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Nanoscale pattern formation on the surface of a solid that is bombarded with a broad ion beam is studied for
angles of ion incidence, θ , just above the threshold angle for ripple formation, θc. We carry out a systematic
expansion in powers of the small parameter ε ≡ (θ − θc )1/2 and retain all terms up to a given order in ε. In the
case of two diametrically opposed, obliquely incident beams, the equation of motion close to threshold and at
sufficiently long times is rigorously shown to be a particular version of the anisotropic Kuramoto-Sivashinsky
equation. We also determine the long-time, near-threshold scaling behavior of the rippled surface’s wavelength,
amplitude, and transverse correlation length for this case. When the surface is bombarded with a single obliquely
incident beam, linear dispersion plays a crucial role close to threshold and dramatically alters the behavior:
highly ordered ripples can emerge at sufficiently long times and solitons can propagate over the solid surface. A
generalized crater function formalism that rests on a firm mathematical footing is developed and is used in our
derivations of the equations of motion for the single and dual beam cases.
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I. INTRODUCTION

Bombarding a solid surface with a broad ion beam can lead
to the spontaneous formation of nanoscale patterns on the sur-
face [1]. These patterns include periodic height modulations
or “ripples” as well as nanodots arranged in hexagonal arrays
of surprising regularity [2–10]. This has sparked widespread
interest in using ion sputtering as a means of fabricating
nanostructures with feature sizes smaller than those produced
by conventional optical lithography.

Much of the theoretical work done in analyzing these
patterns has been based on the continuum Bradley-Harper
(BH) theory [11], which is in turn based on the Sigmund
model of ion sputtering [12]. Bradley and Harper showed that
for the Sigmund model, the sputter yield at a point on the
surface does not just depend on the local angle of incidence—
it also depends on the surface curvature. Because high points
on the surface are eroded more slowly than the low points,
the curvature dependence of the sputter yield leads to an
instability of the solid surface.

The BH theory is linear and, if there is a surface instability,
the ripple amplitude grows exponentially with time. In this
case, the linear approximation breaks down at some point
and nonlinear terms come into play. Cuerno and Barabàsi
extended the BH theory to include what they argued are the
leading-order nonlinear terms [13]. After transforming to an
appropriately chosen moving frame of reference, their equa-
tion of motion (EOM) becomes the anisotropic Kuramoto-
Sivashinsky (AKS) equation

ut = �1uxx + �2uyy − B∇2∇2u + �1u2
x + �2u2

y, (1)

where u(x, y, t ) is the height of the surface above the point
(x, y) in the x-y plane at time t ; the subscripts x, y, and t
denote partial derivatives; the direction of the incident ions

has polar angle θ and an azimuthal angle of 180◦; and B
is the surface diffusivity. The constants �1, �2, �1, and �2

depend on the angle of incidence of the ion beam, θ , and
have been computed using the Sigmund theory of sputtering
[11,12,14] and atomistic simulations [15,16]. If �1 < �2 and
�1 < 0, ripples with their wave vector parallel to the surface
projection of the ion beam direction form; these are called
parallel-mode ripples. Conversely, if �2 < �1 and �2 < 0,
perpendicular-mode ripples emerge.

Following the BH approach, Cuerno and Barabàsi assumed
that the ripple amplitude is small and the wavelength of the
surface ripples, l , is long compared to the characteristic size of
a collision cascade a in their derivation of the AKS equation
[13]. For a given choice of target material and ion beam, it
is unclear a priori whether the assumption l � a is valid.
Moreover, although the assumption that the ripple amplitude
is small is valid at early times if the initial surface is nominally
flat, it may be invalid at long times.

Since the work of Cuerno and Barabàsi, the theory has been
modified in a number of ways because it fails to reproduce
a variety of experimentally observed phenomena. A variety
of linear and nonlinear terms have been appended to the
AKS equation, and in some cases this has led to improved
agreement with experiment [14,17–22]. Pearson and Bradley,
for example, added the term u3

x to the AKS equation [20].
(This term results from a third-order expansion of the sputter
yield in powers of the surface slope.) The resulting EOM can
lead to the formation of terraced surfaces that are similar to
those found in numerous experiments. It has been unclear,
however, which terms are negligible and which should be
included in the EOM in a given situation.

In the mathematical theory of pattern formation, the
nonequilibrium behavior of spatially extended nonlinear sys-
tems is studied as a function of a control parameter p
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[23,24]. Typically, the system is linearly unstable and a pattern
emerges for p greater than a critical value of p which is
denoted by pc, whereas the system is stable and no pattern
forms for p < pc. Relatively simple behavior emerges close
to the threshold for the pattern formation, i.e., for p − pc

that is small and positive. Near threshold, remarkable ana-
lytical progress has been made by carrying out a systematic
expansion in the small parameter p − pc. The near-threshold
dynamics of the system is universal in the sense that it
depends only on the nature of the linear dispersion relation,
the dimensionality of the system, and its symmetries. Close
to threshold, there is a long characteristic length scale that
describes either the pattern itself or slowly varying spatial
modulations of it.

For the ion bombardment of a solid, the angle of incidence,
θ , is a control parameter that can be directly controlled in an
experiment. In addition, there is a critical value of this angle,
θc. For θ > θc, the surface is unstable and a pattern emerges,
while for θ < θc, the surface remains flat. If θ − θc is positive
and is not too large, parallel-mode ripples form. The long
length scale near the threshold is the ripple wavelength. The
mathematical theory of pattern formation therefore strongly
suggests that it would be fruitful to explore the near-threshold
behavior of an ion-sputtered surface.

The central goal of this paper is to study the behavior of
a solid surface that is bombarded with an ion beam (or ion
beams) with an angle of incidence, θ , just above the threshold
value θc. We carry out a systematic expansion in the small
parameter ε ≡ (θ − θc)1/2. The result of this expansion is
simplest for the case in which two ion beams are directed onto
the solid surface, and these beams have the same ion species,
flux, energy, and polar angle of incidence but have azimuthal
angles that differ by 180◦. We show that for θ just above the
critical angle θc, the equation of motion has the form

ut = −A1uxx + A2uyy − Buxxxx + �1u2
x (2)

to leading order in ε. The constant coefficients A1, A2, and B
are positive but �1 can have either sign. Equation (2) can be
viewed as a simplified version of the AKS equation (1). We
determine the near-threshold scaling behavior of the ripple
wavelength and transverse correlation length. Additionally,
we find the scaling behavior of the long-time ripple amplitude
and the time needed to approach this steady state.

For the case in which the surface is bombarded by a single
obliquely incident ion beam, we are led to the surprising con-
clusion that the effect of linear dispersion becomes crucial just
above the threshold for pattern formation. Since dispersion
can lead to the formation of highly ordered parallel-mode
ripples [22], this could have important implications for the
future prospects of ion sputtering as a nanofabrication tool.

In our derivations of the EOMs for the single and dual
beam cases, we develop and utilize a generalized crater
function formalism (CFF). The crater function is the average
result of many ion impacts at a particular surface point, and
so is effectively the Green’s function for the problem. The
CFF allows us to determine the response of a surface to
bombardment with a broad ion beam if the crater function
is known [15,25,26]. This approach has the advantage that
it takes into account both sputtering and ion-induced mass
redistribution [27–29] and does not rely on simple, approx-

imate models of these phenomena like those introduced by
Sigmund [12] and Carter and Vishnykov [27]. Our CFF yields
explicit expressions for the coefficients A1, A2, B, and �1 that
appear in Eq. (2). These expressions relate the coefficients
to moments of the crater function. Importantly, our CFF is
mathematically rigorous and generalizes earlier formulations
[15,16,25,26].

