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Interactions between zwitterionic membranes in complex electrolytes
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We investigate the electrostatic interactions of zwitterionic membranes immersed in mixed electrolytes
composed of mono- and multivalent ions. We show that the presence of monovalent salt is a necessary condition
for the existence of a finite electrostatic force on the membrane. As a result, the mean-field membrane pressure
originating from the surface dipoles exhibits a nonuniform salt dependence, characterized by an enhancement for
dilute salt conditions and a decrease at intermediate salt concentrations. On addition of multivalent cations to the
submolar salt solution, the separate interactions of these cations with the opposite charges of the surface dipoles
makes the intermembrane pressure more repulsive at low membrane separation distances and strongly attractive
at intermediate distances, resulting in a discontinuous like-charge binding transition followed by the membrane
binding transition. By extending our formalism to account for correlation corrections associated with large salt
concentrations, we show that membranes of high surface dipole density immersed in molar salt solutions may
undergo a membrane binding transition even without the multivalent cations. Hence, the tuning of the surface
polarization forces by membrane engineering can be an efficient way to adjust the equilibrium configuration of
dipolar membranes in concentrated salt solutions.
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I. INTRODUCTION

The characterization of the adhesive forces governing bi-
ological systems is a key step for the comprehension of the
biological mechanisms sustaining life on Earth. As a result
of their comparable magnitude with the thermal energy at the
nanoscale, the electrostatic forces acting between the macro-
molecular components of these systems play a crucial role
in the regulation of various biological and biotechnological
processes such as artificial delivery of genetic material into
human cell [1–3], viral infection and nanoslit-based biose-
quencing procedures [4], and the compact packing of DNA
around histones in the cell medium [2]. Due to the long-
range interactions governing the biological systems of highly
complex composition, accurate modeling of the nanoscale
biological processes presents an ambitious challenge for
the biophysics community. Since the late 1910s, this challenge
has motivated intense research into the understanding of the
fundamental interactions driving these processes.

In the early studies of (macro)molecular interactions in
the biological milieu, the electrostatic coupling of monopo-
lar macromolecules such as membranes in monovalent elec-
trolytes have been modeled within mean-field (MF) [5–8] and
weak-coupling (WC) theories [9,10]. At a later stage, strongly
coupled electrostatic interactions originating in multivalent
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mobile ions have been formulated within a strong-coupling
(SC) approach by Moreira and Netz [11]. This counterion-
only SC formalism has been subsequently extended to include
the additional presence of weakly coupled monovalent salt
by Kanduč et al. [12]. The corresponding dressed ion theory
has been applied to understand the alteration of monopolar
membrane interactions by polarization forces [13,14] and
charge regulation [15]. In Ref. [16], we upgraded the dressed
ion formalism by an additional loop correction for the mono-
valent salt component and applied this one-loop-dressed SC
theory to the like-charge polymer-membrane complexation
phenomena. Finally, in Ref. [17], a self-consistent theory of
mixed electrolytes including mono- and multivalent ions has
been developed via the derivation of the SC Schwinger-Dyson
equations.

The surface of lipid membranes can be charged and/or
carry zwitterionic or other multipolar charges. For the
zwitterionic phosphatidylcholine-water system in pure sol-
vent, the interlamellar hydration interactions have been
measured experimentally in multilamellar lipid bilayers by
Parsegian, Rand, and coworkers [18,19], while Israelachvili
and coworkers measured similar interactions between molec-
ularly smooth mica surfaces [20]. The electrostatic component
of the intermembrane forces in charged multilamellar lipid
bilayers was measured also in electrolyte solutions in the pres-
ence of monovalent [21–23] as well as multivalent salts [24]
and divalent buffers [25]. More recently, the effect of bicar-
bonate anions in the presence of previously adsorbed calcium
cations on the interactions between dipolar lipid membranes
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have been investigated in detail [26]. In these systems many
different mechanisms can be operating concurrently and it is
highly nontrivial to select for the purely electrostatic effects
as opposed to nonelectrostatic ionic binding, van der Waals
interaction changes or the coupling between the structural and
electrostatic interactions.

The interaction of zwitterionic membranes has been con-
sidered theoretically within the image charge electrostatic
model [27,28] that yields a power law dependence on the
interlamellar spacing, with the leading term for large inter-
lamellar spacing being a repulsive, zwitterionic self-image
interaction. The solvent structure paradigm of intermembrane
forces originates from the Marčelja-Radić theory of hydration
interactions [29], later shown to be equivalent to the nonlocal
dielectric function electrostatic formalism [30]. Within this
formalism, Belaya et al. [31,32] modeled the interaction of
multipolar membranes in terms of the coupling between the
interfacial and solvent dipoles. Finally, Kanduč et al. [33]
and Schneck et al. [34] in a grand-canonical MC simulation
of nanoconfined explicit water explained the hydration forces
between lipid membranes by the configurational changes and
the excluded volumes of the surface dipoles. The case of
charged surfaces nanoseparated by a layer of counterion-only
electrolyte with explicit water in grand-canonical MC simula-
tion [35] elucidated the roles of counterion correlations as well
as the reorientation of hydration water, which was shown to
lower the effective water dielectric constant and consequently
drive the electrostatic interactions closer to the SC limit.

Here we first explore the MF Poisson-Boltzmann (PB)
framework of the interactions between surface multipolar
layers in a monovalent electrolyte bathing solution and then
introduce a correlation-corrected theory of zwitterionic mem-
brane interactions, as well as characterize the effect of charge
correlations associated with mono- and multivalent ions in
complex electrolyte mixtures.

Our article is organized as follows. The zwitterionic mem-
brane model is introduced in Sec. II. Section III is devoted to
the investigation of the membrane interactions in the MF-PB
regime of weak zwitterionic charge densities and pure mono-
valent salt solutions of submolar concentration. We show
that the electrostatic force on the membrane is due to an
effective surface charge, originating from the screening of the
interfacial zwitterionic charges by salt addition. Consequently,
the interaction pressure exhibits a nonuniform salt dependence
characterized by an increase on dilute salt addition and a
decrease by bulk screening at intermediate salt concentrations.
In Sec. IV, we extend the PB analysis to the presence of WC
and SC correlations associated with mono- and multivalent
ions, respectively. To this aim, in Sec. IV A, we generalize our
formalism by integrating over the monovalent salt interactions
within a WC loop expansion of the partition function, and by
introducing a low fugacity expansion for the dilute multiva-
lent cations. Within the lowest order of the loop expansion,
corresponding formally to the dressed ion theory [12], we
show that the addition of multivalent cations to a submolar
salt solution results in a more repulsive pressure at short
separation distances but leads to a strongly attractive force
component at intermediate distances. This gives rise to a
like-charge membrane binding transition taking place via a
first-order phase transition mechanism. Then, in Sec. IV C, we

FIG. 1. Schematic depiction of the zwitterionic membrane of
thickness d . The cationic and anionic charges on the microscopically
resolved fixed surface dipoles of length a have surface density σs+
and σs−, respectively.

consider the additional one-loop correction terms that become
relevant at molar bathing salt concentrations. We show that
in concentrated salt solutions, even pure monovalent salt
correlations can lead to the discontinuous binding transition
of the zwitterionic membranes. If there also exists multivalent
cations in the molar salt solution, then the enhanced screening
of the salt self-energy by the adsorbed cations results in the
nonmonotonic variation of the interaction pressure between
repulsive and attractive regions. Finally, under Conclusions,
we summarize our main findings and discuss possible future
extensions of our formalism.

II. MODEL

Our theoretical model of the zwitterionic membrane im-
mersed in an electrolyte solution is presented schematically
in Fig. 1. A nanoslit of thickness d , containing the bathing
electrolyte solution composed of monovalent salt ions (charge
± e) and/or multivalent cations (+qce), located between two
semi-infinite ion-free solid membranes of dielectric permittiv-
ity εm. The zwitterionic charge distribution at the two apposed
membrane surfaces is given by the distribution function

σ (r) = σs+[δ(z)+ δ(z − d )] − σs−[δ(z − a)+ δ(z − d + a)],

where σs+ and σs− stand respectively for the surface density
of the positively and negatively charged ends of the dipoles
with size a, and δ(z) is the Dirac δ function. In our article, the
dielectric permittivity values will be expressed in units of the
vacuum permittivity. The slit is filled with an electrolyte of
temperature T = 300 K and dielectric permittivity εw = 80.
Thus, the dielectric permittivity profile of the system reads

ε(r) = εwθ (z)θ (d − z) + εm[θ (−z) + θ (z − d )], (1)

with the Heaviside step function θ (z). The impenetrability of
the membrane for the ions is assured by imposing for all ionic
species the steric potential Vi(r) defined as

e−Vi (r) = θ (z)θ (d − z). (2)

It is important to note that within our model of the zwitterionic
charges, the proximal cations are located at the membrane-
electrolyte solution boundary, while the distal anions are
located fully within the bathing electrolyte solution. In other
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words, we assume that the interfacial zwitterionic charge layer
is fully penetrable to salt and multivalent ions.

