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Impact in granular matter: Force at the base of a container made with one movable wall
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In geotechnics as well as in planetary science, it is important to find a means by which to protect a base
from impacts of micrometeoroids. In the moon, for example, covering a moon base with regolith, and housing
such regolith by movable bounding walls, could work as a stress-leaking shield. Using a numerical model, by
performing impacts on a granular material housed in a rectangular container made with one movable sidewall,
it is found that such wall mobility serves as a good means for controlling the maximum force exerted at the
container’s base. We show that the force exerted at the container’s base decreases as the movable wall decreases
in mass, and it follows a Janssen-like trend. Moreover, by making use of a dynamically defined redirecting
coefficient K (X ), proposed by Windows-Yule et al. [Phys. Rev. E 100, 022902 (2019)], which depends on the
container’s width X , we propose a model for predicting the maxima measured at the container’s base. The model
depends on the projectile and granulate properties, and the container’s geometry.
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I. INTRODUCTION

The impact of a solid projectile onto a granulate is a
well-known phenomenon in the physics of granular materials
as well as in planetary science. For instance, in order to
understand how the projectile moves into the granulate, some
models have been proposed looking for the right projectile’s
equation of motion [1–11]. Some other studies were mainly
focused on the propagation through the bulk of the shock
wave created during an impact [12–15]. Besides, in planetary
science, the features of the crater formed in an impact process
have been studied in order to figure out the nature of the
projectile [10,16–19]. Despite the above relevant studies on
impacts, when a granular material is housed in a container,
the role of the force acting on the container boundaries during
an impact process is in many cases omitted. Furthermore, the
evolution of such force when the granular material has been
housed in a container whose geometry can be modified could
help us to understand how the force acting on the base can
be tuned. In this way, the present research has been addressed
in order to look for a model for predicting the maximum force
exerted at the container’s base during an impact process, when
it is made with a wall that could move because of the forces
acting on it.

Nowadays, one important implication of such research
concerns the determination of a means by which to protect
a moon base from impacts of micrometeoroids. An option for
a moon-base design suggests that the base must be protected
by a granulate composed of lunar regolith in turn retained by
movable bounding walls [20–23], as is shown in Fig. 1. It
is important to remark that, in such a model, two particular

*luis.torres@fau.de
†valentina.marzulli@fau.de
‡thorsten.poeschel@fau.de

features should be taken into account: (i) the lunar regolith
has been housed in a container made with movable bounding
walls, and (ii) during an impact, the granulate experiences a
compression.

A. A granulate housed in a container

Inside a granulate housed in a container, the loading forces
are mainly carried by force chains [24–26]. These force chains
redirect part of the granulate’s weight toward any bounding
wall because of its geometry and friction [27–29]. This gives
rise to a Janssen-like force F , measured at the container’s
base, given by

F ∝ 1 − e−μK P
A Z , (1)

where μ is the effective friction between the granulate and the
container’s wall, and P, A, and Z are the container’s perime-
ter, base area, and filling height, respectively [27–30]. K is
called a redirecting coefficient, and it satisfies the relationship
σwall = Kσbase, where σi is the stress at the base or at the
wall [30]. Equation (1) is obtained by modeling a continuum
fluid whose frictional interaction with the surrounding walls
causes an effective force that affects the weight of the granular
material. Most of the time this force is directed upward.
Recently, a reverse Janssen effect was found that causes an
effective force pointing downward [31]. When this effective
force points upward, it increases with the liquid’s depth, Z ,
until a certain threshold is reached. For larger depth, the
Janssen force saturates. The increase and saturation of the
upward force results in a reduction of the granulate’s apparent
weight measured at the container base.

Furthermore, the force chains in a granulate change sig-
nificantly along with the container’s geometry, since such
changing modifies grain-wall contacts [32]. In fact, it was
shown recently by Windows-Yule et al. [33] that, in a con-
tainer whose geometry changes at different rates, K becomes
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FIG. 1. Simple sketch of a moon base protected by a granulate
composed by lunar regolith retained by movable bounding walls.

a function of such geometry [i.e., K = K (X ), where X is the
container’s width]. Thus, in order to understand the particular
role played by the bounding movable walls during an impact, a
simplified model, in comparison with the one shown in Fig. 1,
is necessary. To isolate the desired scheme, we proposed a
simpler model in which a granular material is housed within
a rectangular container made with one movable wall, as is
shown in Fig. 2.