This paper is organized as follows. After making some in-
troductory remarks in Sec. II, we introduce the crater function
that we employ in Sec. III. In Sec. IV, we develop our gener-
alized crater function formalism. The equation of motion for
the case in which diametrically opposed beams are incident on
the surface is derived in Sec. V and the scaling behavior close
to threshold is found. The case in which a single obliquely
incident ion beam is directed into the solid surface is studied
in Sec. VI. We discuss our results in Sec. VII and conclude
in Sec. VIII. We demonstrate that the expressions that our
generalized CFF yields for the coefficients A1, A2, and �1

agree with previous results [20,26] in the Appendix.

II. PRELIMINARY CONSIDERATIONS

We begin by considering the bombardment of a solid
elemental material with a single broad beam of noble gas
ions before moving on to the case in which two diametrically
opposed beams are incident on the surface. The material
may be amorphous or crystalline. If the material is initially
crystalline, we assume that a layer at the surface of the solid
is amorphized by the ion bombardment. Additionally, we take
the sample temperature to be low enough that the effect of
thermally activated surface diffusion is negligible compared
to the effect of ion-induced surface viscous flow [30].

If the beam energy is not too high, implanted noble gas ions
will be present only within a shallow surface layer. The ions
diffuse within the solid and usually desorb or are sputtered
away once they reach its surface. For simplicity, we make
the customary assumption that the concentration of implanted
noble gas ions is negligibly small [31].

The sample surface is taken to be nominally flat before the
irradiation begins. We define the ẑ direction to be the global
vertical, normal to the macroscopic surface. The unit vector
x̂ is taken to be the direction of the projection of the incident
ion beam onto the macroscopic surface, and ŷ is taken to be
normal to the x-z plane. The incident ion flux is J = −J ê,
where ê ≡ −x̂ sin θ + ẑ cos θ and the angle of incidence, θ , is
the angle between the global vertical and the incident beam.

We employ a continuum description of the surface dy-
namics in which the position of an arbitrary point on the
surface is given by r = xx̂ + yŷ + h(x, y, t )ẑ, where h(x, y, t )
is the height of the point above the x-y plane at time t . The
surface height h is obtained by coarse-graining the detailed
microscopic surface configuration and is assumed to be a
smoothly varying function of its arguments x, y, and t .

III. THE CRATER FUNCTION

The crater function describes the average effect of a single
ion impact on the morphology of the solid surface. In this
section, we place the origin O at the point of impact and, for
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the sake of simplicity, we do not display the time t in the list
of arguments of h.

There are many possible configurations of atoms beneath
the solid surface that are consistent with a given coarse-
grained surface height h = h(x, y). The form of the crater
that is produced by the ion impact depends on the detailed
microscopic arrangement of atoms beneath the surface of the
solid. The crater we employ is a statistical average of craters
that result from ion impacts on the many different possible
microscopic arrangements of atoms beneath the given coarse-
grained surface.

The value of the crater function f at the point (x, y) is
defined to be minus the average change in the surface height
h above the point (x, y) in the x-y plane as a result of a single
ion impact at x = y = 0. The crater function f depends on x,
y, and the angle of incidence, θ . It also depends on the shape
of the entire surface, or, equivalently, on all of the spatial
derivatives of h(x, y) evaluated at x = y = 0. We write

f = f (x, y, θ ; hx, hy, hxx, hxy, hyy, hxxx,

hxxy, hxyy, hyyy, hxxxx, . . .). (3)

The partial derivatives of h that appear on the right-hand side
of Eq. (3) are all to be evaluated at x = y = 0. We assume that
f is known a priori from another theory or from atomistic
simulations.

In addition to the coordinates x, y, and z, we utilize a
second set of coordinates with its origin at the point O. We
define the vector n̂ to be the local surface normal at O and t̂ξ

to be the local downbeam direction projected onto the surface.
Explicitly,

n̂ = ẑ − ∇h√
1 + (∇h)2

(4)

and

t̂ξ = −J + (J · n̂)n̂
| − J + (J · n̂)n̂| . (5)

t̂η is defined to be the cross product of n̂ and t̂ξ . The unit
vectors t̂ξ , t̂η, and n̂ form an orthonormal basis and t̂ξ and
t̂η are tangent to the surface at O. We define ξ , η, and ζ to be
the coordinates along the directions t̂ξ , t̂η, and n̂, respectively,
and let H (ξ, η) denote the height of the solid surface above the
point (ξ, η) in the ξ -η plane. The local angle of ion incidence,
which will be denoted by φ, is given by cos φ = ê · n̂.

In previous formulations of the CFF [16,25,26], the crater
function F that is employed is defined relative to the coordi-
nate system with coordinates ξ , η, and ζ . The value of F at the
point (ξ, η) is defined to be minus the average change in the
local surface height H above the point (ξ, η) in the ξ -η plane
as a result of a single ion impact at ξ = η = 0. F depends on
ξ , η, and the local angle of incidence, φ. It also depends on all
of the spatial derivatives of H evaluated at ξ = η = 0. Since
Hξ and Hη vanish for ξ = η = 0, we write

F = F (ξ, η, φ; Hξξ , Hξη, Hηη, Hξξξ , . . .). (6)

The partial derivatives of H that appear on the right-hand side
of Eq. (3) are evaluated at ξ = η = 0.

As we shall see, it is much simpler to develop the CFF that
is based on the crater function f than it was to develop the CFF

based on the crater function F . This new approach enables
us to determine the leading-order effect of nonlinearities and
higher-order spatial derivatives on the surface evolution. The
approach introduced in this paper is simpler because it re-
moves the need to transform from the local coordinate system
(ξ, η, ζ ) at the point of ion impact to the global or laboratory
coordinate system (x, y, z).

There is an important special case we should touch on.
If hx = hy = 0, then the coordinate systems (x, y, z) and
(ξ, η, ζ ) coincide: H = h and φ = θ . It follows that

F (x, y, θ ; hxx, hxy, hyy, hxxx, . . .)

= f (x, y, θ ; 0, 0, hxx, hxy, hyy, hxxx, . . .) (7)

and so the crater function F that was previously employed is
a special case of our crater function f .

We take the crater function f to be evaluated at a time long
enough after the ion impact that essentially all ion-induced
motion has ceased. It therefore takes into account sputtering,
mass redistribution, and ion-induced surface viscous flow.
When a broad beam is incident on the surface, we assume that
the ion flux is low enough that all ion-induced motion near a
point of impact, P, has ended before another ion strikes the
surface in the vicinity of P.

IV. THE GENERALIZED CRATER FUNCTION
FORMALISM

We begin this section by finding ht at an arbitrary point P0

on the solid surface for all times t � 0. The case in which a
single broad beam of noble gas ions is incident on the solid is
considered. We now find it convenient to place the origin O at
the position of P0 at time t . The origin is taken to be stationary,
and it so will remain fixed as the surface point P0 moves either
up or down.