III. MEAN-FIELD REGIME OF SYMMETRIC
MONOVALENT SALT

We consider here the electrostatic MF-PB regime of a
monovalent symmetric salt. In Sec. III A, we introduce the
electrostatic model of the zwitterionic membrane and the cor-
responding PB equation. This equation is solved in Sec. III B
and the resulting potential profile is used in Sec. III C in order
to compute the interaction pressure.

A. Derivation of the PB equation

The grand-canonical partition function of the charges cou-
pled exclusively with pairwise Coulomb interactions can be
recast in the following functional integral representation [9]:

ZG =
∫

Dφ e−βH [φ], (3)

with the Hamiltonian functional

βH[φ] = kBT

2e2

∫
drε(r)[∇φ(r)]2 − i

∫
drσ (r)φ(r)

−
∑
i=±

�i

∫
dr e−Vi (r)+iqiφ(r), (4)

where kB stands for the Boltzmann constant and e the electron
charge. The integral terms on the right-hand side of Eq. (4)
correspond respectively to the free-energy contribution from
the implicit solvent, the zwitterionic surface charges, and the
mobile ions. The mobile ion species i has fugacity �i, valency
qi = q± = ±1, and reservoir concentration nib.

In terms of the real electrostatic potential φ0(r) = −iφ(r),
the PB equation follows from the saddle-point condition
δH/δφ(r)|φ=iφ0 = 0 as

kBT

e2
∇ε(r)∇φ0(r) +

∑
i=±

qini(r) + σ (r) = 0, (5)

where we used the MF ion density obtained from the relation
ni(r) = δH/δVi(r) = �ie−Vi (r)−qiφ0(r). In the bulk reservoir
where Vi(r) = 0 and φ0(r) = 0, this yields �i = nib. The ion
density within the slit then becomes

ni(r) = nibe−Vi (r)−qiφ0(r). (6)

In the same bulk region where σ (r) = 0, Eq. (5) yields the
bulk electroneutrality condition

n+b = n−b. (7)

Consequently, in the plane geometry of the slit pore, Eq. (5)
takes the one-dimensional form

∂zε(z)∂zφ(z) − ε(z)κ2
s (z) sinh [φ(z)] = − e2

kBT
σ (z), (8)

with the DH screening parameter

κs(z) = κθ (z)θ (d − z); κ =
√

8π�Bn+b. (9)

Finally, integrating Eq. (8) around each surface charge layer,
and assuming that the average electrostatic field vanishes

within the membrane, the boundary conditions (BCs) to be
satisfied by the field follow as

φ′(0+) = −2/μ+, (10)

φ′(a+) − φ′(a−) = 2/μ−, (11)

φ′[(d − a)+] − φ′[(d − a)−] = 2/μ−, (12)

φ′(d−) = 2/μ+, (13)

where we introduced the Gouy-Chapman lengths μ± =
1/(2π�Bσs±). On the MF level, the electrostatic field vanishes
within the membrane because the one-dimensional PB equa-
tion cannot describe any image charge effects on its own, for
a full discussion see Ref. [36].

B. Calculation of the MF potential

For the sake of analytical transparency, we will restrict
ourselves to the Debye-Hückel (DH) regime characterized by
weak surface charges and potentials. Within this approxima-
tion, we linearize the PB Eq. (5) to obtain

∂2
z φ0(z) − κ2

s (z)φ0(z) = −4π�Bσ (z). (14)

Defining the dimensionless lengths z̃ = κz, d̃ = κd , and ã =
κa, one can express the piecewise solution to Eq. (14) satis-
fying the BCs (10)–(13) and the continuity of the potential in
the slit as

φ0(0 � z � a) = 2

κμ+

cosh(d̃/2 − z̃)

sinh(d̃/2)

− 2

κμ−

cosh(d̃/2 − ã)

sinh(d̃/2)
cosh(z̃), (15)

φ0(a � z � d − a) =
[

2

κμ+
− 2 cosh(ã)

κμ−

]
cosh(d̃/2 − z̃)

sinh(d̃/2)
,

(16)

φ0(d − a � z � d ) = 2

κμ+

cosh(d̃/2 − z̃)

sinh(d̃/2)

− 2

κμ−

cosh(d̃/2 − ã)

sinh(d̃/2)
cosh(d̃ − z̃).

(17)

It is instructive to consider the point dipole limit a → 0 where
the interfacial layers corresponding to Eqs. (15) and (17)
disappear. Taylor expanding the average potential (16) in
terms of the size a, one obtains at the lowest order of the
expansion

φ0(z) ≈ 4π�B

κ
σeff

cosh(d̃/2 − z̃)

sinh(d̃/2)
, (18)

with the effective surface charge density

σeff ≡ (σm + σq), (19)

where σm and σq are defined as

σm = σs+ − σs−; σq = − (κa)2σs−
2

. (20)
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According to Eq. (18), the lowest-order contribution of sur-
face dipoles is an effective negative surface charge σq. Thus,
overall neutral lipid bilayers (σm = 0), where the surface
anion is within the bathing electrolyte region, would still
behave as negatively charged membranes. Such an effect
has indeed been evidenced in early experiments with neutral
lipids exhibiting charge-specific ion adsorption [37] and finite
electrophoretic mobility [38]. Our results suggest that these
peculiarities explained in Ref. [32] by solvent-membrane
interactions may equally be induced by the interfacial zwit-
terions.

Additionally, we verified that the assumption of partial
salt exclusion from the interfacial zwitterionic layer over a
length l < a is equivalent to the replacement of the size
a in Eq. (20) by a reduced length a∗ = a − l . This means
that partial salt penetration would suppress the magnitude
of the dipolar field component. The underlying mechanism
behind this peculiarity and its consequences on the interplate
pressure are discussed below. For the sake of simplicity, in the
remainder of the article, we will omit this complication and
continue to assume full salt penetration into the zwitterionic
charges.

C. Interaction pressure: Neutral and charged membranes

Given the lateral membrane surface S, the free energy per
surface β f = H/S follows from the Hamiltonian (4) via the
substitution φ(r) = iφ0(r) as

β f = −
∫ d

0

dz

8π�B
[∂zφ0(z)]2 +

∫ d

0
dzσ (z)φ0(z)

−
∑
i=±

∫ d

0
dzni(z). (21)

Injecting into Eq. (21) the potential profile in Eqs. (15)–(17),
and the Taylor expansion of the ion density (6),

ni(z) = nib

[
1 − qiφ0(z) + q2

i

2
φ2

0 (z)

]
, (22)

after some algebra, the free energy follows in the form

β f = 2π�B

κ

2σ 2
s+ + σ 2

s−
tanh(d̃/2)

− 2n+bd

− 2π�B

κ

σs−
sinh(d̃/2)

[4σs+ cosh(d̃/2 − ã)

− σs− cosh(d̃/2 − 2ã)]. (23)

In the infinite separation limit d → ∞, Eq. (23) becomes

β fb = 2π�B

κ

[
(1 + e−2ã)σ 2

s− + 2σ 2
s+ − 4σs−σs+e−ã

]
−2n+bd. (24)

Thus, the net MF interaction energy δ fmf = f − fb and the
interaction pressure Pmf = −∂δ fmf/∂d follow as [39]

βδ fmf = 4π�B

κ
[σs+ − σs− cosh(κa)]2[coth(κd/2) − 1],

(25)

and

βPmf = 2π�B
[σs+ − σs− cosh(κa)]2

sinh2(κd/2)
. (26)

First, regardless of the membrane charge densities σs±,
the interaction pressure (26) is purely repulsive. Moreover,
similar to monopolar charged membranes [7], the pressure
diverges algebraically Pmf ∼ d−2 for small separations κd 

1 and decays exponentially Pmf ∼ e−κd at large separations
κd � 1. Next, we investigate the dependence of the pressure
on the bulk salt concentration.