B. A granulate under compression

It is found in granular materials that given the nonuni-
form grain-grain compression in each force chain, anomalous
instantaneous stress distributions appear [24–26,29]. Then,
when compressed, such grain-grain interaction yields a bulk
force dependence of the form

F = E∗�β, (2)

where E∗ is the effective Young’s modulus [15], � is the
bulk compression, and β > 1 [15,34,35]. It has been shown
by Clark et al. [15] (see the Appendix in this reference) that
there are some circumstances in which, during an impact
process, the mechanical response of the granulate, when
slowly compressed, can be matched to the response of the
material to a sudden impact. Moreover, Marzulli et al. [36]
have recently shown that, by applying a punctual impulsive
force on a granulate, while changing the width of the con-
tainer, it is possible to model an impact process. This has been
done by means of a finite-element analysis calibrated with
data obtained from a discrete element analysis.

FIG. 2. Simplified model of the container made with one
movable wall.

FIG. 3. Rectangular container made with one movable wall and
filled with a granular material.

C. Aim

Taking into account the properties of a granular material,
when housed in a container and when compressed, by means
of discrete element method simulations, the present research
was aimed at a model to predict the maximum force exerted
at the container’s base during an impact process, when it
possesses one sidewall able to be moved by the forces acting
on it.

II. METHODS

A. System description

The simulated system consists of a rectangular container
made with five smooth walls (four sidewalls and the base),
open from the top, filled with a granulate made of a polydis-
perse sample of spherical particles, as is shown in Fig. 3.

The container has a width X0 = 0.1 m, a depth Y0 =
0.16 m, and a height Z0 = 0.1 m. The width, depth, and height
were taken in the x, y, and z positive axes, respectively. The
farthest wall in the x axis is taken as the movable one. Its
movement is fully determined by the outward pressure exerted
by the granular material, by the friction between the wall
and the base, and by its mass Mw. The set of Mw used is
written in Table I. The particles used in each sample have a
radius ranging from rmin = 2.0 mm to rmax = 3.0 mm, with
a uniform size distribution and a density ρ = 1130 kg/m3,
while the total amount of grains N is equal to 12 568. The
density of the particles has been chosen in order to simulate
nylon beads.

TABLE I. Set of values used for Mw in kilograms.

0.2606 0.3165 0.5819
0.27 0.3212 0.6982
0.2793 0.3258 0.8146
0.2839 0.3305 0.931
0.2886 0.3351 1.0474
0.2932 0.3398 1.3966
0.2979 0.3444 2.0948
0.3025 0.3491 2.7931
0.3119 0.4655 3.4914
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FIG. 4. Snapshots of the impact process. Shown is the system
before (top image), during, and after the impact (lower left and right
images, respectively).

To reproduce an impact after the container had been filled,
a spherical projectile was dropped vertically (along the z
axis) from a height h0 = 0.2 m right in the center of the
container with a given initial velocity v0. A set of four initial
velocities v0 = { 10√

8
, 10√

4
, 10√

2
, 10} m/s has been implemented.

The projectile has a radius rp = 5 mm and a density ρp =
7850 kg/m3. Its density has been chosen in order to simulate
a steel bead. Figure 4 shows a series of snapshots taken from
one simulation describing the impact process.

Finally, the time in which the whole process (i.e., container
filling and impact) had been simulated is of the order of 5 s of
real time.

B. Preparation of the initial state

In the initial filling, all the particles are arranged randomly
upward from the bottom of the container without overlapping,
as is shown in Fig. 5, before being dropped vertically driven
by the terrestrial gravity conditions (g = 9.8 m/s2).

During the filling all the lateral walls are completely fixed,
and when the filling process is complete the movable wall
is released. As already stated, the movement of this wall is
determined by the outward pressure exerted by the granular
material, by the friction between the wall and the base,
and by its mass. Thus, the wall moves until the mechanical
equilibrium between the granular material and the container
is reached. At this stage, all the systems have achieved the
packing fraction φ ≈ 0.557. Allowing the movement of one
lateral wall of the system represents the greater innovation
of this study, since the mechanical behavior of the system is
highly influenced by such an imposed condition, as will be
shown later.