The flux of ions through a surface element dA centered on r
is J ê · n̂dA, where the surface normal n̂ is given by Eq. (4) and
dA =

√
1 + (∇h)2 dx dy. Each arriving ion produces a crater

which changes the height of the surface point P0. It follows
that the value of ht at x = y = 0 is given by

ht = −J
∫

dx
∫

dy f (−x,−y, θ ; hx, hy, hxx, hxy, hyy, . . .)

× (cos θ + hx sin θ ). (8)

All of the spatial derivatives of h that appear in the integrand
on the right-hand side of Eq. (8) are evaluated at the point
(x, y) in the x-y plane.

Although Eq. (8) gives ht and completely specifies the
dynamics of the surface, it is an exceedingly complicated
integrodifferential equation. It becomes much simpler when
ε ≡ (θ − θc)1/2 is small and positive, however. Let v0 be
the rate the surface recedes if it is perfectly planar, and set
h(x, y, t ) = −v0t + u(x, y, t ). We seek solutions to Eq. (8) of
the form

u(x, y, t ) = ε2U (X,Y, T ), (9)

where

X ≡ εx, Y ≡ ε2y, and T ≡ ε4t . (10)
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X , Y , and T are the “slow” variables and x, y, and t are the
corresponding “fast” variables. Heuristically speaking, Eq. (9)
says that close to the critical angle θc, the amplitude of the
surface disturbance is small and it varies slowly in space and
time. In addition, the spatial variation in the y direction is more
gradual than in the x direction. An a posteriori justification
for adopting the scaling given by Eqs. (9) and (10) will be
obtained once we have arrived at an EOM that is well behaved
in the ε → 0 limit for the case in which diametrically opposed
beams are incident on the target’s surface.

The crater function f depends on the fast spatial variables
x and y since it varies over distances on the order of the
characteristic size of a collision cascade a. It is also a function
of the slow spatial variables X and Y because it depends on
the spatial derivatives of h. These derivatives vary only over
distances comparable to the ripple wavelength l , and l is much
larger than a close to threshold.

We now insert Eq. (9) into Eq. (8) and expand in powers
of ε. Throughout the calculation, we retain terms up to sixth
order in ε. We define

f0(x, y, θ ) ≡ f (x, y, θ ; 0, 0, . . .), (11)

f1(x, y, θ ) ≡ ∂

∂hx
f (x, y, θ ; hx, 0, 0, . . .)

∣∣∣
hx=0

, (12)

f2(x, y, θ ) ≡ ∂

∂hy
f (x, y, θ ; 0, hy, 0, 0, . . .)

∣∣∣
hy=0

, (13)

f3(x, y, θ ) ≡ ∂

∂hxx
f (x, y, θ ; 0, 0, hxx, 0, 0, . . .)

∣∣∣
hxx=0

, (14)

and so on. Similarly, for positive integers i and j, fi, j (x, y, θ )
denotes the partial derivative of f (x, y, θ ; hx, hy, hxx, hxy, . . .)
with respect to the ith and jth arguments that appear after the
semicolon, evaluated for all the arguments after the semicolon
set equal to zero. For example,

f1,3(x, y, θ )≡ ∂

∂hx

∂

∂hxx
f (x, y, θ ; hx, 0, hxx, 0, 0, . . .)

∣∣∣
hx=hxx=0

.

(15)

Equation (8) becomes

−J−1(−v0 + ε6UT )

= cos θ

∫
dx

∫
dy

[
f0(−x,−y, θ ) + ε3UX f1(−x,−y, θ )

+ ε4UY f2(−x,−y, θ ) + ε4UXX f3(−x,−y, θ )

+ ε5UXY f4(−x,−y, θ ) + ε6UYY f5(−x,−y, θ )

+ ε5UXXX f6(−x,−y, θ ) + ε6UXXY f7(−x,−y, θ )

+ ε6UXXXX f10(−x,−y, θ ) + 1

2
ε6U 2

X f1,1(−x,−y, θ )

]

+ sin θ

∫
dx

∫
dy

[
ε3UX f0(−x,−y, θ )

+ ε6U 2
X f1(−x,−y, θ )

]
. (16)

On the left-hand side of Eq. (16), UT = UT (0, 0, T ). All of the
spatial derivatives of U that appear on the right-hand side of
Eq. (16) have the arguments X , Y , and T .

We next carry out a Taylor-series expansion of U (X,Y, T )
about the point X = Y = 0: we set

U (X,Y, T ) =
∞∑

n=0

∞∑
m=0

Sn,m(T )
X nY m

n! m!
, (17)

where

Sn,m(T ) ≡ ∂n+mU

∂X n∂Y m
(0, 0, T ). (18)

We also introduce new dummy variables of integration, x̃ =
−x and ỹ = −y, in Eq. (16) and then drop the tildes. So that
the resulting EOM may be written succinctly, we define the
crater function moments

Mn,m ≡
∫∫

xnym f0(x, y, θ ) dx dy. (19)

We also let

Mn,m
i ≡

∫∫
xnym fi(x, y, θ ) dx dy (20)

and

Mn,m
i, j ≡

∫∫
xnym fi, j (x, y, θ ) dx dy (21)

for nonnegative integers n and m and positive integers i
and j. After a considerable amount of algebra, we find
that

v0 = JM0,0 cos θ (22)

and

J−1ε6UT = ε3C1S1,0 + ε4C2S0,1 + ε4C11S2,0 + ε5C12S1,1

+ ε6C22S0,2 + ε5C111S3,0 + ε6C112S2,1

+ ε6C1111S4,0 + ε6λ1S2
1,0. (23)

Here

C1 = −(
M0,0

1 cos θ + M0,0 sin θ
)
, (24)

C2 = −M0,0
2 cos θ, (25)

C11 = (
M1,0

1 − M0,0
3

)
cos θ + M1,0 sin θ, (26)

C12 = (
M0,1

1 + M1,0
2 − M0,0

4

)
cos θ + M0,1 sin θ, (27)

C22 = (
M0,1

2 − M0,0
5

)
cos θ, (28)

C111 = (− 1
2 M2,0

1 + M1,0
3 − M0,0

6

)
cos θ − 1

2 M2,0 sin θ, (29)

C112 = ( − M1,1
1 − 1

2 M2,0
2 + M0,1

3 + M1,0
4 − M0,0

7

)
cos θ

− M1,1 sin θ, (30)

C1111 = (
1
6 M3,0

1 − 1
2 M2,0

3 + M1,0
6 − M0,0

10

)
cos θ

+ 1
6 M3,0 sin θ, (31)

and

λ1 = −(
1
2 M0,0

1,1 cos θ + M0,0
1 sin θ

)
. (32)
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Recalling the definition of Sn,m [Eq. (18)], Eq. (23) becomes

J−1ε6UT = ε3C1UX + ε4C2UY + ε4C11UXX + ε5C12UXY

+ ε6C22UYY + ε5C111UXXX + ε6C112UXXY

+ ε6C1111UXXXX + ε6λ1U
2
X , (33)

where all of the partial derivatives of U are evaluated at X =
Y = 0. Equation (33) holds for X = Y = 0. However, because
we placed the origin at an arbitrary surface point, this equation
is actually valid for all X and Y .