1. Neutral membranes

We first consider neutral membranes with vanishing net
charge, i.e., σs± = σs and σm = 0. Equation (26) becomes

βPmf = 8π�Bσ 2
s

sinh4(κa/2)

sinh2(κd/2)
. (27)

Equation (27) indicates that in the salt-free limit, the inter-
action pressure vanishes, i.e., Pmf → 0 for n+b → 0. This
implies that the presence of salt is a necessary condition for
the neutral membrane to experience a finite electrostatic force.
This point is also shown in Fig. 2(a) displaying the salt depen-
dence of the pressure. One notes that added salt into a pure
solvent amplifies the interaction pressure (n+b ↑ Pmf ↑) to a
characteristic salt concentration n+b = n+

+b where P reaches a
peak and drops at larger concentrations (n+b ↑ Pmf ↓).

The emergence of a finite electrostatic force via salt addi-
tion is due to the onset of an electric field gradient between
the opposite charges of each surface dipole (see Fig. 1). More
precisely, in a salt-free liquid confined to the overall neutral
pore, the uniform electric field components induced by these
charges would cancel each other out. Hence, the net field and
electrostatic force on the membrane would vanish. However,
in the presence of salt, the field of the positive surface charges
screened by the salt ions cannot exactly cancel the field
induced by the negative surface charges. This gives rise to
an electric field associated with the effective anionic charge,
σq, resulting in a finite pressure strengthened by further salt
addition. As discussed in Sec. III B, if one would assume
partial salt penetration into the zwitterionic charges, the re-
duction of this screening effect would weaken the resulting
multipolar field and interplate pressure. We finally note that in
Fig. 2(a), beyond n+b = n+

+b, this interfacial screening effect
is dominated by the shielding of the surface field by the salt
ions in the inner slit region a < z < d − a. As a result, for
n+b > n+

+b, added salt reduces the pressure.
The location of the pressure peak can be obtained from the

point dipole limit a → 0 of Eq. (27) where one gets

βPmf ≈ π�B(κa)4σ 2
s−

4 sinh2(κd/2)
. (28)

Solving the equation ∂κPmf = 0 under the assumption
tanh(κd/2) ≈ 1, the turnover concentration then follows as

n+
+b ≈ 1

π�Bd2
. (29)
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FIG. 2. Salt dependence of the interaction pressure (26). (a) Neutral membranes. (b) Membranes with net negative and (c) positive fixed
charge. In (b) and (c), the slit size is d = 2 nm. In all plots, the density of the anionic surface charges is σs− = 0.5 e/nm2, and the length of the
surface dipoles a = 3 Å. The circles and squares are respectively from Eqs. (31) and (32).

Equation (29) reported in Fig. 2(a) with circles indicates that
the critical salt density drops with the rise of the membrane
separation, i.e., d ↑ n+

+b ↓. This trend is due to the increase
of the number of ions within the slit size, and the resulting
extension of the high-salt-density regime where screening
reduces the electrostatic force on the membrane. At this point,
it should be noted that the surface charge structure of the
zwitterionic membranes need not be perfectly dipolar. There-
fore, the membrane interface is expected to possess a finite
monopole moment. Motivated by this point, we investigate
next the effect of the monopolar membrane charge on the
interaction pressure.

2. Charged membranes

In Figs. 2(b) and 2(c), we display the salt dependence of
the interaction pressure (26) for membranes with an overall
negative and positive charge, respectively. In the case of
membranes with a substantial anionic fixed charge [black
curve in Fig. 2(b)], the pressure decreases monotonically with
added salt, i.e., n+b ↑ Pmf ↓. Then, below a set monopolar
charge strength, the pressure curve acquires a nonmonotonic
shape with a peak at large salt concentrations and a minimum
in the dilute salt regime.

For an analytical insight into this behavior, we consider the
point dipole limit a → 0 where Eq. (26) reduces to

βPmf ≈ 2π�B
(σm + σq)2

sinh2(κd/2)
. (30)

From the equation ∂κPmf = 0, one finds that the pressure peak
emerges for σm � −2(a/d )2σs− at the salt concentration

n+
+b ≈ 1

2π�Bd2

⎧⎨
⎩1 +

√
1 + 1

2

(
d

a

)2
σm

σs−

⎫⎬
⎭ (31)

displayed in Figs. 2(b) by circles. With the decrease of |σm|,
the pressure minimum at dilute salt drops to zero, and the
pressure tends to the neutral membrane limit of Fig. 2(a)
(red curves). Hence, in charged membranes, the concentrated
salt regime is governed by σq, while the dilute salt regime is
dominated by σm.

Figure 2(c) shows that in membranes with cationic
monopolar charges σm > 0, the pressure exhibits a similar

nonmonotonic salt dependence. Namely, in the dilute salt
regime governed by σm, the pressure drops on addition of salt
and cancels out at the concentration

n−
+b ≈ 1

4π�Ba2

(
σm

σs−

)
, (32)

indicated by the square symbols. According to Eq. (30), the
total suppression of the electrostatic force occurring only with
cationic surface monopoles stems from the mutual cancella-
tion of the two contributions of the effective surface charge,
i.e., σm and σq, to the interaction pressure. Then, on further salt
addition, one gets into the regime governed by σq, where the
pressure rises, reaches a peak at the concentration value (31),
and decays in the subsequent concentrated salt regime. One
also notes that the increase of σm shifts the location of
the pressure extrema to larger salt concentration values, i.e.,
σm ↑ n±

+b ↑.
Notably, since until now we were on the MF-PB level

of electrostatics, image interactions were not part of the
discussion. We next investigate the additional effect of charge
correlations induced by dielectric image forces and added
multivalent ions on the membrane interactions.

IV. BEYOND-MF REGIME OF MULTIVALENT CATIONS
AND POLARIZATION FORCES

A. Perturbative evaluation of the grand potential

We present here the beyond-MF evaluation of the electro-
static grand potential

βG = − ln ZG, (33)

where ZG is the partition function of the Coulomb liquid
composed of the monovalent salt considered in Sec. III, and
an additional multivalent cation species of valency qc with
reservoir concentration ncb. In order to stabilize the attrac-
tive electrostatic interactions between these cations and the
monovalent salt anions, the Coulomb potential will be aug-
mented by the repulsive ionic HC interaction potential defined
as w(r − r′) = ∞ if ||r − r′|| � 2ai and w(r − r′) = 0 for
||r − r′|| > 2ai, with the same ionic radius ai = 3 Å taken for
all charge species.

Introducing the Hubbard-Stratonovich transformations
with two fluctuating potentials, viz., φ(r) and ψ (r), asso-
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ciated with the Coulomb and HC interactions, respectively,
the partition function takes the form of a double functional
integral [40],

ZG =
∫

DφDψ e−βH [φ,ψ]. (34)

In Eq. (34), the Hamiltonian functional is given by

H[φ,ψ] = Hs[φ,ψ] + Hc[φ,ψ], (35)

where the monovalent salt and multivalent counterion compo-
nents read, respectively,

βHs[φ,ψ] = kBT

2e2

∫
drε(r)[∇φ(r)]2 − i

∫
drσ (r)φ(r)

+ 1

2

∫
drdr′ψ (r)w−1(r − r′)ψ (r′)

−
∑
i=±

∫
dr ρ̂i(r), (36)

βHc[φ,ψ] = −
∫

dr ρ̂c(r). (37)

In Eqs. (36) and (37), the fluctuating ion densities read

ρ̂i(r) = �i e−Vi (r)+iqiφ(r)+iψ (r), (38)

and the indices i = +, −, and c label the salt cations and
anions and the multivalent counterions, respectively. We in-
troduced two components of the total field Hamiltonian as
the univalent and multivalent components of the complex
electrolyte mixture will be treated on a different level of
approximations.

1. SC treatment of multivalent counterions

In the evaluation of the partition function (34), the strongly
coupled multivalent cations of low bulk concentration will be
treated within a low fugacity approximation [11,12]. To this
aim, we carry out the corresponding cumulant expansion of
Eq. (34) to obtain

ZG ≈
∫

DφDψ e−βHs[φ,ψ]{1 − βHc[φ,ψ]}. (39)

From now on, we omit the arguments of the Hamiltonian
functionals. Within the same approximation, the average ion
density follows from the Taylor expansion of the relation
ni(r) = βδG/δVi(r) at the linear order in the counterion
fugacity �c. Using Eqs. (33)–(39), one gets

n±(r) ≈ 〈ρ̂±(r)〉s − β{〈ρ̂±(r)Hc〉s − 〈ρ̂±(r)〉s〈Hc〉s}, (40)

nc(r) ≈ 〈ρ̂c(r)〉s, (41)

where the bracket 〈·〉s means the field average with respect to
the univalent salt Hamiltonian (36).

