ρpdXp

∫∫∫
Xsp,i

ρsp
6CSiO2 (zp − zsp,i )

r8
i

× dXsp,i, (7)

where Xsub represents the coordinates of the substrate and Xsp,i

represents the coordinates of the ith spherical asperity. Note
that the first term is the interaction between a sphere and a
plane, and the second term is the sum of interactions between
two spheres.

The analytic solutions to both integrals in Eq. (7) are well
known in the limit d � R [17], such that Eq. (7) becomes

FV = HSiR

6d2
s

+ HSiO2 R

6(1 + R/Ra)

∞∑
i=1

z′
i

d ′3
i

, (8)

where ds is the distance between the particle and the substrate,
d ′

i is the separation between the particle and the ith embedded
sphere, and z′

i is the component of d ′
i in the z dimension.

Our strategy for evaluating Eq. (8) is as follows. The first
term depends on ds, which can vary depending on whether
the particle sits directly on the substrate or whether it sits on
the embedded sphere; as described below, we use an average
value for this quantity, 〈ds〉, to incorporate this effect. For
the second term, following previous treatments [27,35,36], we
evaluate the sum for the case that the particle is positioned
directly above an embedded sphere; the error associated with
this approximation will be small because when the parti-
cle position deviates significantly from being on top of the
embedded sphere, the adhesion force will be dominated by
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FIG. 2. (a) At large λ the particle can sit anywhere on the surface,
but at small λ the particle must sit atop the embedded spheres. (b)
Definition of parameters describing geometry of particle and surface.

the first term (interaction with the substrate) rather than the
second term.

As shown in Fig. 2, the particle is separated by contact
distance dc from the nearest part of the surface, but its position
relative to the substrate, ds, can vary with position. When R
is large compared to λ, the particle is always near the top of
the embedded spheres such that ds ≈ h + dc [23]. In contrast,
when R � λ, ds varies with the particle position in the range

dc � ds � h + dc. We find ds as a function of particle position
as follows. With the geometry of the system defined according
to Fig. 2(b) such that the origin of the x axis is midway
between neighboring embedded spheres, the x coordinates of
the center of the particle and embedded sphere are a and λ/2,
respectively. Along the x axis (y = 0), the set of positions dc

below the bottom surface of the particle is given by

zp = −
√

(R + dc)2 − (x − a)2 + R + dc + ds, (9a)

while the top surface of the embedded sphere is given by

za =
√

R2
a − (x − λ/2)2 − Ra + h. (9b)

The particle is separated by dc from the embedded sphere at
the condition where za = zp and dza/dx = dzp/dx. Since ds

cannot be less than dc, if ds < dc, the particle directly contacts
the substrate rather than an embedded sphere. The solution
obtained for ds is

ds = max

⎧⎨
⎩dc; h − Ra − R +

√
(R + dc)2 − (R + dc)2

(
a − λ

2

)2

(R + dc − Ra)2 +
√

R2
a − R2

a

(
a − λ

2

)2

(R + dc − Ra)2

⎫⎬
⎭. (10a)

Assuming the particle has a uniform probability of adher-
ing at any position 0 � a � λ/2 on the surface, the average ds

can be determined,

〈ds〉 = 1

λ/2

∫ λ/2

0
dsdx. (10b)

For a particle positioned directly above an embedded
sphere, d ′

i is given by

d ′
i = [

(R + Ra + dc)2 + x2
a,i + y2

a,i

] 1
2 − R − Ra. (11)

While the infinite sum in Eq. (8) converges rapidly, a
closed-form analytical model is of more use. We develop such
an expression by approximating the terms i > 1, where i = 1
is the asperity directly under the particle, in Eq. (8) by an
integral,

∞∑
i=1

z′
i

d ′3
i

≈ 1

d2
c

+ 1

λ2

∫ 2π

0

∫ ∞

λ/2

z′r
d ′3 drdθ, (12)

where r is the two-dimensional radial coordinate with origin
at the center of the particle, and

d ′ = [(R + Ra + dc)2 + r2]
1
2 − R − Ra. (13)

The physical significance of the integral in Eq. (12) is, in
essence, to replace discrete pairwise interactions between the
particle and asperities, which have a number density 1/λ2,
with a continuum of interactions, where the surface has the
same number density of asperities; the integral starts at λ/2
to exclude the asperity directly below the particle, which is
included explicitly as the first term in the expression.