The equation of motion must be invariant under the trans-
formation Y → −Y . As a result, the coefficients C2, C12, and
C112 must be zero. This is true because M0,0

2 , M0,1
1 , M1,0

2 , M0,0
4 ,

M0,1, M1,1
1 , M2,0

2 , M0,1
3 , M1,0

4 , M0,0
7 , and M1,1 all vanish. It is

straightforward to verify that these statements are true. For
example, M0,1, M1,1, M0,1

1 , M1,1
1 , and M0,1

3 are all zero because
their integrands are odd functions of y. Equation (33) reduces
to

J−1UT = ε−3C1UX + ε−2C11UXX + ε−1C111UXXX + C22UYY

+C1111UXXXX + λ1U
2
X . (34)

Note that all of the coefficients on the right-hand side of
Eq. (34) depend on the angle of incidence, θ .

The EOM (34) becomes

J−1ut = C1ux + C11uxx + C22uyy + C111uxxx

+C1111uxxxx + λ1u2
x (35)

when written in terms of the original, unscaled variables. The
coefficients on the right-hand side of Eq. (35) are related to the
crater function moments by Eqs. (24), (26), (28), (29), (31),
and (32). Our expressions for C1, C11, C22, and λ1 agree with
the results derived in Refs. [20,26], as shown in the Appendix.

V. EQUATION OF MOTION FOR DIAMETRICALLY
OPPOSED BEAMS

We now turn our attention to the problem in which there
are two diametrically opposed beams, each with ion flux J/2.
(Recall that the beams have the same polar angle but their
azimuthal angles differ by 180◦.) If only the beam that is
incident from the left is present, the EOM is Eq. (34) with
J replaced by J/2:

UT = J

2

(
ε−3C1UX + ε−2C11UXX + ε−1C111UXXX + C22UYY

+C1111UXXXX + λ1U
2
X

)
. (36)

Conversely, if only the beam that is incident from the right is
present, the EOM is Eq. (36) with X replaced by −X :

UT = J

2

(−ε−3C1UX + ε−2C11UXX − ε−1C111UXXX +C22UYY

+C1111UXXXX + λ1U
2
X

)
. (37)

To get UT when both beams are turned on, we take the sum of
the right-hand sides of Eqs. (36) and (37) to yield

UT = J
(
ε−2C11UXX + C22UYY + C1111UXXXX + λ1U

2
X

)
. (38)

This is the equation of motion for the surface for the case in
which diametrically opposed beams with equal ion fluxes are

simultaneously incident on the target. Note that in addition to
being invariant under the transformation Y → −Y , Eq. (38) is
invariant under X → −X , as it must be.

Equation (38) holds for θ just above the critical angle θc,
i.e., for small ε = (θ − θc)1/2. C11 is positive for θ < θc, zero
for θ = θc, and negative for θ > θc, at least provided that θ is
not too large. For θ close to the critical angle, C11

∼= −A11(θ −
θc) = −A11ε

2, where A11 is a positive constant that does not
depend on θ . On the other hand, C22 is positive for θ = θc

since parallel-mode ripples are observed to form above the
threshold. Equation (38) may now be written

J−1UT = −A11UXX + C22UYY + C1111UXXXX + λ1U
2
X . (39)

Notice that ε does not appear in Eq. (39). Thus, the scaling we
posited in Eqs. (9) and (10) leads to a well-behaved EOM in
the small-ε limit. Moreover, all of the terms are of the same
order in ε.

The EOM (38) becomes

J−1ut = C11uxx + C22uyy + C1111uxxxx + λ1u2
x (40)

when written in terms of the unscaled variables. Equation
(40) is the simplified AKS equation that we set out to derive.
Note that we must have C1111 < 0, since otherwise arbitrarily
short wavelengths are unstable and the continuum description
breaks down.

As is well known, if the initial condition for the AKS
equation (40) is low-amplitude spatial white noise and C11 <

0, the interface width grows exponentially with time at short
times. At long times, the ripple amplitude saturates and the
solution exhibits spatiotemporal chaos.

Equation (39) can be reduced to a parameter-free form by
rescaling. We define the dimensionless variables

X̃ = sgn(C111)

(
A11

|C1111|
)1/2

X, Ỹ = A11

(C22|C1111|)1/2
Y,

T̃ = JA2
11

|C1111|T, and Ũ = λ1

A11
U, (41)

where sgn(C111) denotes the sign of C111. We obtain

ŨT̃ = −ŨX̃ X̃ + ŨỸ Ỹ − ŨX̃ X̃ X̃ X̃ + Ũ 2
X̃ . (42)

For Eq. (42) to apply, the target material must be elemental,
there must be diametrically opposed beams of obliquely inci-
dent noble gas ions, θ must be close to the critical angle θc,
and the time must be sufficiently long. It is remarkable that
Eq. (42) is valid for any elemental target material, noble gas
ion species, and ion energy.

A simulation of Eq. (42) with a low-amplitude spatial
white noise initial condition is shown in Figs. 1(a)–1(c). (For
details of the method of numerical integration employed, see
Ref. [22].) Solutions to Eq. (42) with initial conditions of
this kind develop disordered parallel-mode ripples with a
wavelength of order 1 and the ripple amplitude saturates at
a value of order 1. The time needed for the steady-state ripple
amplitude to be approached is also of order 1. To describe
transverse correlations, we define the long-time transverse
correlation function

C(�Ỹ ) ≡ lim
T̃ →∞

∫∫
[Ũ (X̃ , Ỹ , T̃ )−〈Ũ (T̃ )〉][Ũ (X̃ , Ỹ +�Ỹ , T̃ )

−〈Ũ (T̃ )〉] dX̃ dỸ , (43)
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FIG. 1. Ũ vs X̃ and Ỹ for dimensionless times (a) T̃ = 10, (b) T̃ = 100, and (c) T̃ = 200 for the EOM (42). ū vs x̄ and ȳ for dimensionless
times (d) t̄ = 10, (e) t̄ = 100, and (f) t̄ = 200 for the EOM (49) with α = 50. The initial condition was low-amplitude spatial white noise and
the domain size was 200 × 200 in both simulations.

where 〈Ũ (T̃ )〉 is the spatial average of Ũ at time T̃ . C(�Ỹ )
decays toward zero with a characteristic transverse length
scale of order 1. It follows that in the original, unscaled prob-
lem, the ripple wavelength diverges as ε−1 = (θ − θc)−1/2

as θ approaches θc from above. Similarly, as θ → θ+
c , the

saturation value of the ripple amplitude, the time for the ripple
amplitude to saturate, and the transverse correlation length
scale like θ − θc, (θ − θc)−2, and (θ − θc)−1, respectively.
Testing these predictions experimentally will be challenging,
since as θ approaches the threshold value θc from above, the
ripple wavelength diverges, the long-time ripple amplitude
tends to zero, and the time needed for the ripple amplitude
to saturate diverges. Nevertheless, similar challenges were
successfully overcome in experimental tests of the scaling
behavior predicted by the renormalization group for critical
phenomena in equilibrium statistical systems. One encourag-
ing sign is that the experiments reported in Ref. [15] provide
evidence for a divergence in the ripple wavelength l as θ is
reduced toward θc. More refined measurements could show
whether l diverges like (θ − θc)−1/2, as predicted.

We obtained the EOM (39) by expanding to order ε6. If
we instead expand to order ε8, we recover Eq. (39), but with
correction terms of order ε2:

J−1UT = −A11UXX + C22UYY + C1111UXXXX + λ1U
2
X

+ ε2
(
C1122UXXYY + λ2U

2
Y + μ1∂

2
XU 2

X + μ2U
2
XX

+μ3UXXXXXX
)
. (44)

The coefficients C1122, λ2, μ1, μ2, and μ3 can be related to
crater function moments if desired.

