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Statistics of adatom diffusion in a model of thin film growth
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We study the statistics of the number of executed hops of adatoms at the surface of films grown with the
Clarke-Vvedensky (CV) model in simple cubic lattices. The distributions of this number N are determined in
films with average thicknesses close to 50 and 100 monolayers for a broad range of values of the diffusion-to-
deposition ratio R and of the probability ε that lowers the diffusion coefficient for each lateral neighbor. The
mobility of subsurface atoms and the energy barriers for crossing step edges are neglected. Simulations show
that the adatoms execute uncorrelated diffusion during the time in which they move on the film surface. In a
low temperature regime, typically with Rε � 1, the attachment to lateral neighbors is almost irreversible, the
average number of hops scales as 〈N〉 ∼ R0.38±0.01, and the distribution of that number decays approximately
as exp [−(N/〈N〉)0.80±0.07]. Similar decay is observed in simulations of random walks in a plane with randomly
distributed absorbing traps and the estimated relation between 〈N〉 and the density of terrace steps is similar
to that observed in the trapping problem, which provides a conceptual explanation of that regime. As the
temperature increases, 〈N〉 crosses over to another regime when Rε3.0±0.3 ∼ 1, which indicates high mobility
of all adatoms at terrace borders. The distributions P(N ) change to simple exponential decays, due to the
constant probability for an adatom to become immobile after being covered by a new deposited layer. At higher
temperatures, the surfaces become very smooth and 〈N〉 ∼ Rε1.85±0.15, which is explained by an analogy with
submonolayer growth. Thus, the statistics of adatom hops on growing film surfaces is related to universal and
nonuniversal features of the growth model and with properties of trapping models if the hopping time is limited
by the landscape and not by the deposition of other layers.

DOI: 10.1103/PhysRevE.102.012805

I. INTRODUCTION

Modeling thin film deposition has been a topic of interest
for several decades due to the large number of technological
applications of those materials [1,2] and the connection with
nonequilibrium statistical mechanics [3,4]. For the deposition
of samples with large crystalline grains, an essential ingredi-
ent is the surface diffusion of adsorbed atoms (adatoms) or
molecules, which favors the aggregation at low energy sites.
For this reason, the models have to represent the interplay
between the atomic flux and the adatom diffusion described by
hops between sites of a crystal surface. Using kinetic Monte
Carlo (kMC) simulations and analytical methods, such collec-
tive diffusion models have already reproduced morphological
features of several materials and provided estimates of energy
barriers for microscopic processes (adsorption, diffusion, and
desorption) [5,6].

The simplest model of this type is that of Clarke and
Vvedensky (CV) [7,8], in which the temperature activated
diffusion of an adatom includes a terrace contribution and
a term additive over the lateral neighbors; in this version,
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adsorption barriers and barriers for crossing step edges are
neglected. The CV model was already used to determine
universal properties in submonolayer and multilayer growth
[6,9–11], was studied in the context of kinetic roughening
[12–18], and extended to molecular and colloidal particle film
deposition [19–21].

As a film grows, the surface diffusion of an adatom oc-
curs in a certain time interval between its adsorption and
its attachment at a final position of the crystal. This process
may be followed by subsurface or bulk diffusion, but this
feature is neglected in most deposition models so that the film
morphology is solely determined by the surface dynamics.
The possible fundamental and applied interest on the statistics
of the surface diffusion of individual adatoms motivates the
present work, in which the distributions of the number N
of hops executed by the surface adatoms is studied in the
CV model. From a theoretical point of view, this type of
investigation may help the description of the film morphology
in this widely studied model and may be useful for related
growth models. Moreover, with the advance in microscopy
techniques, particularly in scanning tunneling microscopy,
it is possible to monitor the movement of individual atoms
and molecules [22–30], so the statistics of adatom diffusion
lengths and diffusion times may be accessed.

Our numerical study of the distribution P(N ) and of the
average number of executed hops 〈N〉 distinguishes two
scaling regimes. These regimes correspond, respectively, to
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conditions in which aggregation to lateral neighbors is almost
irreversible (called the low temperature regime) and in which
the detachment of all adatoms from terrace edges is facile
(called the high temperature regime). The scaling properties
in the low temperature regime are explained by a connection
with the problem of random walkers in a plane with static ab-
sorbing traps [31–33], whose effective density in the film sur-
face can be related to nonuniversal (temperature-dependent)
properties of the height fluctuations [34]. The high temper-
ature regime is characterized by the smoothness of the film
surfaces and the scaling properties have relations with those
of submonolayer deposition [9–11]. These results show that
a combination of kinetic roughening concepts with scaling
properties of trapping processes may be used to understand
the statistics of the adatom hops in growing films, particularly
when their diffusion is limited by the film landscape and
not by the deposition. This may eventually help to determine
surface diffusion lengths in more realistic models, which can
be compared to experimental results.