The contribution to the integral in Eq. (12) is largest for
r � R—because as r becomes comparable to R, the underside

of the particle has curved significantly away from the surface.
In this limit z′ ≈ d ′ and we use a second-order Taylor expan-
sion for d ′ in the limit r � R, to obtain

d ′ ≈ r2

2(R + Ra + dc)
+ dc. (14)

Using this expression for d ′, the integral in Eq. (12) can be
evaluated analytically, and then combined with Eq. (8) to give
our final result,

FV,model = HSiR

6
〈
d2

s

〉 + HSiO2 R

6d2
c

{
1

1 + R/Ra

+ 16πd2
c (R + Ra + dc)2

λ2(1 + R/Ra)[λ2 + 8dc(R + Ra + dc)]

}
. (15)

In Eq. (15), the first term accounts for the noncontact force,
i.e., a force where the separation from the particle is greater
than dc, between the particle and the substrate; the second
term accounts for the contact force between the particle and
the embedded sphere directly below it; and the third term
accounts for the noncontact force between the particle and
all other embedded spheres on the surface. Figure 3 depicts
the physical significance of the three terms of Eq. (15). We
note that physically, the term accounting for the embedded
spheres overlaps with the term for the substrate as shown in
Fig. 3; however, since these volumes overlap far from the
particle, and since the intermolecular van der Waals force
decays rapidly with distance, (∼1/r7), regions of the surface
close to the particle dominate the adhesion force causing error
from double counting the overlapping regions to be relatively
insignificant.
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FIG. 3. Our modeled interaction between a spherical particle and
the well-defined surface of Ramakrishna et al. [20,39]. In Eq. (15),
the second term accounts for contact interaction with the embedded
sphere below the particle (blue), and the first and third term account
for the noncontact interactions with the substrate (green) and embed-
ded spheres (red), respectively.

B. Comparison of theory with experiments and previous models

The experiments of Ramakrishna et al. are ideal to val-
idate our analytic expression since the embedded spheres
have a well-characterized radius, protrusion height from the
substrate, and surface density, and the adhering particle is
spherical and smooth. As discussed above, the experiments
showed that the adhesion follows JKR contact mechanics at
high σ , but DMT contact mechanics at lower σ .

We apply our theory by using Eq. (15) with R =
9 μm, Ra = 6 nm, and dc = 0.3 nm [20,39]. We calcu-
late Hamaker constants [17] using the dielectric con-
stants ε = {2.3, 11.7, 1.46, 1.8} and indices of refraction n =

{1.51, 3.02, 3.9, 1.313} for {PE, Si, SiO2, C10F18}, and ob-
tain HSi = 7.552 × 10−20 J and HSiO2 = 2.357 × 10−20 J for
the PE particle interacting with the Si substrate and the
SiO2 embedded spheres, respectively, within a liquid C10F18

medium. We obtain results for the force as a function of the
surface density of embedded spheres, σ = 1/λ2.

Figure 4(a) shows the adhesion force on the particle due
to the substrate and embedded spheres as calculated by our
theory. The force due to interaction with the substrate domi-
nates at very low σ , where the particle adheres directly to the
substrate rather than to the embedded spheres. At all but very
low σ , the particle must adhere near the tops of embedded
spheres such that ds is roughly constant at ds ≈ h + dc, where
h = 6 nm. The force due to interactions with the embedded
spheres increases as σ increases, since at higher σ more
embedded spheres are in closer proximity to the particle. We
note that although the substrate is further from the surface, the
force from interaction with the substrate dominates adhesion
for most of the σ regime because HSi is ∼3 times larger
than HSiO2 .