Close to threshold, ε is small and the correction terms in
Eq. (44) can safely be neglected. However, as θ is increased,
the correction terms gain in importance. The most commonly
used EOM is the AKS equation (1). It is interesting to note
that, close to threshold, the terms proportional to U 2

Y and
UXXYY that are ordinarily included in the AKS equation are
in fact small corrections. At the same time, terms proportional
to ∂2

XU 2
X , U 2

XX , and UXXXXXX are usually not included in the
EOM, even though they are of the same order as U 2

Y and
UXXYY . The term proportional to UYYYY that appears in the
AKS equation is an even higher order correction that would
appear in the EOM (44) with a coefficient of order ε4.

The term ∂2
XU 2

X in Eq. (44) is the so-called conserved
Kuramoto-Sivashinsky nonlinearity, and its influence on the
dynamics has been studied [17–19]. The effect of the term
U 2

XX has also been investigated [32]. So far as we are aware,
the effect of the term εμ3UXXXXXX has not yet been studied,
but, if μ3 > 0, it is an additional long-wavelength smoothing
term whose effect is expected to be modest.

VI. EQUATION OF MOTION FOR A SINGLE
INCIDENT BEAM

Consider the EOM (34) for a single incident beam with ion
flux J . Setting X ′ ≡ X + ε−3JC1T and T ′ ≡ T and dropping
the primes, we obtain

J−1UT = −A11UXX + ε−1C111UXXX + C22UYY

+C1111UXXXX + λ1U
2
X , (45)
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since C11 = −A11ε
2. As before, we must have C1111 < 0. In

addition, unless there is a highly unlikely coincidence, C111

is nonzero for θ = θc, and we assume that this is the case.
In terms of the dimensionless variables defined in Eq. (41),
Eq. (45) becomes

ŨT̃ = −ŨX̃ X̃ + ŨỸ Ỹ − ŨX̃ X̃ X̃ X̃ + Ũ 2
X̃ + γ ε−1ŨX̃ X̃ X̃ , (46)

where

γ ≡ |C111|
(A11|C1111|)1/2

(47)

is positive, dimensionless, and of O(ε0). The dimensionless
prefactor γ /ε of the linearly dispersive term ŨX̃ X̃ X̃ in Eq. (46)
grows large as θ approaches θc from above. This shows that
the effect of dispersion becomes crucial close to threshold.
Nevertheless, such a term does not appear in the EOM that
is typically adopted in the case in which there is a single
obliquely incident ion beam, the AKS equation (1).

Recall that X ≡ εx and Y ≡ ε2y, and so the rescaling of the
longitudinal and transverse coordinates defined by Eq. (41)
differs markedly close to threshold. If one were looking at the
results of a simulation of Eq. (46) close to threshold, therefore,
it would be easy to be seriously misled. To remedy this, we
define the new dimensionless variables

x̄ ≡ X̃ = sgn(C111)

(
A11

|C1111|
)1/2

εx, ȳ ≡ γ A11

(C22|C1111|)1/2
εy,

t̄ ≡ T̃ , and ū ≡ Ũ . (48)

Notice in particular that x̄ and ȳ are proportional to the same
power of ε. Equation (45) becomes

ūt̄ = −ūx̄x̄ − ūx̄x̄x̄x̄ + α2ūȳȳ + ū2
x̄ + αūx̄x̄x̄, (49)

where α ≡ γ /ε is large close to threshold.
Equation (49) shows that when α is large, transverse

variations in ū are rapidly suppressed and, to an excellent
approximation, we may simply set ūȳ to zero after an initial
transient. This is illustrated by Figs. 1(d)–1(f), which show the
time evolution of a numerical solution to Eq. (49) with α = 50
and a low-amplitude spatial white noise initial condition. With
ūȳ set to zero, Eq. (49) reduces to

ūt̄ = −ūx̄x̄ − ūx̄x̄x̄x̄ + ū2
x̄ + αūx̄x̄x̄. (50)

We differentiate Eq. (50) with respect to x̄ and set x̃ = −x̄,
t̃ = αt̄ , and v = (2/α)ūx̄. This yields

vt̃ + α−1(vx̃x̃ + vx̃x̃x̃x̃ ) + vvx̃ + vx̃x̃x̃ = 0. (51)

Equation (51) is known as the Kawahara equation [33] and has
previously been studied as a model of step-bunching dynamics
on vicinal surfaces [34,35]. It reduces to the Korteweg–de
Vries (KdV) equation

vt̃ + vvx̃ + vx̃x̃x̃ = 0, (52)

a paradigmatic equation in the study of solitons, in the
strongly dispersive limit α → ∞. When α is large and finite
and the initial condition is low-amplitude spatial white noise,
the solution to Eq. (51) tends to a highly ordered steady state
that consists of a chain of equally spaced solitons of the same
amplitude [33]. This means that when the surface is bom-
barded with a single ion beam and the angle of incidence, θ ,

is just above the threshold value, highly ordered parallel-mode
ripples form. Indeed, the simulation shown in Figs. 1(d)–1(f)
confirms that exceptionally well ordered ripples develop close
to threshold. Similarly, simulations of the AKS equation (1)
with an additional term C111uxxx appended to the right-hand
side show that highly ordered ripples develop when C111 is
large [22].

Equation (50) does not have a well-defined ε → 0 limit.
To obtain an EOM that is well behaved in this limit, we must
adopt a different scaling than that given by Eqs. (9) and (10).
We now seek solutions to Eq. (8) of the form

u(x, y, t ) = εU (X,Y, T ), (53)

where

X ≡ εx, Y ≡ ε3/2y, and T ≡ ε3t . (54)

X , Y , and T are “slow” variables once again, but they are
defined differently than in Sec. III. As before, the ampli-
tude of the surface disturbance is small, it varies slowly in
space and time, and the spatial variation in the y direction
is more gradual than in the x direction for θ close to the
critical angle θc.

We insert Eq. (53) into Eq. (8) and expand to fifth order
in ε. The derivation of the EOM is lengthy but proceeds in a
fashion that is completely analogous to the derivation given in
Sec. IV, and so we omit the details and simply give the final
result. We find that

1

J
UT = C111UXXX + λ1U

2
X + C22UYY + ε

( − A11UXX

+C1111UXXXX + λ2U
2

Y + C122UXYY

+βUXUXX
)
. (55)

Once again, the coefficients C22, C111, C1111, and λ1 are related
to the crater function moments through the relations (28),
(29), (31), and (32) and A11 = −C11/ε

2, where C11 is given
by Eq. (26). Finally,

λ2 = − 1
2 M0,0

2,2 cos θ, (56)

C122 = ( − 1
2 M0,2

1 − M1,1
2 + M0,1

4 + M1,0
5 − M0,0

8

)
cos θ

− 1
2 M0,2 sin θ, (57)

and

β = (
M1,0

1,1 − M0,0
1,3

)
cos θ − (

2M1,0
1 + M0,0

3

)
sin θ. (58)

Equation (55) is simpler when written in terms of the
dimensionless variables

X̄ ≡ −sgn(C111)

(
A11

|C1111|
)1/2

X, (59)

Ȳ ≡ |C111|1/2A3/4
11

C1/2
22 |C1111|3/4

Y, (60)