The rest of this paper is organized as follows. In Sec. II,
we present the CV model, the simulation methods, and the
quantities to be measured. We also introduce a limited mo-
bility (LM) model with similar roughening properties, which
helps the interpretation of the numerical results. In Sec. III, we
show the results of kMC simulations for the average diffusion
length and for its distribution, including the derivation of a
scaling relation to connect low and high temperature data. The
results for the LM model are also presented. In Sec. IV, we
use scaling approaches and results of other models to explain
universal and nonuniversal scaling properties of P(N ). In
Sec. V, a summary of the results and conclusions is presented.

II. MODEL AND METHODS

A. CV model

The CV model is defined in a simple cubic lattice in
which the edge of a site is the unit length. The initially flat
substrate is located at z = 0, with lateral size L and periodic
boundary conditions in the x and y directions. Solid-on-solid
conditions are considered, so no overhangs are allowed at the
film surface. A column of the deposit is defined as the set
of adatoms with the same (x, y) position; the height variable
h(x, y) is the maximal height of an adatom in that column.

The deposition occurs with a collimated flux of F atoms
per substrate site per unit time. In each deposition event,
a column (x, y) is randomly chosen and the new atom is
adsorbed as it lands at the top of that column.

Surface diffusion is simultaneously modeled by hops of the
adatoms at the top of the L2 columns, with rates that depend on
their local neighborhoods. Only this set of adatoms is assumed
to be mobile. The hopping rate of an adatom in the middle of
a terrace, where it has no lateral nearest neighbor (NN), is

D0 = ν exp (−Es/kBT ), (1)

where ν is a frequency, Es is an activation energy, and T is the
temperature. If an adatom has n lateral NNs, its hopping rate
is

D = D0ε
n, ε ≡ exp (−Eb/kBT ), (2)

where Eb is the absolute value of a bond energy. Thus, ε may
be interpreted as a detachment probability per lateral neighbor.
The direction of each hop is randomly chosen among the four
NN columns (±x, ±y) and the adatom moves to the top of
that column, independently of the height differences. Figure 1
illustrates the possible hops of some adatoms.

During the growth, the number of deposited layers is de-
fined as the average number of deposited atoms per substrate
site and equals Ft , where t is the growth time. It corresponds
to an effective deposited mass, but does not mean that the film
grows layer by layer due to the fluctuations in the flux, even
in the presence of relaxation by diffusion.

In the original CV model [8], ν = 2kBT/h, where h is
the Planck’s constant, as predicted by transition state the-
ory. However, it is more frequent that a constant value ν =
1012 s−1 is used in simulation and analytical works [6], and
so this value is used here. The values of Es and Eb are
determined by material properties, while T and F depend
on the deposition conditions. A diffusion-to-deposition ratio,
which is defined as

R ≡ D0

F
= ν

F
exp (−Es/kBT ), (3)

is the most important quantity to describe the interplay be-
tween temperature and flux. It may be interpreted as the
average number of hops of an adatom on a terrace during the
average time 1/F of deposition of one atomic layer. In the
study of scaling properties of the model, R and ε are taken as
the independent parameters.

This version of the CV model neglects energy barriers for
adatoms to cross step edges (which significantly affect the
morphology of real films). Although the effects of step edge
barriers make the simulations more realistic, the main reason
for neglecting them here is to avoid considering details that are
better introduced in system-specific scenarios. Here we also
consider the same hopping rates on the substrate and on other
layers, which is suitable to model homoepitaxial growth. In
heteroepitaxial growth, if the energetics on the substrate and
in other layers is not very different, similar results may be
obtained after the deposition of several layers.

B. Simulation parameters and quantities of interest

Simulations are performed on lattices with L = 512 con-
sidering F = 10−2 s−1, i.e., a flux of 0.01 monolayers per
second, which gives ν/F = 1014. The values of Es, Eb, and
the temperature ranges of the parameter sets labeled from A to
I are listed in Table I, with the corresponding ranges of R and
ε. For each parameter set, 50 different deposits were grown.