FIG. 5. Initial arrangement of the particles being pulled down by
gravity.

C. Numerical method

To simulate an impact process, discrete element method
simulations have been performed using MERCURYDPM soft-
ware [37–39]. MERCURYDPM is a discrete element method
integrator developed to simulate materials composed of a huge
amount of macroscopic particles, where the main interactions
between them are dissipative collisions and friction (i.e.,
granular materials), solving each equation of motion via a
time-driven algorithm [40,41].

The model used in the present work to compute the normal
force f n

i j , exerted by the grain j on the grain i in a collision, is
the linear spring-dashpot model [42], given by the equation

f n
i j = κξi j + γ ξ̇i j, (3)

where ξi j and ξ̇i j are the relative compression and the relative
rate of decompression between the grain j and the grain
i, respectively. In the above model, the particle stiffness is
modeled by the spring constant κ , and the damping constant
is given by γ . In the present work, κ1 = 1.2 × 105 N/m has
been implemented, and γ has been computed as

γ = −2mi j

(
ln(ε)

tc

)
, (4)

where mi j is the reduced mass between the grain i and the
grain j, defined as mi j = mimj

mi+mj
. tc is the time of collision and

ε is the coefficient of restitution [42]. tc has been set to 0.55 ×
10−4 s, while ε = 0.9.

To compute the friction f t
i j between grains, Coulomb’s law

of friction [30] for the sliding case has been implemented, i.e.,
the force given by the friction satisfies the criterion

f t
i j = μ f n

i j, (5)

where μ is the coefficient of sliding friction, set to 0.25.
Furthermore, the time step implemented to solve the equa-

tions of motion has been imposed to be equal to 0.02 × tc.
The parameters used to compute the grain-wall and grain-
projectile interactions are the same as those used to compute
the grain-grain ones.

It is important to mention that for solving the wall’s mo-
tion, since the force of friction is proportional to the coeffi-
cient of friction, an effective coefficient of friction μ∗ = ηMw
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has been defined, where η = 0.21 kg−1, in order to set Mw as
our control variable. In other words, the deceleration caused
by the wall-base friction is computed by solving ẍ = μ∗g.
In the present work, η has been chosen to give a friction
μ = 0.58 when Mw = 2.7 kg.

D. Data analysis

When a container had been filled with granular material,
it is well known that, given the presence of grain-grain and
grain-wall friction, force chains will appear [24–26,29]. Such
chains are in turn more (or less) stable as the boundaries are
more (or less) static and rough [28,29,32]. If a projectile hits a
container filled with a granulate, the force transmission will be
driven by such force chains. Thus, any change in the system’s
boundary (during an impact) will modify the force transmitted
by the projectile to the base.

Since the present work aims at understanding how the
average stress at the container’s base changes through an
impact process, the net force at the base of the container Fbase

has been computed as a function of time. The net force is
defined as

Fbase(t ) =
Nbase∑
i=1

fi, (6)

where fi is the projection of the normal force exerted by the
base on the grain i, and Nbase is the number of particles in
touch instantaneously with the base. This has been done for
the full set of wall masses Mw given in Table I, and for each
initial velocity v0. Then, in order to understand the role played
by the mobility of the wall, the maximum force experienced
at the base F max

base during each impact process is plotted. As will
be shown further, the mobility of the wall acts as a regulator
of the maximum force transmitted to the base. It is easy to
understand since such wall mobility works as a “leakage” of
the stress transmission. As part of the stress leaks toward the
movable wall, the force at the base decreases as the movable
wall is more able to be pushed. Moreover, it is shown that,
proposing a model that relies on Janssen’s model principles
[i.e., Eq. (1)] and using a dynamically defined K , as given
in [33], it is possible to describe qualitatively the tendency
followed by F max

base as a function of Mw, in a wide range
of Mw.