T̄ ≡ J|C111|A3/2
11

|C1111|3/2
T, (61)

and

Ū = −λ1|C1111|1/2

|C111|A1/2
11

U . (62)
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We obtain

ŪT̄ = −ŪX̄ X̄ X̄ − Ū 2
X̄ + ŪȲ Ȳ − γ −1ε

(
ŪX̄ X̄ + ŪX̄ X̄ X̄ X̄ + ν1Ū

2
Ȳ

+ ν2ŪX̄Ȳ Ȳ + ν3ŪX̄ŪX̄ X̄

)
. (63)

Here

ν1 ≡ λ2C2
111

λ1C22|C1111| , (64)

ν2 ≡ C111C122

C22|C1111| , (65)

and

ν3 ≡ − βC111

λ1|C1111| (66)

are dimensionless constants.
Equation (63) shows that linear dispersion is important

close to threshold and at long times when a single ion beam
is incident on the surface, just as we found earlier in this
section. Moreover, several of the terms that are normally
included in the EOM are in fact small corrections in this
case. In particular, terms proportional to ŪX̄ X̄ , ŪX̄ X̄ X̄ X̄ , and
Ū 2

Ȳ appear in the AKS equation (1), but Eq. (63) shows that
their influence on the dynamics is small. In addition, terms
proportional to ŪX̄Ȳ Ȳ and ŪX̄ŪX̄ X̄ are of the same order in
ε as the terms proportional to ŪX̄ X̄ , ŪX̄ X̄ X̄ X̄ , and Ū 2

Ȳ , but the
former terms are not included in the AKS equation. The AKS
equation is therefore an inconsistent approximation to the
dynamics at long times and for θ just above θc if a single beam
is incident upon the surface.

We sought solutions to the EOM (8) of the form given
by Eqs. (53) and (54) and so reduced the EOM to Eq. (63).
If the initial form of the surface u(x, y, 0) is not a slowly
varying function of x and y and its amplitude is smaller
than O(ε1), there will be an early time, transient regime in
which the dynamics is not well described by Eq. (63). This
will be the case if the initial surface is low-amplitude spatial
white noise, the initial condition most commonly adopted
in simulations. For such an initial condition, the influence
of terms proportional to uxx, uxxxx, uxxyy, and uyyyy could be
important at short times. Once the short-wavelength Fourier
modes have been sufficiently suppressed and the amplitude of
the surface disturbance has grown to be of order ε, Eq. (63)
will provide a good description of the dynamics.

Close to threshold, we may drop the terms of O(ε) from
Eq. (63) to obtain

ŪT̄ + Ū 2
X̄ + ŪX̄ X̄ X̄ = ŪȲ Ȳ . (67)

This equation has only four terms and no free parameters.
Conditions for the validity of the EOM (67) are few: the
target material must be elemental, there must be a single beam
of obliquely incident noble gas ions, θ must be close to the
critical angle θc, and the time must be sufficiently long. This
EOM therefore has a remarkably high degree of universality.

Taking the derivative of Eq. (67) with respect to X̄ and
setting V = 2ŪX̄ , we obtain

VT̄ + VVX̄ + VX̄X̄ X̄ = VȲȲ . (68)

If V does not depend on the transverse coordinate Ȳ , Eq. (68)
reduces to the KdV equation. Equation (68) is therefore a

generalization of the KdV equation to the (2 + 1)-dimensional
case in which V depends on Ȳ as well as X̄ and T̄ . As far as
we have been able to determine, it has not previously been
studied, although two other (2 + 1)-dimensional generaliza-
tions of the KdV equation, the Kadomtsev-Petviashvili [36]
and Zakharov-Kuznetsov equations [37], have been studied in
great depth [38].

Equation (68) raises the exciting possibility that solitons
could be observed on the surface of an ion-bombarded solid
surface close to the threshold for pattern formation. Solitons
are surface disturbances that propagate without changing their
form [39]. Because their velocity of propagation depends on
their amplitude, pairs of solitons can collide. After they do
so, they very nearly return to their original form. A shift in
the positions of the solitons relative to where they would have
been had no collision occurred is the only easily discernible
evidence that a collision took place.

Equation (68) has the soliton solution given by

V (X̄ , Ȳ , T̄ ) = 12A2sech2(A(X̄ − X̄0 − 4A2T̄ )), (69)

where A is a positive constant and the arbitrary real constant
X̄0 gives the location of the soliton at time T̄ = 0. Since V =
2ŪX̄ , the scaled surface height Ū is given by

Ū (X̄ , Ȳ , T̄ ) = 6A tanh(A(X̄ − X̄0 − 4A2T̄ )) + Ū0, (70)

where Ū0 is a constant of integration that we may set to zero.
Equation (70) shows that the soliton solution is a smoothed
step on the solid surface with height �Ū ≡ 12A. The step
propagates with constant velocity without changing its form
and is oriented perpendicularly to the incident ion beam. Its
width is inversely proportional to the step height �Ū . The
soliton’s propagation velocity, on the other hand, is propor-
tional to (�Ū )2.

VII. DISCUSSION

In derivations of the equation of motion for an ion-
sputtered surface that took the Sigmund model as their start-
ing point, it was assumed that the amplitude of the surface
disturbance is small and that the surface height varies slowly
with position [11,13,14]. Expansions were then carried out in
which terms of various orders in u and the spatial derivatives
∂x and ∂y were retained. In the case of the AKS equation (1),
for example, terms that are linear in u and up to fourth order
in the spatial derivatives, as well as terms that are second
order in both u and the space derivatives, are included in the
EOM [13,14]. It is unclear whether the discarded terms are
actually negligible, however. There is experimental evidence
that “higher-order” terms like ∂2

x u2
x and u3

x can in certain
circumstances play important roles [17–21]. The conserved
Kuramoto-Sivashinsky (CKS) nonlinearity ∂2

x u2
x , for exam-

ple, is likely responsible for the ripple coarsening that is often
observed in experiments [17–19].

In this paper, we studied the behavior of an ion-sputtered
solid surface for angles of incidence, θ , just above the thresh-
old angle for ripple formation, θc. We carried out a systematic
expansion in powers of the small parameter ε ≡ (θ − θc)1/2

and retained all terms up to a given order in ε. In the case of
two diametrically opposed incident beams, the EOM close to
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threshold and at sufficiently long times is the simplified AKS
equation (40).

The case in which diametrically opposed beams are simul-
taneously incident on the solid surface is relatively simple
because the EOM must be invariant under the transformation
x → −x. In an experiment, two ion beams would not actually
be used. Instead, the sample would be rotated periodically
through 180◦ increments about the z axis while being bom-
barded with a single obliquely incident beam. If the time be-
tween rotations were made sufficiently small, the effect would
be essentially the same as if the sample were concurrently
bombarded with diametrically opposed beams.

When the surface is bombarded with a single obliquely
incident beam, the linearly dispersive term uxxx plays a crucial
role close to threshold and fundamentally alters the behavior.
Highly ordered ripples can emerge at sufficiently long times.
This is an exciting finding because there is a high density of
defects in the patterns that are typically formed by ion sput-
tering, and this issue has arguably been the primary obstacle
that has prevented the widespread use of ion bombardment as
a nanofabrication tool.