If the ratio Es/Eb is constant, the same pairs of parameters
(R, ε) can be reached by varying the temperature. For this
reason, the values of Es in Table I were systematically changed
between 0.2 and 1.0 eV, but this was not the case for Eb.
The temperature ranges considered here are limited for two
reasons. First, we restrict our analysis to cases with an average
number of adatom hops near 10 or larger, i.e., cases in which
the adatoms do not have their average motion restricted to a
close neighborhood of the incidence point. Second, we ensure
that the average diffusion length is much smaller than the
lateral size L, which avoids finite size effects.
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(a) (b)

FIG. 1. Illustration adatom hops considering a small section of a system with L = 512. (a) The incidence of a new atom and the directions
of hops of five adatoms are indicated by arrows. (b) The configuration after the adsorption of the new atom and the five hops. The inert substrate
is shown in gray and the color of each adatom indicates the current number of lateral neighbors: n = 0, blue; n = 1, yellow; n = 2, magenta;
n = 3, green; n = 4, red.

For each parameter set, we measure the number of hops N
of each adatom deposited in two time intervals, 45 � Ft �
50 and 95 � Ft � 100, which are hereafter denoted as T50
and T100, respectively. The study in different time intervals is
important to check for possible effects of the deposition time
on the statistics of the number N .

For each atom deposited in T50, we compute the total
number of hops N executed between its adsorption and a
final monitoring time Ft � 65; at this time, an atom deposited
up to Ft � 50 is certainly buried by other layers and cannot
execute surface diffusion anymore, so monitoring at longer
times is not necessary. This atom may have stopped moving
after attachment to lateral neighbors or in the middle of a
terrace, but these different possibilities are not distinguished
in our statistics. The statistics in the interval T100 is obtained
by monitoring the motion of the corresponding adatoms until
Ft � 115. With this method, each time interval gives ∼6.5 ×
107 estimates of N , so we obtain accurate distributions P(N )
and accurate averages.

In the intervals T50 and T100, we also calculated the
surface roughness, defined as the rms fluctuation of the height
distribution

W ≡ 〈[(h − h)
2
]〉

1/2

, (4)

where the overbars indicate spatial averages and the angular
brackets indicate configurational averages. The roughness is

useful to discuss the mechanisms involved in the scaling of
P(N ), particularly at high temperatures.

We calculated P(N ) only in the intervals T50 and T100
because the algorithm for growing films in large substrates
is very time consuming for R � 106. If we extended the
simulations to longer times, we would have a proportionally
smaller number of configurations and the accuracy of the
average quantities would be poorer. Moreover, measurements
at shorter times were not performed to avoid transient effects
in the early stages of multilayer growth.

C. Simulation method

The simulations are implemented with the algorithm de-
tailed described in Ref. [35], which we also used in previous
works [16,36,37].

The L2 surface atoms have their positions (x, y) grouped
into five lists Xn (n = 0, . . . , 4) according to the number n of
atoms at NN sites at the same height, i.e. lateral neighbors.
The position of a surface atom in a list Xn is stored in an
inverted-list matrix M1(x, y). In addition, a matrix H (x, y)
stores the column heights, and is used for rapid access to the
configuration of the neighborhood of a mobile atom.

At each step of the simulation, the rates of all possible
events (namely, the deposition of a new atom and hop of
one of the L2 surface atoms) are calculated and their sum
is denoted as �. The probability of each event is the ratio

TABLE I. Values of the activation and bond energies, temperature ranges, and the corresponding ranges of R and ε considered in this work.

Sets Es (eV) Eb (eV) T (K) R ε

A 0.2 0.2 [115,144] [1.7 × 105, 1.0 × 107] [1.7 × 10−9, 1.0 × 10−7]
B 0.25 0.2 [139,180] [8.6 × 104, 1.00 × 107] [5.6 × 10−8, 2.51 × 10−6]
C 0.3 0.2 [160,216] [3.6 × 104, 1.0 × 107] [5.0 × 10−7, 2.2 × 10−5]
D 0.4 0.2 [225,289] [1.1 × 105, 1.1 × 107] [3.3 × 10−5, 3.3 × 10−4]
E 0.4 0.05 [190,270] [2.5 × 103, 3.4 × 106] [4.7 × 10−2, 0.11]
F 0.4 0.08 [204,253] [1.3 × 104, 1.1 × 106] [1.1 × 10−2, 2.5 × 10−2]
G 0.5 0.2 [272,345] [5.4 × 104, 5.0 × 106] [2.0 × 10−4, 1.2 × 10−3]
H 0.6 0.11 [300,480] [8.3 × 103, 5.0 × 107] [1.4 × 10−2, 7.0 × 10−2]
I 1 0.3 [560,720] [1.0 × 105, 1.0 × 107] [2.0 × 10−3, 7.9 × 10−3]
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between its rate and �. Since all atoms in a list Xn have the
same hopping rate, the probability of that list is the product of
the number of atoms in the list and the hopping rate divided
by �. The event to be executed is then chosen according to
those probabilities. In the case of choosing a list, one of its
atoms is randomly chosen to hop, in a direction which is also
randomly chosen among four possibilities (±x, ±y). After this
simulation step, the time is incremented by 1/� minus the
natural logarithm of a randomly chosen number in the interval
(0, 1]; the last contribution has a very small effect on the total
deposition time.