2. WC treatment of monovalent salt

The evaluation of the grand potential (33) will be com-
pleted by treating the salt Hamiltonian (36) within a WC
approximation. This will be achieved by Taylor expanding
the remaining Boltzmann distribution in Eq. (39) around a

reference Hamiltonian H0[φ,ψ] whose explicit form will be
chosen below. To this aim, we cast Eq. (39) as

ZG ≈
∫

DφDψ e−βλs (Hs−H0 )e−βH0 (1 − βHc), (42)

where we introduced the expansion parameter λs that will be
set to unity at the end of the calculation. Taylor expanding
now Eq. (42) at the order O(λs), one obtains

ZG ≈ Z0{1 − β〈Hc〉0 − βλs〈Hs − H0〉0

−β2λs〈Hc(H0 − H )s)〉0}, (43)

with the reference partition function Z0 and the field average
of a general functional F [φ,ψ] defined as

Z0 =
∫

DφDψ e−βH0 , (44)

〈F 〉0 = 1

Z0

∫
DφDψ e−βH0 F. (45)

Substituting Eq. (43) into Eq. (33), and expanding the result
at the same order, the grand potential becomes

G ≈ 0 + λs〈Hs − H0〉0 + 〈Hc〉0

−βλs{〈(Hs − H0)Hc〉0 − 〈(Hs − H0)〉0〈Hc〉0}, (46)

with the WC grand potential component β0 = − ln Z0.
We now choose the reference Hamiltonian as the following

Gaussian functional of the fluctuating potentials,

H0[φ,ψ] =
∫

drdr′

2
φ(r)G−1(r, r′)φ(r′) − i

∫
drσ (r)φ(r)

+
∫

drdr′

2
ψ (r)w−1(r, r′)ψ (r′), (47)

where the inverse of the Green’s function screened by the
monovalent salt is taken as the DH operator,

G−1(r, r′) = v−1
c (r, r′) + 2nb+θ (z)θ (d − z)δ(r − r′), (48)

with the bare Coulomb operator

v−1
c (r, r′) = −kBT

e2
∇ε(r)∇δ(r − r′). (49)

In the absence of HC interactions w(r − r′) = 0, Eq. (47)
without the third term would correspond to the quadratic
expansion of the salt Hamiltonian (36) around the solution of
the linear PB equation considered in Sec. III. In the present
model where the HC interactions are included, the latter are
taken into account in Eq. (47) by the bare HC potential
w(r − r′).

This approximation neglecting excluded volume effects
and the alteration of the Coulomb interactions by the HC
monovalent ion collisions is supported by previous simula-
tions where it was observed that at the moderate ion con-
centrations considered in the present work, the interfacial
charge partition picture is not qualitatively affected by the ion
size [41].

Using now Eqs. (48) and (49), and the definition of a
functional inverse, the equation solved by the Green’s function
follows as[∇ε(r)∇ − ε(r)κ2

s (r)
]
G(r, r′) = − e2

kBT
δ(r − r′). (50)
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For 0 � z, z′ � d , the solution to the DH Eq. (50) reads

G(r, r′) =
∫ ∞

0

d2k
4π2

eik·(r‖−r′
‖ )G̃(z, z′), (51)

where the Fourier-transformed Green’s function is

G̃(z, z′)

= G̃b(z − z′) + 2π�B�

p(1 − �2e−2pd )
[e−p(z+z′ ) + ep(z+z′−2d )

+ 2�e−2pd cosh(p|z − z′|)]}, (52)

with p = √
κ2

s + k2, � = (p − ηk)/(p + ηk), and η =
εm/εw. The second term in the above equation corresponds
to the dielectric image interactions which enter naturally on
any level above the MF-PB approximation [36]. In fact, the
surface polarization terms have two separate origins [13], the
standard dielectric images, corresponding to κs −→ 0, as well
as the ionic cloud images stemming from the inhomogeneous
partitioning of the salt in the system, corresponding to
finite κs.

Moreover, the bulk component of Eq. (52) and its inverse
Fourier transform have the Yukawa form

G̃b(z − z′) = 2π�B

p
e−p|z−z′ | ; Gb(r − r′) = �B

e−κ|r−r′ |

|r − r′| .

(53)

Finally, for the computation of the ion densities (40)
and (41), we approximate the salt Hamiltonian by the Gaus-
sian Hamiltonian (47) and evaluate the corresponding field
averages according to Eq. (45). At the order O(�c), this yields
the ionic number densities in the form

n±(r) = ρ±(r)

{
1 +

∫
drcnc(rc) f±(r, rc)

}
, (54)

nc(rc) = ρc(rc), (55)

with the auxiliary density function

ρi(r) = �i e−Vi (r)−w(0)/2−qiφ0(r)− q2
i
2 G(r,r), (56)

and the Mayer function

fi(r, rc) = e−qiqcG(r,rc )−w(r−rc ) − 1. (57)

In Eq. (56), we defined the WC-level average potential

φ0(r) =
∫

dr G(r, r′)σ (r′). (58)

By evaluating the convolution integral in Eq. (58) with the
Green’s function (51), one can verify that the function φ0(r)
corresponds exactly to the piecewise potential profile (15)–
(17) satisfying the linear PB Eq. (14).

In the bulk reservoir where the average potential van-
ishes, φ0(r) = 0, and the Green’s function tends to its
bulk limit (53), i.e., G(r, r′) = Gb(r − r′), one obtains from
Eqs. (54) and (55) the relation between the ionic fugacity and
concentration as

�± = n±b ew(0)/2+q2
±Gb(0)/2

×
{

1 − ncb

∫
drc f±b(r − rc)

}
, (59)

�c = ncb ew(0)/2+q2
c Gb(0)/2, (60)

with the bulk limit of the Mayer function (57)

fib(r − rc) = e−qiqcGb(r−rc )−w(r−rc ) − 1. (61)

Substituting the fugacities (59) and (60) into Eqs. (54)
and (55), and taking into account the planar symmetry of the
system, after some algebra, the ion densities follow as

n±(z) = n±bh±(z){1 + ncb[T±(z) − Tib]}, (62)

nc(z) = ncbhc(z), (63)

with the WC-level ionic partition function

hi(z) = e−qiφ0(z)− q2
i
2 δG(z)θ (z)θ (d − z) (64)

defined for i = {±, c}, and the ionic self-energy defined as

δG(z) = �B

∫ ∞

0

dkk

p
�

e−2pz + e−2p(d−z) + 2�e−2pd

1 − �2e−2pd
, (65)

while the auxiliary functions have the form

Ti(z) = 2π

∫ d

0
dzchc(zc)

×
∫ ∞

0
duu{e−qiqcG(u,z,zc )θ [u − u<(z, zc)] − 1}, (66)

Tib = 4π

∫ ∞

0
dvv2{e−qiqcGb(v)θ (v − 2a) − 1}, (67)

including the lower integration cut-off

u<(z, zc) =
√

4a2 − (z − zc)2 θ (2a − |z − zc|), (68)

consistent with the finite size of the ions. The ionic self-
energy enters the formalism naturally through the quadratic
expansion of the salt Hamiltonian around the solution of the
linear PB equation, being in many respects similar to the
Gaussian renormalized fluctuation theory as introduced in
Ref. [42].