It is found also that the general trend followed by
F max

base (Mw) does not change when the projectile has been
dropped with different initial velocities. Then, following a
similar reasoning to that given in [15] (see the Appendix in
this reference), and using an effectively static wall (Mw =
3.49 kg), an empirical formula is proposed that relies on the
impact velocity v like

F max
base (v) = avα + W ∗ (7)

to collapse all F max
base (Mw). Here a is a fit parameter related

mainly to the bulk stiffness of the system at static conditions,
and W ∗ is the apparent weight exerted by the granulate on
the container’s base when the projectile impinges onto the
granulate’s surface with an impact velocity close to zero.

FIG. 6. Force exerted at the base Fbase as a function of the time,
for one single system composed by an effectively static wall (Mw =
3.49 kg), during the impact of the projectile dropped with an initial
velocity of 10 m/s.

III. RESULTS

A. Impact

The evolution of the impact process is plotted in Fig. 6 for
one single system composed by an effectively infinite massive
wall (Mw = 3.49 kg) when the projectile has been dropped
with an initial velocity v0 = 10 m/s. It can be observed
that at the initial stage, about t = 0 s, the force at the base
remains constant with a value close to 5 N. This is because the
base is experiencing the apparent weight W ∗ of the material.
The apparent weight W ∗ is lower than the real weight of the
material, which is instead equal to 9.87 N, because of the
presence of the Janssen effect [27,29,30].

When the projectile hits the surface of the granulate,
Fbase(t ) increases until it achieves a maximum value of about
60 N. Previous experiments on impacts in unidimensional
chains made of steel beads and two-dimensional photoelastic
materials have been performed in Refs. [12,15]. These studies
found similar values of the maximum force Fbase in a range
of impact velocities similar to those investigated in this study.
Our results confirm that this maximum depends strongly on
the impact velocity and on the granulate’s bulk stiffness.

While the projectile is penetrating inside the granular
material, the force experienced at the base starts to decrease.
Surprisingly, the force decreases almost down to zero. This
happens because the material touching the base reacts to the
momentum transmitted by the projectile’s impact, causing
slight “levitation” of all the particles. Clearly, the presence of
gravity pulls the material down again and it can be observed in
the last plateau of the function, characterized also by tiny os-
cillations (Fig. 6). It is assumed that those tiny oscillations are
related to the movement of the projectile inside the granulate,
and to the rearrangement of the particles in the container.

To understand how the movement of one sidewall can
influence Fbase, the above process has been repeated for the full
set of wall masses given in Table I. As is shown in Fig. 7(a),
through the impact process all the systems described a similar
trend, i.e., as the wall mass decreases the maximum peak
of the force felt by the base decreases also. It suggests that
the role of the wall’s mobility is acting as a regulator of the
stress transmitted.
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FIG. 7. Force exerted at the base as a time function, for the
whole set of initial velocities. The initial velocities v0 = 10, 10/

√
2,

10/
√

4, and 10/
√

8 m/s belong to (a), (b), (c), and (d), respectively.
Mw decreases from the blue color (largest mass) to the red one
(lowest mass).

This decreasing of Fbase when decreasing Mw could be
explained by the following reasoning: When the projectile
hits the granulate’s surface, a shock wave is created [15].
The speed of this shock wave is approximately two orders
of magnitude faster than the projectile’s speed [15]. Thus, as
soon as the projectile moves into the granulate’s upper layer,
the shock wave impinges all the sidewalls. If the movable wall
possesses more mass, the system could be seen as if all the
walls were fixed. Then, this shock wave moves easily through
the force chains in the granulate toward the base. On the other
hand, when the movable wall possesses less mass, as soon as
the shock wave reaches it, it will start to move slightly, leaking
the stress transmitted to the base.

Repeating the same process for the full set of initial veloc-
ities v0 [Figs. 7(b)–7(d)], it is found that, when the impact
velocity decreases, the maximum force experienced at the
base of the container sharply decreases as well. This can
be understood since this maximum is mainly related to the
changing of the projectile’s momentum: a greater change in
the projectile’s momentum causes a larger peak of Fbase. For
all the impact velocities, a decreasing of the Fbase’s peak is
always obtained by decreasing the mass of the wall also.