In Fig. 4(b), we assess the accuracy of our theory with
the experimental results; we emphasize that our results do
not have any adjustable parameters. Our theory calculates
the adhesion force accurately at intermediate σ , precisely
where Ramakrishna et al. [20,39] found that the experimental
behavior follows DMT contact mechanics. In contrast, at low
and high σ , where JKR mechanics is expected, our theory is
less accurate.

We also assess the accuracy of the widely used Rabinovich
and Katainen models, using Ra = 6 nm, dc = 0.3 nm, and
h = 6 nm. We adapt their models to include distinct Hamaker
constants for the embedded sphere and the substrate force

FIG. 4. (a) The total force [red solid line; Eq. (15)], the force from the substrate [blue dashed line; first term of Eq. (15)], and the force
from the embedded spheres [black dashed line; last two terms of Eq. (15)] predicted by our proposed theory. Note there are no adjustable
parameters in our theory. (b) Experimental results of Ramakrishna et al. [20,39] (black squares) compared with the Rabinovich model [green;
Eq. (16)], the Katainen model [blue; Eq. (17)], and our proposed theory [red; Eq. (15)]. The demarcation of the DMT and JKR regimes is
approximate, and based on the experimental results of Ramakrishna et al. [39] that showed that the DMT regime applied at 245 μm−2 while
the JKR regime applied at 450 μm−2.
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contributions,

FV,Rabinovich = R

6d2
c

[
HSiO2

1 + R/Ra
+ HSi

(1 + h/dc)2

]
, (16)

and

FV,Katainen = AC

6d2
c

[
HSiO2σRa + HSi

πdc(1 + h/dc)3

]
. (17)

In the Katainen model, the first term represents the contact
forces between the deformed “flat” particle and multiple em-
bedded spheres, and the second term represents the noncontact
forces between the deformed particle and the substrate. We
estimate the apparent contact area as the particle detaches
from the surface, AC , for the Katainen model using JKR theory
with an applied load of 5 nN as used in the experiments [11],

AC = π

{
R

K

[
P + 3πRγ +

√
6πRγ P + (3πRγ )2

]} 2
3

, (18)

where P is the applied load; γ is the work of adhesion,
0.05 J m−2; and K is the effective elastic constant, 0.29 GPa
[39].

The present analytic model is seen to be more accurate
than these previous analytic models. The Rabinovich model
considers only force contributions from the embedded sphere
directly below the particle, and so it predicts a constant
force with changing σ . The Katainen model does account
for interactions with multiple embedded spheres, and thus
predicts that the adhesion force increases with increasing
σ , but it does so in the context of JKR contact mechanics;
it therefore will not correctly model the DMT regime, and
even in the regime where JKR contact mechanics is relevant,
the contact area will be a nontrivial function of the surface
roughness (in our application here we used the contact area
for a flat surface). Furthermore, both the Rabinovich and
Katainen models presume that the particle is positioned above
embedded spheres, and therefore does not accurately predict
the adhesion force at low σ where the particle is more likely
positioned between embedded spheres and thus located closer
to the substrate.

III. EXTENSION OF THEORY TO GENERAL
ROUGH SURFACES

Having validated our theory by comparison to the Ramakr-
ishna et al. experimental results, we now adapt our theory
to a sinusoidal surface which more closely resembles real
rough surfaces. Here, we extend our theory to approximate
the adhesion force on a spherical particle due to a sinusoidal
surface,

zs(x, y) = A
[

1
2 sin (2πx/λ) + 1

2 sin(2πy/λ)
]
, (19)

where zs is the height of the surface as a function of the
coordinates x and y, and A and λ are the amplitude and
wavelength of the function describing the surface roughness.