B. Dressed counterion approach

1. Computation of the grand potential

The dressed ion approach is based on the assumption
β(H0 − Hs) 
 1 [12]. This condition is equivalent to setting
in Eq. (46) λs = 0. The grand potential becomes

G(λs = 0) ≈ 0 + 〈Hc〉0. (69)

Evaluating the Gaussian functional integrals in Eq. (69) with
Eqs. (44) and (45), the grand potential takes the form

βG(λs = 0)

= −1

2
Tr ln w − 1

2
Tr ln G

+
∫

drdr′

2
σ (r)G(r, r′)σ (r′) −

∫
drc nc(rc). (70)

The first term of the grand potential (70), independent of
the slit size d , is an irrelevant constant. The second term,
embodying the thermal van der Waals (vdW) free energy
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stemming from the quadratic fluctuations of the local electro-
static potential around its MF value and related to image inter-
actions [12], can be computed by the charging method [43].
Then, the third and forth terms correspond respectively to
the MF interaction energy (23) [44] and the multivalent
counterion contribution. Finally, noting that the net membrane
interaction energy is defined as the grand potential of the
slit renormalized by its limit reached for infinitely remote
interfaces,

�G = G − lim
d→∞

G, (71)

the free energy per surface area δ f = �G/S becomes

βδ f = βδ fmf +
∫ ∞

0

dkk

4π
ln[1 − �2e−2pd ]

− ncb

∫ d

0
dz [hc(z) − 1], (72)

and the pressure P = −∂dδ f follows as

βP = βPmf −
∫ ∞

0

dkkp

2π

�2e−2pd

1 − �2e−2pd
+ ncb[hc(d ) − 1]

− ncb

∫ d

0
dz hc(z)

[
q2

c

2
∂dδG(z) + qc∂dφ0(z)

]
. (73)

In Eq. (73), the first and second terms are the repulsive MF
pressure (26) and the attractive vdW pressure, respectively.
Then, the third and fourth terms correspond respectively
to entropic and energetic contributions from the multivalent
ions. The energetic component associated with the ion-image
charge coupling (the first term in the bracket) and the ion-
surface dipole interactions (the second term) originate from
the electrostatic force acting on the multivalent cations on the
alteration of the slit thickness d .

2. Surface polarization effects with pure monovalent salt

In order to identify surface polarization effects, we plotted
in Fig. 3 the interaction pressure profile for a pure monovalent
salt (ncb = 0) where the multivalent counterion components of
Eq. (73) vanish. Hence, one gets P = P0 ≡ Pmf + PvdW, where
PvdW stands for the vdW pressure in Eq. (73).

One sees that in a dielectrically uniform system with
εm = εw = 80, the interaction pressure (solid black curve)
stays very close to its MF limit (26) (dashed curve) yet
does not coincide with it. This is due to the fact that even
if the dielectric images are not there, there still exist ionic
cloud images, since the salt is partitioned only between the
interfaces, that contribute to the thermal vdW interaction. The
pressure exhibits an overall decaying repulsive behavior, i.e.,
d ↑ P0 ↓. Then, with decreasing membrane permittivity, the
emerging surface polarization forces embodied in the vdW
component of Eq. (73) strongly lower the pressure in the
short distance regime. Consequently, similarly to the case of
charged membranes [7], the electrostatic force on the zwitte-
rionic membrane acquires a nonuniform trend characterized
by an attractive uphill branch (d ↑ P0 ↑) at short separation

FIG. 3. Interaction pressure (73) for a pure monovalent salt (solid
curves) and its MF limit (26) (dashed black curves) versus the
separation distance d at the salt concentration n+b = 0.5 M (main
plot) and against n+b at d = 1.5 nm (inset) at various membrane
permittivities εm. The circles are from Eq. (74). The dipolar charge
densities of the overall neutral membrane are σs± = 0.5 e/nm2.

distances and a repulsive decaying trend (d ↑ P0 ↓) at large
distances.

For an analytical insight into the nonuniform behavior of
the interaction pressure, we consider the limit εm 
 εw and
κd � 1, where Eq. (73) takes the asymptotic form

βP0 ≈ 2π�B
[σs+ − σs− cosh(ã)]2

sinh2(d̃/2)
− 2d̃ (1 + d̃ ) + 1

8πd3
e−2d̃

(74)
reported in Fig. 3 by open circles. Equation (74) indicates
that at large separation distances, the MF-level repulsive force
component Pmf ∼ e−κd characterized by a longer range than
the vdW component PvdW ∼ −e−2κd/d governs the electro-
static force on the membrane. In the opposite regime of short
to intermediate distances, the vdW force PvdW ∼ −d−3 is
characterized by a stronger distance dependence than the MF
force Pmf ∼ d−2 and dominates the net pressure. This explains
the repulsive trend of the pressure at large distances and its
attractive behavior at short distances. Finally, the inset of
Fig. 3 shows that due to the amplification of the MF pressure
by added salt as well as the range of the MF and vdW forces
reflecting equally their relative susceptibility to salt screening,
surface polarization effects bring a visible contribution to
the interaction pressure exclusively in the dilute salt density
regime. Next, we investigate the alteration of these features
by added multivalent cations.

3. Multivalent cation effects in neutral membranes

Figure 4(a) displays the electrostatic force (73) on the
overall neutral membrane (σs+ = σs−) without dielectric dis-
continuity (εm = εw) for various interfacial dipole densities
σs± and with tetravalent cations (qc = 4) of concentration
ncb = 10−3 M. The circles in the plot illustrate the salt-only
limit of the interaction pressure (ncb = 0). In the inset of
Fig. 4(b), we reported as well the slit-averaged multivalent
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FIG. 4. Emergence of multivalent counterion effects via the increase of the dipole density at the overall neutral membrane surfaces (σs+ =
σs−) without dielectric discontinuity (εm = εw). (a) Distance dependence of the total pressure (73), and the multivalent ion contributions
associated with (b) the ionic self-energy [the first term in the bracket of the integral in Eq. (73)] and (c) the average potential (the second
term in the bracket). The inset in (b) illustrates the slit-averaged dimensionless multivalent ion density (75), and the circles in (a) display
the monovalent salt-only limit of the pressure (73) at ncb = 0. The mono- and tetravalent (qc = 4) ion concentrations are n+b = 0.1 M and
ncb = 10−3 M.

cation density

〈hc(z)〉 =
∫ d

0

dz

d
hc(z). (75)

The comparison of the curves with the open circles shows that
as the surface dipole density increases, the enhanced multi-
valent cation adsorption [σs± ↑ 〈hc(z)〉 ↑] makes the pressure
P more repulsive at short distances (σs± ↑ P ↑) and more
attractive in the intermediate to large distance regime (σs± ↑
P ↓). As a result, the rise of the surface dipole density drops
the equilibrium distance deq where the pressure vanishes, i.e.,
σs± ↑ deq ↓.

In order to better understand the nonuniform effect of
the tetravalent cations on the interaction pressure, we plot-
ted in Figs. 4(b) and 4(c) the multivalent ion contributions
associated with the ionic self-energy P∂G [the first term in
the second integral of Eq. (73)] and the average potential
P∂φ (the second term). The entropic pressure component of
perturbative magnitude is not reported here. The comparison
of the plots indicates that the behavior of the total pressure
P is mainly dictated by the trend of the pressure component
P∂φ , whereas the self-energy component associated with the
solvation forces on the cations brings a secondary contribu-
tion of uniformly repulsive nature (P∂G > 0). Therefore, we
scrutinize below the behavior of the pressure term P∂φ .

The distance dependence of the pressure component P∂φ is
characterized by an attractive and a repulsive regime. First,
at large separation distances, the decrease of the slit size,
amplifying the average potential, enhances the multivalent
cation density, i.e., d ↓ 〈hc(z)〉 ↑. Hence, the force exerted by
the surface dipoles on the cations is attractive. This attractive
force is precisely at the origin of the attractive branch of
the pressure component P∂φ < 0 at large distances. Then one
notes that at short separation distances, the average cation
density reverses its trend and starts decreasing with the slit
size, i.e., d ↓ 〈hc(z)〉 ↓. This turnover occurs in the distance
regime d − 2a 
 a where the midslit region governed by the
field of the dipolar anions becomes much thinner than the
size of the surface dipoles. As a result, the field induced by
the dipolar cations becomes sizable, and the resulting force
repels the multivalent cations from the slit. The amplification

of this repulsive force with decreasing membrane separation
is thus responsible for the repulsive branch of the pressure
component P∂φ > 0 at short distances. Hence, the nonuniform
effect of the multivalent cations on the zwitterionic membrane
interactions is driven by the hierarchy between the separate
coupling of these ions to the opposite charges of the surface
dipoles.