B. Maximum force

The main feature shown by each curve in Fig. 7 is the
maximum reached by Fbase. In Fig. 8, we plotted the maximum
F max

base as a function of Mw. It is easy to see that in all the
curves, the mobility of the sidewall causes a leaking of the
stress transmitted to the base, exhibiting a lower maximum
when the wall possesses less mass (Fig. 8, red dots). Since all
the curves describe a similar trend, there should be a specific
dependence of F max

base on the impact velocity v (the projectile’s

FIG. 8. Maximum Fbase obtained as a function of Mw. The largest
Mw corresponds to the blue color, while the lowest corresponds to the
red one.

velocity right before it hits the granulate’s surface). It is clear
that the impact velocity v is larger than the initial velocity
v0 since the projectile, once dropped from a certain height, is
accelerated by gravity.

Looking for the right scaling between F max
base and v, more

simulations were performed to explore a wider range of
impact velocities, keeping the system composed by an ef-
fectively static wall (Mw = 3.49 kg). The trend followed by
F max

base (v) is shown in Fig. 9 (blue stars). The most notable
mark is its nonlinear relation, which follows a noninteger
power law. Proposing an empirical formula given by Eq. (7)
and using the least-squares method, we find that the best
fit gives a = 2.49 N/(m/s)α , α = 1.36, and W ∗ = 5.19 N
(Fig. 9, black curve). As previously mentioned, the value
obtained in W ∗ is completely determined by the apparent

FIG. 9. Maximum force exerted at the base as a function of the
impact velocity, for the system with Mw = 3.49 kg. The trend follows
a power law with an exponent α = 1.36.
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FIG. 10. Maximum force exerted at the base as a function of the
mass of the movable wall divided by the fitting obtained in Eq. (7).

weight of the material when the projectile impinges onto the
granulate’s surface with a velocity close to zero. Hence W ∗
could be considered as the granulate’s apparent weight. The
role of a and α will be discussed in the Secs. IV B and IV C,
respectively. Finally, this fitting allows us to collapse all the
points plotted in Fig. 8 in a single trend shown in Fig. 10 (blue
markers). Since we are collapsing the curves using the system
with an effectively static wall, any other system experiences a
larger stress at the base when a projectile hits its surface.

IV. DISCUSSION

A. Proposing a Janssen-like model

The role of the wall’s mobility is important because it
causes a stress-leaking effect. This leaking reduces the force
exerted at the base since part of the stress wave moves toward
the movable wall instead of the container’s base. As the mov-
able wall possesses less mass, it is more easily pushed, leaking
a larger amount of stress. Otherwise, when the container is
made with an effectively infinite massive wall, it behaves like
a system made with completely fixed walls. Then, the stress
wave moves easily through the force chains to the container’s
base causing a larger F max

base .
To understand the trend shown by the blue markers in

Fig. 10, we present the following reasoning: when a container
filled with a granulate remains static, the stress measured at
the base is given by Janssen’s model [27,30],

F̄ max
base = 1 − e−μK P

Abase
Z
, (8)

where we consider that F̄ max
base has been divided by any quantity

multiplying the right side of the equation. In the case of
rectangular containers, P = 2(X + Y ) and Abase = XY , where
X and Y are the container’s width and depth, respectively.
Z is the container’s filling height. In the present system,
during the impact, the width of the container changes. Then,
we can rewrite X as X0 + �x, where X0 is the container’s
initial width and �x is a small displacement. The numerical
value of �x is the maximum wall’s displacement, which is
a time-independent quantity. From numerical simulations, we
obtained the dependence of �x on the mass of the wall:

�x = �x0e−ζηMW . (9)

Here ζ is a parameter mainly related to the quickness of
the changing of the container’s geometry, and �x0 is a fit
parameter. Hence, we can rewrite X as

X (ηMW) = X0 + �x0e−ζηMW . (10)

After the container’s filling and before the impact, the
container changes its width a bit until the mechanical equilib-
rium between the granulate and its container is reached. Such
changing has been considered as an effective width given by
Eq. (10). Now, it is possible to relate X with Z by assuming
that, while the wall is being pushed away, the ZX area remains
constant. Then, we get A = ZX . Therefore, replacing Z in
Eq. (8), and considering X (ηMw) as given by Eq. (10), we
can rewrite Eq. (8) as