In deriving the EOM for an ion-sputtered solid surface, we
used a generalized crater function formalism. To this point,
the CFF has primarily been regarded as a tool that takes
input from atomistic simulations to produce estimates of the
coefficients in a given equation of motion. In this paper,
we adopted a different perspective: we used a generalized
CFF to derive the equation of motion. A by-product of this
derivation is expressions that relate the coefficients in the
EOM to moments of the crater function. These expressions
could be used to obtain estimates of the coefficients in the
EOM from input produced by atomistic simulations.

As was noted in the pioneering work of Norris et al., the
crater function depends on the shape of the entire surface [25].
In their 2011 paper, however, Norris and co-workers neglected
the dependence of the crater on the form of the surface [15].
Harrison and Bradley later took into account the effect that
the surface curvature at the point of impact has on the crater
[26], which led to corrected expressions for the coefficients
C11 and C22. In the present work, the dependence of the crater
function on spatial derivatives of u of arbitrarily high order
was included. This is equivalent to taking into account the
dependence of the crater on the form of the whole surface.
We demonstrated that, to lowest nontrivial order in ε, only
the dependence of the crater on spatial derivatives of u up to
the fourth order affects the equation of motion [see Eqs. (24),
(26), (28), (29), (31), and (32)].

In previous treatments of the CFF, approximations to the
form of the surface were employed in determining the effect
of impinging ions on the surface velocity ht at the origin
[16,25,26]. These approximations, which are accurate only
in the immediate vicinity of the origin, were argued to be
reasonable because only ions impacting the surface within a
distance on the order of the ion range a contribute significantly
to ht , and the surface height varies little over distances on
the order of a. Norris and co-workers [25] and Harrison
and Bradley [26] performed a Taylor-series expansion of the
surface height h about the origin and retained terms up to
second order in x and y. Some terms of higher order were
subsequently included by Hofsäss and Bobes [16], but, as we

show in the Appendix, the expressions that they found for
the coefficients C111 and C1111 are incorrect. In the present
paper, terms of all orders were retained in the Taylor-series
expansion.

In the CFFs of Norris and co-workers [25] and of Harrison
and Bradley [26], the equation of motion was linearized; i.e.,
only terms of first order in u were retained. Hofsäss and Bobes
included terms up to third order in u in the EOM [16]. Terms
of all orders in u were retained in the present work. However,
close to the threshold for pattern formation, only terms of
second order in u appear in the EOM to lowest nontrivial
order in ε.

As the preceding discussion shows, in all previous versions
of the CFF, two different expansions were carried out and
the resulting series were truncated at some order. It was not
apparent whether the discarded terms were indeed smaller
than those that were retained in the EOM, or whether terms
that are negligibly small were included in the EOM when
they ought to have been dropped. In contrast, in this paper,
we carried out a systematic expansion in the small parameter
ε and retained all terms in the EOM up to a given order in ε.
In this way, we made the CFF internally consistent and placed
it on a solid mathematical foundation.

Our crater function f is to be evaluated at a time long
enough after the ion impact that essentially all ion-induced
motion has ceased. It therefore takes into account all of
the effects of the ion impact, including sputtering, ballistic
mass redistribution, and ion-induced surface viscous flow. In
contrast, in the CFF introduced by Norris et al. [25], the crater
includes only the short-time or “prompt” effects of the ion
impact that occur within picoseconds after the arrival of the
impinging ion. The effects of ion-induced viscous flow were
assumed to occur over much longer time scales and were
handled separately.

Craters computed in atomistic simulations that include
only the prompt effects of the ion impacts could be used to
compute the contributions of sputtering and ion-induced mass
redistribution to the coefficients in the EOMs (35), (40), and
(55) using Eqs. (24), (26), (28), (29), (31), (32), and (56)–(58).
The contributions of ion-induced viscous flow or thermally
activated surface diffusion to these coefficients would then
have to be inferred from experiment or be computed by other
means, as in past work [15]. These contributions are expected
to be significant only in the case of the coefficient C1111.

We assumed that when a broad beam is incident on the
surface, the ion flux is low enough that essentially all ion-
induced motion near a point of ion impact, P, has ceased
before another ion strikes the surface in the immediate vicinity
of P. The hydrodynamic theory developed by Cuerno and
co-workers, on the other hand, applies in the high-flux regime
in which a layer at the surface of the target is mobilized by
the ion impacts [40–42]. In that theory, it is assumed that the
entire layer is continuously in motion and that it behaves like
a highly viscous fluid. In another theory that would also apply
only for sufficiently high ion fluxes, a layer at the surface of
the target is modeled as a viscous or viscoelastic medium into
which the ion beam continually injects biaxial compressive
stress [43,44].

Although we found that terms proportional to ∂2
x u2

x and u3
x

have a negligible effect on the dynamics close to the threshold
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for pattern formation, the effect of these and other terms could
be substantial away from threshold. As we have already noted,
the CKS nonlinearity ∂2

x u2
x leads to ripple coarsening, while

the cubic nonlinearity u3
x can produce terraced surfaces. Both

of these phenomena have been observed in experiments. The
experiments in which these phenomena were observed were
presumably done with angles of incidence, θ , that were well
above the critical value θc.

VIII. CONCLUSIONS

In this paper, we studied the behavior of an ion-sputtered
solid surface for angles of incidence, θ , just above the thresh-
old angle for ripple formation, θc. We carried out a systematic
expansion in powers of the small parameter ε ≡ (θ − θc)1/2

and retained all terms up to a given order in ε. In the case
of two diametrically opposed incident beams, the equation
of motion close to threshold and at sufficiently long times
is a simplified AKS equation. We also determined the long-
time, near-threshold scaling behavior of the rippled surface’s
wavelength, transverse correlation length, and amplitude.

When the surface is bombarded with a single obliquely
incident beam, linear dispersion plays a crucial role close
to threshold and fundamentally alters the behavior. Highly
ordered ripples can emerge at sufficiently long times. This is
an exciting finding because there is a high density of defects
in the patterns that are typically formed by ion sputtering,
and this issue has arguably been the primary obstacle that
has prevented the widespread use of ion bombardment as a
nanofabrication tool. We also find that solitons can propagate
over the solid surface.

In our derivations of the EOMs for the single and dual
beam cases, we utilized a generalized crater function formal-
ism. Our crater function formalism yields explicit expressions
for the coefficients that appear in the equations of motion
that apply in the single beam and dual beam cases. These
expressions relate the coefficients to moments of the crater
function. Importantly, our treatment places the CFF on a firm
mathematical footing and generalizes earlier formulations.
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APPENDIX

Our crater function formalism yielded expressions for the
coefficients C1, C11, C22, C111, C1111, and λ1 in the EOMs (35)
and (55) in terms of the moments of the crater function f =
f (x, y, θ ; hx, hy, hxx, hxy, hyy, . . .): see Eqs. (24), (26), (28),
(29), (31), and (32). However, when atomistic simulations are
used to estimate crater function moments, it is the moments of
the crater function F = F (x, y, θ ; hxx, hxy, hyy, hxxx, . . .) that
are computed [15,16]. This is more computationally efficient
because it is then only necessary to simulate ion impacts
on surfaces with slope zero at the point of impact. We will

therefore rewrite our expressions for the coefficients entirely
in terms of moments of F in this Appendix. In addition to
making our results more useful for the task of estimating
coefficients using input from atomistic simulations, this will
allow us to show that our expressions for C1, C11, C22, and λ1

agree with results obtained elsewhere [20,26].
We begin by defining the moments of the crater function F

that we need. Let

F0(x, y, θ ) ≡ F (x, y, θ ; 0, 0, . . .), (A1)

F1(x, y, θ ) ≡ ∂

∂hxx
F (x, y, θ ; hxx, 0, 0, . . .)