Figure 5(a) displays the effect of monovalent salt on the
interaction pressure (73) while the inset of Fig. 5(c) illustrates
the grand potential (72). One sees that added monovalent
salt turns the interaction pressure from attractive to repulsive.
Moreover, a careful inspection of the interaction pressure
dependence on separation reveals that in a certain range of salt
concentrations, it exhibits a nonmonotonic van der Waals [45]
isotherm-like behavior of the same type that characterises a
first-order gas-liquid transition. This behavior would imply

FIG. 5. (a) Effect of the monovalent salt on the total pres-
sure (73), (b) its salt-only limit (nbc = 0), and the multivalent coun-
terion contributions associated with (c) the average potential and
(d) the self-energy in Eq. (73). The inset shows the membrane inter-
action energy (72). The surface dipole density is σs± = 2.2 e/nm2.
The other model parameters are the same as in Fig. 4.
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that decreasing the pressure monotonically, the equilibrium
membrane spacing would exhibit a discontinuous jump and
a liquid-liquid phase coexistence in a multilamellar system.
Such phenomena where electrostatic interactions in a multil-
amellar membrane system drive an Lα −→ Lα′ transition have
in fact been already invoked in the case of a phase transi-
tion of didodecyldimethylammonium bromide bilayers [46].
The driving mechanism in our case is, however, different
then in the case of Lα −→ Lα′ transition, where it stems
from the charge regulation of surface chargeable groups. In
order to shed light on this mechanism that drives the salt
induced switching of the interaction force from attractive to
repulsive, in Figs. 5(b)–5(d), we reported the components of
the pressure in (a) together with its salt-only limit P = Ps

reached at ncb = 0. The comparison of the plots indicates that
the unbinding of the plates by salt addition is mainly due
to the amplification of the repulsive pressure component Ps

driven by the enhancement of the MF pressure Pmf illustrated
in Fig. 2(a); the force P∂G of low magnitude makes indeed
a secondary contribution to the total pressure P, while the
attractive component P∂φ is seen to be weakly affected by salt
at n+b � 0.1 M. Hence, in the presence of multivalent cations,
the salt-induced membrane separation is essentially driven by
the intensification of σq and the resulting zwitterionic charge
interactions investigated in Sec. III.

In thermodynamic equilibrium the pressure cannot in-
crease with the adiabatic change of the volume or equiva-
lently, the intermembrane separation. This implies that surface
force experiments carried out in equilibrium conditions will
not have access to the thermodynamically unstable parts of
the pressure curves in Fig. 5(a) associated with a positive
slope [7]. The outcome of the equilibrium force measurements
can be however obtained from the Maxwell construction
that predicts the coexistence region between two states with
different intermembrane spacing. The corresponding pressure
curves are reported in Fig. 6(a) at various salt concentrations.
One sees that with the increment of the monovalent salt,
the binodal curve (dashed red line) displaying the interaction
pressure at the coexisting separation distances rises and ends
at the critical point (red dot) where the interaction pressure
becomes a monotonically decaying function of the intermem-
brane separation. In the opposite direction, the coexistence
region obviously ends at pressure zero corresponding to a
complete unbinding of the membranes.

The competition between the opposing effects of the mono-
and multivalent ions implies that in order for the membrane
attraction to survive, the repulsive force induced by added
salt should be compensated by the attractive effect of a
larger amount of multivalent cations. The phase diagram in
Fig. 6(b) illustrates this effect in terms of the critical cation
concentration n∗

cb where the binding phase at the coexistence
becomes stable. One indeed notes that n∗

cb rises monotonically
with the salt density (n+b ↑ n∗

cb ↑) according to a quasilin-
ear scaling law, i.e., n∗

cb ∼ n+b [see also the linear plot in
Fig. 6(d)].

As the membrane dipole strength amplifies both the at-
tractive force mediated by the multivalent counterions and
the repulsive direct interactions of the zwitterionic charges,
the question arises on the overall effect of the surface dipole
density on the binding transition. The comparison of the coex-

FIG. 6. (a) Maxwell construction for the interaction force (73)
(solid curves) and the binodal line (dashed curve) ending at the
critical point (red dot) located at n+b ≈ 1.3 M, d ≈ 7.36 Å, and
βP/(2π�Bσ 2

s−) ≈ 0.49. (b) Critical tetravalent ion concentration n∗
cb

where the attractive minimum of the grand potential in Fig. 5(c) turns
from metastable to stable against the salt concentration n+b and
(c) the surface dipole density σs±. (d) The black curve in (b) on a
linear scale. The other model parameters are the same as in Fig. 5.

istence curves in Fig. 6(b) shows that at fixed monovalent salt
strength, the larger the surface dipole density, the lower the
critical cation concentration, i.e., σs± ↑ n∗

cb ↓. This peculiarity
is also illustrated in Fig. 6(c). One sees that the increment of
the surface dipole density results in the exponential drop of
the critical cation concentration, i.e., ln n∗

cb ∼ −σs±. Thus, in
overall neutral membranes, the increase of the surface dipole
density amplifies the multivalent cation-driven attractive pres-
sure component more strongly than the salt-driven repulsive
pressure contribution.

4. Multivalent cation effects in charged membranes

With the aim to shed light on the effect of a finite
monopolar membrane charge σm = σs+ − σs−, we consider
now a weakly anionic membrane of charge densities σs+ =
0.8 e/nm2 and σs− = 1.0 e/nm2. Figure 7 displays the profile
of the net interaction energy δ f and pressure P, and the
counterion induced force P∂φ together with the tetravalent
cation density 〈hc(z)〉. One first notes that the decrease of
the slit size results in the steady rise of the cation density
[d ↓ 〈hc(z)〉 ↑], indicating that the surface dipoles exert an
overall attractive force on the tetravalent cations at both
large and short membrane separation distances. The resulting
multivalent cation adsorption gives rise to a purely attractive
force component P∂φ < 0 whose amplification with the cation
addition leads to the formation of a decreasing grand potential
well at d ∼ 6 Å. This finally leads to the switching of the
net pressure from repulsive to purely attractive via a first-
order binding transition, i.e., ncb ↑ P∂φ ↓ δ f ↓ P ↓. Hence,
the main consequence of a substantial anionic surface charge
is the suppression of the short-range repulsive pressure branch
characterized in Fig. 4(a).
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FIG. 7. (a) Membrane interaction energy (72), (b) total pres-
sure (73), (c) the multivalent cation component P∂φ , and (d) the
slit-averaged cation density (75). The densities of the surface dipole
charges are σs+ = 0.8 e/nm2 and σs− = 1.0 e/nm2. The bulk salt
density is n+b = 0.3 M. The cation concentrations are given in (a).
The other model parameters are the same as in Fig. 4.

This observation means that beyond a characteristic
monopolar charge, multivalent cations always induce an over-
all attractive interaction between zwitterionic membranes.
This effect is confirmed in the phase diagram of Fig. 8(a)
displaying the critical cation concentration n∗

cb at the binding
transition versus the membrane charge σm. The critical lines
indicate that a weak increment of the interfacial monopolar
charge drops the cation density by orders of magnitude (|σm| ↑
n∗

cb ↓) according to an exponential law, i.e., ln n∗
cb ∼ σm. We

scrutinize next the additional effect of the surface polarization
forces.

5. Collective effect of multivalent cations and surface
polarization forces

Figure 9 illustrates the effect of surface polarization and
image forces on the anionic membrane interactions in terms of
the interaction pressure P and its components, the membrane
interaction energy δ f , and the average cation density (inset).

FIG. 8. Phase diagrams. Critical tetravalent ion concentration n∗
cb

where the attractive minimum of the grand potential in Fig. 7(a) turns
from metastable to stable against the monopolar charge density
σm (a) at the membrane permittivity value εm = 80 and different
dipolar anion densities σs−, and (b) for σs− = 2 e/nm2 and various
permittivities εm. The salt concentration is n+b = 0.3 M.

FIG. 9. (a) Pressure component associated with the average po-
tential P∂φ and (b) self-energy P∂G (main plot) together with the
the average cation density (75) (inset). (c) Membrane interaction
energy δ f and (d) total pressure P. (e) Net cation contribution Pc =
P∂φ + P∂G. The permittivity value εm for each color is given in (a).
The cation concentration is ncb = 6.5 mM. (f) Total grand potential at
εm = 30 and different cation concentrations. Surface charge densities
are σs+ = 0.8 e/nm2 and σs− = 1.0 e/nm2 in all plots. The other
model parameters are the same as in Fig. 4.