F̄ max
base = 1 − e−μKh(ηMw ), (11)

where

h(ηMw) = 2A
X + Y0

X 2Y0
. (12)

Equation (11), which we call a “Janssen-like” model since
we depart from the Janssen considerations [27,30], explains
the decreasing of F max

base (Mw) as a process in which the stress-
leaking effect is because of the changing of the container’s
geometry. Placing Eq. (10) in Eq. (8) and considering the
product μK constant, as stated by Janssen’s model [27,30],
it is found that the best fit gives μK = 1.59, �x0 = 29.8 m,
and ζ = 102.3. As can be seen, in Fig. 10 (black solid curve)
the present model describes quite well the tendency shown by
the larger Mw. But at lower Mw, the model passes a bit above
the blue markers. This happens mainly because the product
μK has been assumed constant, and it should be understood
that K depends strongly on the container’s geometry.

To compute K̃ (X ), which changes as the container’s geom-
etry does, we follow the reasoning given by Windows-Yule
et al. [33] by defining

K̃ = μK

1 − e−μKh(ηMw )
− 1

h(ηMw)
, (13)

where μK is the same above-computed one, when considered
constant. Moreover, we must multiply K̃ by μeff in order to
maintain the effect caused by the effective grain-wall friction,
since Janssen’s model makes use of both parameters. We can
obtain this by computing μeff = μK

K̃ (ηMw )
, where Mw = 3.49 kg.

This gives μeff = 1.29. As is shown in Fig. 10 (red dashed
line), the trend given by using the product μeff K̃ , which
depends on the container’s geometry, still fits quite well the
blue markers at larger Mw. When decreasing Mw, the model
decays more quickly than that when considering μK constant,
passing through more blue markers. This suggests that the role
of a dynamically defined K̃ is necessary in order to consider
the effects caused by the changing of the container’s geometry.

B. Dependence of a on the grain stiffness

The second fruitful result obtained is the fitting given by
Eq. (7). It has been shown in previous experiments [34,35]
that, when a granular material is compressed, the mechan-
ical bulk’s response follows a power law with noninteger
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FIG. 11. Maximum force exerted at the base as a function of the
impact velocity for a system made of stiffer particles (κ2 = 1.2 ×
106 N/m). The fitting given in Eq. (7) gives an exponent α = 1.25.

exponents of the form

F max
base = E∗�β, (14)

where � is the bulk compression, E∗ is the effective Young’s
modulus [15] determined by the mechanical bulk properties
of the system at static conditions, and β is the power-law
dependence. To figure out the relationship between a and
the mechanical response of the system to an impact, more
simulations were performed with particles with a stiffness 10
times larger; κ2 = 10 × κ1. As is shown in Fig. 11, although
the trend is still well fitted by a power law, the values for
the fitting are different. Values of a = 10.11 N/(m/s)α , W ∗ =
4.97 N, and α = 1.25 have been obtained.

To understand the meaning of a and α, we can suppose that
the impact process can be seen as two solid bodies colliding.
Then, such a collision can be modeled by a nonlinear spring-
mass system, where the mass is the mass of the projectile and
the spring is the granular material reacting to an impact. In
other words, the spring reacts following the relationship given
by Eq. (14). Considering that the maximum achieved by Fbase

is mainly driven by the first shock wave, and the speed of this
wave is about two orders of magnitude faster than the impact
velocity, it could be assumed that this maximum is felt at
the base before the dissipation because interparticle collisions
start to play a role. By this reasoning, the conservation of
energy could be applied. Then, we have the relationship

1

2
ρpVpv

2 = 1

1 + β
E∗�1+β, (15)

where ρp and Vp are the projectile’s density and volume,
respectively. Replacing � in Eq. (14), we have

F max
base (v) =

(
E∗β (1 + β )ρpVp

2

)β/1+β

v2β/1+β. (16)

This equation is similar to that proposed in Eq. (7), where

a = ( E∗β (1+β )ρpVp

2 )
β/1+β

and α = 2β/1 + β. In Eq. (7), the
limit v → 0 concerns the case in which the projectile im-
pinges on the granulate with very small impact velocity,
which causes a tiny perturbation in the system. This leads
to a force measured at the base very close to W ∗. With