As seen in the experimental results of Ramakrishna et al.,
when R � λ, the adhesion force strongly depends on the
particle position on the rough surface—i.e., the force is very
different if the particle sits atop an embedded sphere or
directly on the substrate. For the well-characterized surfaces
of Ramakrishna et al., we were able to include this case in our

FIG. 5. Our modeled interaction between a sinusoidal surface
and sphere. In Eq. (22), the first term accounts for the contact
force contribution from the asperity directly under the center of the
sphere (in blue) and second term accounts for the noncontact force
contributions of all other asperities (in red).

model. However, for real rough surfaces, the effect of particle
position when R � λ is even more complex—i.e., the particle
could fit snugly into valleys where it experiences enhanced
adhesion force, or sit on top of asperities where it experiences
reduced adhesion force. Due to the irregular geometry of
real rough surfaces, it will be in impossible to rigorously
include this effect in a simple model. For this reason, we only
address the case when R � λ such that the particle cannot fit
between asperities and must sit above them [23]. We note that
satisfaction of this condition is required for correct application
of the Rabinovich and Katainen models as well.

To assess the accuracy of our theory, rather than compare
our theory to experiments, which have uncertain particle and
surface morphologies and deformation on contact, we com-
pare to the exact theoretical van der Waals force calculated in
the DMT regime for the well-characterized sinusoidal surface,
by explicitly summing interatomic interactions.

A. Theory for general rough surfaces

Equation (6) describes the adhesion force on a particle
by a surface in the continuum approximation. A sinusoidal
surface has minima and maxima, with the atoms located near
the maxima being closer to the atoms in the particle. Since
the van der Waals force between two atoms decays rapidly (∼
1/r7), the force is dominated by interactions between atoms
at the bottom of the particle and atoms near local maxima
of the surface. The regions of the surface contributing most
to the integral can therefore be approximated by a collection
of second-order Taylor expansions around all local maxima,
where each maxima, i, is described by

z′
s,i(x, y) ≈ A − 4π2A

λ2
[(x − xm,i )

2 + (y − ym,i )
2], (20)

and xm,i, ym,i are the coordinates of local maximum i.
Equation (20) also represents the second-order Taylor ex-

pansion for a collection of spheres of radius Ra = λ2/2π2A,
with sphere i centered at (xm,i, ym,i, A − Ra) as shown in
Fig. 5. Therefore, in the regime where the second-order Tay-
lor expansions are valid, Eq. (6) for a sinusoidal surface is
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equivalent to

FV =
∞∑

i=1

∫∫∫
Xp

ρpdXp

∫∫∫
Xs,i

ρsp
6C(zp − zsp,i )

r8
i

dXsp,i,

(21)
where Xsp,i represents the coordinates of a sphere with radius
Ra = λ2/2π2A centered at (xm,i, ym,i, A − Ra). Equation (21)
is the same as the second term in Eq. (6) for the well-defined
surface of Ramakrishna et al. Additionally d ′

i is the same as
that used in Eq. (11). Thus, following the process detailed in
the previous section, Eq. (21) simplifies to the last two terms
of Eq. (15),

FV,model = F S
V

{
1

1 + R/Ra

+ 16πd2
c (R + Ra + dc)2

λ2(1 + R/Ra)[λ2 + 8dc(R + Ra + dc)]

}
, (22)

where F S
V is given by Eq. (2).

Typically, rough surfaces have been characterized by the
rms roughness and the wavelength of the roughness. Our
theory can be applied to these surfaces by using λ as the
wavelength and relating Ra to the rms roughness. Rabinovich
et al. related Ra to λ and the rms roughness, ψ , using a
hemispherical close-packed surface such that Ra = λ2/(kψ ),
where k ≈ 58 [36]. Alternatively, we can relate ψ and λ

to Ra using a sinusoidal surface where A = 2ψ such that
Ra = λ2/(4π2ψ ).