One sees that on the reduction of the membrane permittivity,
the emergence of the repulsive image-charge forces results in
the exclusion of the multivalent cations from the slit, εm ↓
〈hc(z)〉 ↓. This leads to the attenuation of the attractive and
repulsive force components induced by these counterions, i.e.,
εm ↓ |P∂φ| ↓ P∂G ↓. Figure 9(c) shows that the suppression
of the attractive force component by the dielectric cation
exclusion switches the stable minimum of the interaction
energy from the membrane binding (δ f < 0) to the unbinding
state (δ f > 0). Consequently, the net pressure in Fig. 9(d)
turns from attractive to purely repulsive. The repercussion of
this effect on the phase coexistence is illustrated in the phase
diagram of Fig. 8(b). One sees that a moderate reduction of the
membrane permittivity rises the critical cation concentration
at the binding transition by a few orders of magnitude, i.e.,
εm ↓ n∗

cb ↑.
For a more quantitative insight into these features, we

consider the modification of the pressure profile by polar-
ization forces with further detail. In Figs. 9(a) and 9(b), the
comparison of the curves with low permittivity indicates that
at short separation distances, the attractive force component
experiencing a stronger attenuation by the dielectric exclusion
is dominated by the repulsive component, i.e., P∂G > |P∂φ| for
εm < εw. This is in contrast with the case of the dielectrically
homogeneous membranes where the force P∂φ was found to
take over the repulsive pressure components (see Fig. 4). It

012806-11



SAHIN BUYUKDAGLI AND RUDOLF PODGORNIK PHYSICAL REVIEW E 102, 012806 (2020)

should be, however, noted that due to the shorter range of the
image-charge interactions with respect to the cation-surface
dipole coupling, the force P∂G decays with the separation
distance faster than the pressure component P∂φ . Figure 9(e)
indicates that as a result of the distinct ranges of these oppos-
ing force components, for εm < εw, the total counterion con-
tribution Pc = P∂φ + P∂G to the interaction pressure is positive
at short separation distances and negative in the long distance
regime. Consequently, Fig. 9(f) shows that the addition of
tetravalent cations gives rise to a more attractive interaction
pressure at large separation distances (ncb ↑ P ↓) and a more
repulsive pressure at short distances (ncb ↑ P ↑). Hence, on
the inclusion of the image-charge interactions, one recovers
the multivalent cation-induced repulsive short distance regime
suppressed by the anionic monopolar charge in dielectrically
uniform membranes.

C. Beyond the dressed ion theory: Loop corrections to salt
correlations and salt-multivalent ion coupling

The formalism above was based (i) on the expansion of the
field Hamiltonian Eq. (35) to the first order in the fugacity
of the strongly coupled counterions and (ii) on the expansion
of the weakly coupled salt ions field Hamiltonian around
the reference Gaussian field Hamiltonian, Eq. (47), to the
lowest order corresponding to λs = 0 in Eq. (46). This leads
effectively to the dressed counterion theory [13].

In what follows, we relax the second constraint and inves-
tigate the alteration of the zwitterionic membrane interactions
by pure salt correlations beyond the dressed ion theory, and
also by including the direct salt-multivalent cation interac-
tions. Formally this amounts to setting λs = 1 in the expansion
and evaluating explicitly all the field averages in Eq. (46). This
yields

βG(λs = 1) = βG(λs = 0) −
∑
i=±

∫
drρi(r) −

∫
dr

κ2
s (r)

8π�B

[
G(r, r) − φ2

0 (r)
]

+
∫

drdrcnc(rc)

{
κ2

s (r)

8π�B
G(r, rc)

[
q2

c G(r, rc) + 2qcφ0(r)
] −

∑
i=±

ρi(r) fi(r, rc)

}
, (76)

where G(λs = 0) was defined in Eq. (70), and the other terms characterize the effect of salt ion correlations and salt ion-
counterion correlations. In Eq. (76), the first term on the right-hand side corresponds to the grand potential of the dressed ion
approach in Eq. (70). Then, the second line is the WC loop correction stemming from salt correlations. Moreover, the first
two terms in the curly bracket integral take into account the screening of the salt self-energy and the salt-membrane charge
interactions by the multivalent cations, respectively. Finally, the last term involving the Mayer function embodies the direct
coupling of the salt ions and the multivalent cations.

Subtracting now from Eq. (76) the bulk grand potential, the membrane interaction energy per surface area δ f =
{G − G|d→∞}/S becomes

βδ f = βδ fmf +
∫ ∞

0

dkk

4π

{
ln[1 − �2e−2pd ] − κ2�

2p2

�2 + 2�pd − 1

1 − �2e−2pd
e−2pd

}
+

∫ d

0
dz

{
n+bφ

2
0 (z) −

∑
i=±

nib[hi(z) − 1]

}

− ncb

∫ d

0
dz[hc(z) − 1] + q2

c ncbn+b

∫ d

0
dz

∫ d

0
dzc

∫ ∞

0

dkk

2π

[
hc(zc)G̃2(z, zc; k) − G̃2

b(z − zc; k)
]

− ncb

∑
i=±

nib

∫ d

0
dzhi(z)[Ti(z) − Tib] + 2qcncbn+b

∫ d

0
dzckc(zc)

∫ d

0
dz G̃(z, zc; k = 0)φ0(z). (77)

In Eq. (77), the bulk anion density should be determined from
the electroneutrality condition n−b = n+b + qcncb. While the
interaction energy per surface area combines several effects
and has a complicated structure, numerically it is quite
straightforward to evaluate. We analyze some of the conse-
quences below.

1. Loop corrections to vdW interactions in pure salt liquids

Here, we investigate the effect of the loop corrections
associated with the monovalent salt on the interaction pressure
between the interfaces. To this end, we consider the membrane
grand potential in the pure monovalent salt limit ncb = 0
where only the first line of Eq. (77) survives. The main plots of
Figs. 10(a) and 10(b) compare the corresponding interaction
pressure P = −∂dδ f with the WC pressure P0 of Fig. 3 at
various salt concentration values. The inset displays in turn

the net loop correction �P ≡ P − P0. Within the WC theory
[Fig. 10(a)], the increment of salt results in the screening of
the attractive vdW pressure and the amplification of the re-
pulsive pressure component, i.e., n+b ↑ |PvdW| ↓ Pmf ↑. This
leads to the smooth transition of the pressure from attractive
to repulsive.

Interestingly, Fig. 10(b) indicates that on the inclusion
of the loop corrections, the salt-induced switching of the
interaction pressure from attractive to repulsive takes place via
a first-order transition. In order to understand the emergence
of this transition occurring in concentrated salt, we now focus
on the loop correction terms. At submolar concentrations [red
curves in 10(a) and 10(b)], loop corrections are dominated
by the attractive vdW correction �Pvdw corresponding to the
second term in the first bracket of Eq. (77). This correction
term characterized by the large distance behavior �Pvdw ∼
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FIG. 10. (a) WC pressure P0 of Fig. 3 compared with (b) the loop-corrected pressure P = −∂dδ f obtained from Eq. (77) for a pure
monovalent salt (ncb = 0) at various salt concentrations. (c) Loop-corrected pressure P for various surface dipole densities. The inset in (a) and
the plot (d) display the net loop correction �P = P − P0. The neutral membrane has dielectric permittivity εm = 2.

−e−2d̃ is longer ranged than the vdW pressure of asymptotic
form PvdW ∼ −e−2d̃/d̃ . Thus, at moderate concentrations, this
substantial correction makes the pressure more attractive, i.e.,
�P < 0 (see the red curve in the inset).

On the increment of salt into the molar regime, the second
integral term of Eq. (77), bringing in a repulsive correction
at short separation distances, takes over the attractive vdW
correction. As a result, at large concentrations (see the black
curve in the inset), beyond-WC salt correlations contribute
a repulsive contribution to the pressure at short distances
(�P > 0) and an attractive contribution at large distances
(�P < 0). This nonuniform loop correction, strengthening
the competition between the opposing WC force components,
is responsible for the occurrence of a discontinuous binding
phase transition in concentrated salt conditions even without
multivalent cations, a very important amendment to the previ-
ous results.

Finally, Figs. 10(c) and 10(d) show that at the molar salt
density n+b = 1.0 M, the same mechanism can be triggered by
the increment in the magnitude of the surface dipole. Namely,
rising the surface dipole density from σs± = 0.3 e/nm2, where
�P < 0 to σs± = 2.0 e/nm2, the loop correction �P acquires
a strongly repulsive branch close to the membrane surface.
This switches the pressure P from attractive to repulsive via a
discontinuous transition.