FIG. 12. Trend followed by (F max
base − W ∗)/a as a function of vα

in a log-log scale for projectile radii ranging from rp = 5 mm to
8rp(color stars), and compared with a function y = xα (solid black
line), where α = 1.36.

the above-obtained relationships, it is shown that a retains
the mechanical properties of the material, being modified
when the power-law changes, as well as the projectile ones.
Following the above-obtained relationships, the equivalent
values for α1 = 1.36 and α2 = 1.25 are β1 ≈ 2.1 and β2 ≈
1.6, respectively. β1 belongs to the system with less stiffness
(κ1 = 1.2 × 105 N/m), and β2 corresponds to that stiffer one
(κ2 = 1.2 × 106 N/m). Then, the exponents α obtained in
each fitting are explained by the fact that, when a granular
system has been compressed, the mechanical bulk response
deviates from a linear one, and this yields exponents β > 1
[15,34,35]. Furthermore, it has been shown in [15] that in
a system composed by particles with a larger stiffness, β

is larger than that obtained in a system composed by softer
particles. This happens because in a system with less stiffness,
the number of contacts between particles increases more
quickly than in a stiffer system, causing a more uniform stress
distribution [15,35].

C. Dependence of α on the projectile’s size

Another important step done in order to approximate the
interaction between the projectile and the granular material is
the use of Eq. (15). Here such an interaction has been modeled
as a nonlinear spring-mass system in which the energy is
conserved by assuming that the first front-wave is what causes
the largest maximum exhibited by F max

base (v). And this front-
wave reaches the bottom faster than the dissipation of the
energy because the interparticle collisions start to play a role.

One way to corroborate that such an approximation is valid
is by looking at the changing of α in Eq. (7) when changing
the projectile’s size. If such an approximation were not valid,
the assumption of an α independent of the projectile’s size
would also not be valid. Plotted in log-log scale in Fig. 12
is the trend followed by Eq. (7) by isolating vα for different
projectile sizes, and it is compared with a function y = xα ,
where α = 1.36 (black solid line). As is shown, when varying
the projectile’s radii from rp to 8rp, all the points fall into
the same slope given by α = 1.36. This corroborates that the
above-found α does not depend on the projectile’s size.
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FIG. 13. Comparison between the trend obtained by using a
model with a constant K (black solid line) and the one with a dynamic
K̃ (red dashed line), for each initial velocity v0.

D. A single master curve

Finally, Eqs. (7), (11), and (13) can be joined in a single
master function as

F max
base (Mw, v) = avα (1 − e−μeff K̃h(ηMw )) + W ∗. (17)

To show explicitly the “effectiveness” of this model, we
plotted in Fig. 13 the trend obtained by using Eq. (17) with
a constant K (black solid line) and with a width-dependent
K̃ (red dashed line), and we compared it to F max

base (Mw)
for each initial velocity. As is shown, for larger Mw both

models fit similarly well F max
base . When decreasing Mw, both

models start to depart from each other; the best one has
a “dynamically” defined K̃ [Eq. (13)]. In the case of v0 =
10/

√
4 and 10/

√
8, the maxima shown between the yellow

and the blue markers do not fall into the proposed model.
This suggests that a could depend as well on the container’s
geometry.

V. CONCLUSIONS

We investigated the ability of a granular material housed
in a rectangular container, which is made with one movable
sidewall, to tune the vertical transmission of the force from
an impacting object to the container’s base. It is shown that
such a system can indeed significantly reduce the force felt
at the base, and that the magnitude of this force decreases
monotonically as the mobility of the bounding wall increases.
This observation has been explained in terms of a modified
Janssen theory [33] for interpreting the container’s deforma-
tion as a source of leakage of the vertical force in the lateral
directions. Building upon this theory and using the properties
of granular materials when compressed during an impact [15],
a detailed model is proposed from which the maximal force
exerted at the base of our system may be predicted, taking
into account the properties and incident velocity of a given
projectile, the physical properties of the granular medium,
and the mass (and thus mobility) of the bounding walls.
This model not only provides valuable physical insight into
the system of interest, but it may prove highly useful in the
design and optimization of impact-mitigation systems, such
as those currently being considered for the shielding of lunar
habitations [20–23].
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