∣∣∣
hxx=0

, (A2)

F2(x, y, θ ) ≡ ∂

∂hxy
F (x, y, θ ; 0, hxy, 0, 0, . . .)

∣∣∣
hxy=0

, (A3)

and so forth. Similarly, for positive integers i and
j, Fi, j (x, y, θ ) denotes the partial derivative of F =
F (x, y, θ ; hxx, hxy, hyy, . . .) with respect to the ith and jth
arguments that appear after the semicolon, evaluated for all
the arguments after the semicolon set equal to zero. We define
the crater function moments

Mn,m ≡
∫∫

xnymF0(x, y, θ ) dx dy, (A4)

Mn,m
i ≡

∫∫
xnymFi(x, y, θ ) dx dy, (A5)

and

Mn,m
i, j ≡

∫∫
xnymFi, j (x, y, θ ) dx dy (A6)

for nonnegative integers n and m and positive integers i
and j. These are the moments that were employed in prior
formulations of the CFF.

Equation (7) shows that f0(x, y, θ ) = F0(x, y, θ ) and hence

Mn,m = Mn,m (A7)

for nonnegative integers n and m. Similarly, Mn,m
i can readily

be written in terms of moments of F provided that i > 2. For
example,

Mn,m
3 =

∫∫
xnym ∂

∂hxx
f (x, y, θ ; 0, 0, hxx, 0, 0, . . .)

∣∣∣∣
hxx=0

dx dy

=
∫∫

xnym ∂

∂hxx
F (x, y, θ ; hxx, 0, 0, . . .)

∣∣∣∣
hxx=0

dx dy

= Mn,m
1 . (A8)

The general result is

Mn,m
i = Mn,m

i−2 (A9)

for i > 2.
We now show that

Mn,0
1 = − ∂

∂θ
Mn,0 (A10)

for all n and that

M0,1
2 = −M1,0 cot θ. (A11)

To that end, consider an ion impact at the origin on the
surface given by h(x, y) = S1x + S2y, where S1 and S2 are
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small constants. On average, the surface after the ion impact
is

h(x, y) = S1x + S2y − f (x, y, θ ; S1, S2, 0, 0, . . .) (A12)

relative to the coordinate system (x, y, z). Relative to the
coordinate system (ξ, η, ζ ), it is given by

H (ξ, η) = −F (ξ, η, φ; 0, 0, . . .), (A13)

where the local angle of incidence, φ, is given by cos φ =
ê · n̂. We work to first order in S1 and S2 in what follows. To
that order [26],

t̂ξ = x̂ − (S2 cot θ )ŷ + S1ẑ, (A14)

t̂η = (S2 cot θ )x̂ + ŷ + S2ẑ, (A15)

and

n̂ = −S1x̂ − S2ŷ + ẑ. (A16)

For any point on the surface r, we have

r = xx̂ + yŷ + h(x, y)ẑ = ξ t̂ξ + ηt̂η + H (ξ, η)n̂. (A17)

Therefore,

ξ = r · t̂ξ = x − (S2 cot θ )y, (A18)

η = r · t̂η = (S2 cot θ )x + y, (A19)

and

H (ξ, η) = r · n̂ = −S1x − S2y + h(x, y). (A20)

We now insert Eqs. (A12) and (A13) into Eq. (A20). This
yields

F (ξ, η, φ; 0, 0, . . .) = f (x, y, θ ; S1, S2, 0, 0, . . .). (A21)

Using Eq. (A16), we find that cos φ = ê · n̂ = cos θ + S1 sin θ

to first order and hence φ = θ − S1 to that order. Equation
(A21) becomes

F (ξ, η, θ − S1; 0, 0, . . .) = f (x, y, θ ; S1, S2, 0, 0, . . .).

(A22)

We are now prepared to show that Eq. (A10) is valid. We
begin by setting S2 to zero. Using Eqs. (A18), (A19), and
(A22), we obtain

∂

∂θ
Mn,0 = ∂

∂θ

∫∫
F (x, y, θ ; 0, 0, . . .)xn dx dy

= −
∫∫

∂

∂S1
F (x, y, θ − S1; 0, 0, . . .)

∣∣∣∣
S1=0

xn dx dy

= −
∫∫

∂

∂S1
f (x, y, θ ; S1, 0, 0, . . .)

∣∣∣∣
S1=0

xn dx dy

= −Mn,0
1 , (A23)

as required. Another relation we need,

M0,0
1,1 = ∂2

∂θ2
M0,0, (A24)

is derived in much the same fashion.

To establish the validity of Eq. (A11), we set S1 = 0 and
consider small, nonzero S2. By definition,

M0,1
2 = ∂

∂S2

∫
dx

∫
dy f (x, y, θ ; 0, S2, 0, 0, . . .)y

∣∣∣∣
S2=0

.

We obtain y = η − (S2 cot θ )ξ from Eqs. (A18) and (A19).
Utilizing Eq. (7) and Eq. (A22) with S1 = 0, we find that

M0,1
2 = ∂

∂S2

∫
dξ

∫
dηF (ξ, η, θ ; 0, 0, . . .)

× [η − (S2 cot θ )ξ ]

∣∣∣∣
S2=0

= − cot θ
∫

dξ

∫
dηF (ξ, η, θ ; 0, 0, . . .)ξ

= −M1,0 cot θ,

which is the required relation.
Using Eqs. (A7), (A9)–(A11), and (A24), Eqs. (24), (26),

(28), (29), (31), and (32) become

C1 = ∂

∂θ
(M0,0 cos θ ), (A25)

C11 = − ∂

∂θ
(M1,0 cos θ ) − M0,0

1 cos θ, (A26)

C22 = −M1,0 cot θ cos θ − M0,0
3 cos θ, (A27)

C111 = 1

2

∂

∂θ
(M2,0 cos θ ) + (

M1,0
1 − M0,0

4

)
cos θ,

(A28)

C1111 = −1

6

∂

∂θ
(M3,0 cos θ )

+
(

− 1

2
M2,0

1 + M1,0
4 − M0,0

8

)
cos θ, (A29)

and

λ1 = sin θ
∂

∂θ
M0,0 − 1

2
cos θ

∂2

∂θ2
M0,0. (A30)

Equations (A25)–(A30) give the coefficients in the EOM
(35) exclusively in terms of the moments of the crater func-
tion F , and so we have accomplished the main goal of
this Appendix. Equations (A25)–(A27) agree with the re-
sults obtained by Harrison and Bradley [26], and our ex-
pression for λ1 [Eq. (A30)] is in accord with the result
given by Pearson and Bradley [20]. These results were
successfully reproduced by Hofsäss and Bobes [16]. How-
ever, our results for C111 and C1111 do not in general agree
with those given in Ref. [16]. The expressions given for
these coefficients in Ref. [16] omit the second terms on
the right-hand sides of Eqs. (A28) and (A29). This strongly
suggests that the dependence of the crater function F =
F (x, y, θ ; hxx, hxy, hyy, hxxx, hxxy, hxyy, hyyy, hxxxx, . . .) on hxx,
hxxx, and hxxxx was overlooked in the derivation of the equa-
tions for C111 and C1111 given in Ref. [16].
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