B. Comparison with numerical calculation and previous models

The van der Waals force, given by Eq. (5), can be cal-
culated numerically by explicitly summing the individual
force contributions from all atom pairs in the two objects
until converged. We consider the surface and sphere to be
composed of crystal arrays of atoms arranged in a cubic lattice
with lattice parameter δ; physically δ is a constant that is
approximately 0.3 nm [17]. In the macroscopic limit, the type
of crystal lattice does not affect the functional dependence
of the force on the sphere radius, surface roughness, or the
particle-surface separation (the type of crystal lattice only
affects the magnitude of the Hamaker constant). As is standard
procedure in molecular simulations, we exploit the fact that
this sum is rapidly converging, and cut off the sum at a
finite distance, rcut; we add a constant to the interatomic
interactions to make the interatomic force continuous at the
cutoff distance,

FV =
∑

i

∑
j

6Czi j

ri j

(
1

r7
i j

− 1

r7
cut

)
. (23)

To model the sinusoidal surface we include atoms j with
z j < zs(x j, y j ) + 0.75δ where zs(x, y) is given from Eq. (19).
We verified our numerical method by comparing scaling
behavior of the numerical solution to the analytic solution
[Eq. (2)] for a sphere interacting with a flat surface, and find-
ing that our procedure leads to the correct scaling behavior,
i.e., F S

V ∼ R and F S
V ∼ d−2

c at small dc.
We assess the accuracy of our theory by comparing with

the numerical solution. Figure 6 shows results for FV /F S
V

FIG. 6. FV /F S
V as a function of R for a particle interacting with a

sinusoidal surface with A = 50δ and λ = 100δ and 300δ, separated
by a distance of 1δ. Squares: explicit sum [Eq. (23)] with rcut = 8δ;
Solid line: our proposed theory [Eq. (22)]. Dashed line: Rabinovich
model [Eq. (4)].

calculated from the numerical solution [Eq. (23)], our theory
[Eq. (22)], and the Rabinovich model [Eq. (4)]. F S

V is the
force on a particle due to a flat surface, and thus FV /F S

V
represents the effect of surface roughness on adhesion. In the
numerical solution [Eq. (23)], at large R, FV /F S

V oscillates
with increasing particle size as the particle interacts with
additional sets of asperities. We note that discontinuous force
changes seen in the numerical solution are due to the discrete
representation of the particle in terms of atoms; as R increases,
atoms are discontinuously added to the particle, leading to
discontinuous increases in force.

We find that our analytic expression matches the numerical
solution within a factor of 2 throughout the particle size
regime. At small R, our model and the Rabinovich model
are nearly identical. This is because the first term in our
analytic expression, which dominates for small R, is the
same as the first term in the Rabinovich model describing
the interaction between the particle and the asperity directly
below it. However, the second term, which dominates for
large R, is fundamentally different from that of the Rabinovich
model since it accounts for particle interactions with multiple
asperities.

When R � λ, the Rabinovich model significantly under-
estimates FV . The reason for this underestimation is that
the Rabinovich model uses a smooth plane at a surface-
roughness-averaged position to describe the interaction with
the surface beyond the one asperity directly below the par-
ticle. In actuality, interactions with other asperities become
important because the van der Waals force decays quickly
(∼ 1/r7) with distance. Previous experimental studies have
similarly concluded that the Rabinovich model significantly
underestimates the van der Waals force when particles interact
strongly with other asperities [20,27]. By incorporating the
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interaction between the particle and all asperities on the
surface, our model accurately predicts FV at large R in the
DMT regime.

IV. CONCLUSION

We derive an analytic expression for the adhesion force
between a spherical particle and a rough surface in the DMT
regime, which we validate by comparison to experimental
results and exact numerical solutions for well-defined rough
surfaces. The key facet that distinguishes our approach is
that it incorporates interactions with all asperities on the

surface. For this reason, in situations where adhesion is in the
DMT regime and the particle size is larger than the length
scale of the roughness, our approach predicts adhesion forces
considerably better than previous analytic expressions that
have been widely used.
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