2. Effect of the direct coupling between the mono- and
multivalent ions on the interaction pressure

We finally analyze the effects of the direct multivalent
cation-salt interactions embodied by the second and third lines
of Eq. (77). Figure 11(a) displays the net pressure P obtained
from Eq. (77) at the salt concentration n+b = 1.0 M and
surface dipole density σs± = 2.0 e/nm2 where the repulsive
pressure in pure salt decays monotonically with the distance
d (red curve). On addition of multivalent cations, this trend
is seen to be radically altered as the pressure starts to exhibit
nonmonotonic behavior changing from repulsion to attraction
at various separation distances.

The mechanism behind the pressure nonmonotonicity is
illustrated in Fig. 11(b). The plot displays the pressure com-
ponent PG2 associated with the fifth term of Eq. (77) (left
vertical axis) bringing the main contribution to the total
pressure minima in Fig. 11(a), which is superposed with the
slit-averaged cation density (75) (orange curve and right axis).
The other cation contribution terms in Eq. (77), smaller than

PG2 by one to two orders of magnitude, are not reported.
First, one sees that due to the competition between the dipolar
field and the image-charge interactions, the multivalent cation
density is characterized by two adsorption peaks separated by
a minimum at d = 2a where the dipoles located on opposite
walls start docking. Then, we note that the corresponding
sharp rises of the cation density always coincide with the
quick drops of the pressure component PG2 . This peculiarity
stems from the fact that the fifth term of Eq. (77), giving rise to
the force component PG2 , accounts for the difference between
the slit and bulk screening of the self-energy of monovalent
ions by the multivalent cations. Consequently, the enhanced
screening of this self-energy by excess multivalent cations in
the slit lowers the grand potential of the confined solution
and favors the closer approach of the membrane walls. Thus,
the two-stage cation adsorption into the dipolar membrane is
responsible for the emergence of the double attractive pressure
well in Fig. 11(a).

Figure 11 also shows that due to the presence of the
image-charge forces bringing the first adsorption peak of
the cation density below the second one, the attractive force
minimum far from the interface is significantly deeper than
the minimum close to the membrane surface. In Fig. 12,
we illustrate the alteration of this effect by the tuning of
the surface polarization forces. One sees that the increase
of the membrane permittivity suppressing the image-charge
forces rises the first adsorption peak above the second one.
As a result, the first attractive pressure well becomes deeper
than the second well. This suggests that in concentrated salt

FIG. 11. (a) Loop-corrected pressure P and (b) the multivalent
cation component PG2 corresponding to the fifth term of Eq. (77) (left
vertical axis) superposed with the slit-averaged cation density (75)
(orange curve and right vertical axis) at various cation concentrations
ncb. The neutral membrane has dielectric permittivity εm = 2 and
dipole density σs± = 2.0 e/nm2. Salt concentration is n+b = 1.0 M.
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FIG. 12. (a) Loop-corrected pressure P and (b) the slit-averaged
cation density (75) at various membrane permittivities and cation
concentration ncb = 3 mM. The other parameters are the same as in
Fig. 11.

conditions, the alteration of the strength of the polarization
forces can be used to tune the equilibrium configuration of
the dipolar membrane via the variation of its permittivity by
membrane engineering techniques [47].

V. CONCLUSIONS

In this article, we investigated the interaction of zwitte-
rionic membranes, characterised by a finite surface dipole
layer, in contact with monovalent bathing salt solution with
dilute multivalent ions, governed by weak and strong coupling
electrostatics, respectively. In our model we assumed that the
distal part of the surface dipole is fully immersed in the elec-
trolyte solution, while the proximal resides at the dielectric
interface. The presence of salt and multivalent counterions
separate our analysis from the previous models based purely
on the electrostatics of dipoles at surfaces of dielectric discon-
tinuity, and with emerging image self-repulsion interactions
that depend crucially on the zwitterionic correlations within
each dipolar layer [27,28].

First, in Sec. III, we studied the membrane interactions
in the MF regime of pure monovalent salt solutions and low
zwitterionic charge densities. We found that the lowest-order
multipolar origin of the electrostatic field and the resulting
membrane interactions corresponds to the rescaled surface
charges. Moreover, we showed that the electrostatic potential
and the interaction pressure are finite only in the presence
of salt. Consequently, the net electrostatic force on the zwit-
terionic membrane exhibits a nonuniform salt dependence,
viz., the MF pressure is amplified by added dilute salt but
is reduced in the intermediate salt concentration regime due
to screening by the bulk salt. Finally, in the presence of an
additional monopolar surface charge, the competition between
the monopolar and dipolar components results in a complex
nonmonotonic dependence of the repulsive interaction pres-
sure on the membrane separation distance.

In Sec. III C 2, we extended the MF formalism to account
for the charge correlations induced by the surface polarization
forces, monovalent salt of large concentration, and multivalent
cations. Our extended formalism was based on a mixed treat-
ment of the ionic species; the weakly coupled monovalent salt
was considered within a WC loop expansion while the dilute
multivalent cations were handled with a fugacity expansion.
Section IV B was devoted to submolar salt concentrations

where we restricted ourselves to the lowest order of the
loop expansion corresponding to the dressed ion theory. For
overall neutral and dielectrically uniform membranes, we
showed that on addition of multivalent cations, the separate
coupling of these ions to the anions and cations of the surface
dipoles makes the pressure more repulsive at short separation
distances and more attractive at large distances. This results
in a like-charge membrane binding occurring via a first-
order phase transition characterized by a phase coexistence
between a membrane separation and a bound membrane state.
If the zwitterionic charges also possess an anionic monopolar
moment, then the monopolar field enhancing the cation ad-
sorption suppresses the short distance repulsive regime and
strengthens the membrane attraction. However, in the case of
low dielectric permittivity membranes, where the multivalent
cations experience repulsive image charge interactions, one
recovers the short distance repulsive branch of the interaction
pressure.

In Sec. IV C, we extended our study beyond the dressed
ion formalism and considered molar monovalent salt con-
centrations and high surface dipole densities where finite
loop corrections play a substantial role. In the case of pure
monovalent salt solutions, these loop corrections enhance the
competition between the repulsive MF-level and attractive
thermal vdW force components. This leads to a discontinu-
ous binding phase transition even without added multivalent
cations. Finally, we showed that on the addition of multivalent
cations into molar salt, the excess screening of the salt self-
energy by the adsorbed cations strongly lowers the mem-
brane interaction energy. As a result, at membrane separation
distances where the competition between the repulsive salt-
image and attractive salt-surface dipole interactions leads to
cation adsorption peaks, one observes sharp nonmonotonic
variation of the pressure profile between repulsive and attrac-
tive.

It is important to clarify whether the discreteness of the
lateral surface charge partition neglected in the continuum
formula (1) plays a relevant role in the electrostatic mem-
brane interactions. For planar interfaces, it is known that
the electric field correction δE associated with the discrete-
ness of the surface charge distribution is characterized by
an exponential decay of the form δE ∝ e−2πz/l where the
length l corresponds to the lateral spacing of the neighboring
dipolar charges with mean surface density σs = e/l2 [7]. For
the lowest finite membrane charges density σs = 0.3 e/nm2

considered in our article, the decay length has the upper
bound of l/(2π ) ≈ 3 Å. This indicates that for the membrane
separation distances considered herein, the continuous surface
charge model is a reasonable first-order approximation and we
do not expect this complication to qualitatively modify our
results and conclusions.

The present model can be generalized to include nonlocal
electrostatic interactions originating from the extended charge
structure of solvent molecules in biological liquids [31,32,48].
This improvement would allow to treat the solvent and mem-
brane dipoles on an equal footing, and also to consider the
effect of reduced charge and dielectric screening originating
from partial salt and solvent exclusion from the interfacial
zwitterionic charges. We also note that our numerous predic-
tions can be verified by surface force experiments [7] and/or
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more detailed simulations of zwitterionic membranes [35]. In
the latter case, however, one needs to be aware that in the case
of explicit water there are other effects that come into play,
apart from those considered here, viz., besides counterion
correlations, reorientation of hydration water modifies the
effective water dielectric constant that in turn affects the
electrostatic coupling. Nevertheless, a systematic comparison
of our formalism with relevant MC simulations will be needed
to determine the validity regime of the asymmetric treatment

of the mono- and multivalent ions according to their distinct
coupling strength.
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