D. Limited mobility model

The LM model studied here is an extension of the models
proposed in Ref. [36] to approximate the CV model and in
Refs. [38,39] to simulate electrodeposition. In this type of
model, the surface diffusion of each adatom is executed before
the next atom is deposited. The lattice geometry is the same
described in Sec. II A.

The adsorption of each atom occurs at the top of a ran-
domly chosen column. The adatom diffusion is represented as
follows.

(i) After the incidence, it executes G attempts to hop to
randomly chosen NN columns. The probability of performing
the hop is Phop = Pn, where n is the number of lateral neigh-
bors; with probability 1 − Phop, the hop attempt is rejected.
Thus, P is a probability of detachment per lateral NN.

(ii) If the adatom detaches from one or more lateral NNs
before executing the G attempts, then it is allowed to execute a
new sequence of G hop attempts, following the same rules of
(i). In other words, the counter of the number of hop attempts
is reset after each detachment from lateral neighbors.

(iii) If the adatom executed G hop attempts and the condi-
tion in (ii) was not satisfied, then it permanently aggregates at
the current position. This may happen when the adatom is in
the middle of a terrace or when it has lateral NNs.

We performed simulations in lattices with L = 1024 for
several values of G between 10 and 60, and for P = 0.01
and 0.1. For each parameter set, 100 deposits with a maximal
average thickness of 100 layers were grown. The distributions
PLM(N ) of the numbers of executed hops were obtained in
the time intervals T50 and T100, as defined in Sec. II B. An
adatom may execute an arbitrarily large number of hops due
to the resetting of the number of attempts.

III. NUMERICAL RESULTS

A. Confirmation of normal adatom diffusion

In some of our simulations, we measured the square dis-
placement in the horizontal directions, r2

H ≡ (�x)2 + (�y)2,
of each adatom in the interval T100. For each N , we calculated
the mean square displacement 〈r2

H 〉N , i.e., the mean square
displacement of the adatoms that executed exactly N hops.
〈r2

H 〉N is the square diffusion length of this set of adatoms
measured in the substrate directions.

Figure 2 shows the ratio 〈r2
H 〉N/N as a function of N for

several parameter sets and several temperatures in each of
them. For small or large values of N , that ratio is very close
to 1 with an accuracy better than 0.02%, which is consistent
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FIG. 2. Ratio 〈r2
H 〉N/N as a function of N for the sets of parame-

ters, as shown in Table I.

with the absence of correlations in subsequent adatom hops.
This is expected from the CV model rules because the energy
barriers for the hops depend on the local neighborhoods but
not on the directions of the hop attempts.

Due to the normal diffusion, the distributions of displace-
ments as a function of N are Gaussian when N � 1. They
may be obtained in terms of the model parameters using the
the distributions of the number of hops N calculated below.

B. Average number of hops at low temperatures

This is typically the case of Rε � 1, in which an adatom
with one or more lateral NNs has a small probability to move
during the time 1/F of deposition of a new atomic layer. In
these conditions, the attachment of the adatom to lateral NNs
is expected to be almost irreversible. The average number of
hops 〈N〉 then depends only on the parameter R, similarly to
the case ε = 0; see Ref. [34].

In Fig. 3(a), we plot 〈N〉 as a function of R in T50,
considering three parameter sets and temperatures that give
Rε � 0.2. In Fig. 3(b), we plot the data obtained in T100 with
the same conditions. Both plots suggest a power-law relation

〈N〉 ∼ Ra, (5)

and linear fits of their data give a = 0.38 ± 0.01.

FIG. 3. Scaling of the average number of hops at low tempera-
tures for the time intervals (a) T50 and (b) T100. Dashed lines have
slope 0.38. The parameter sets are presented in Table I.

012805-4



STATISTICS OF ADATOM DIFFUSION IN A MODEL OF … PHYSICAL REVIEW E 102, 012805 (2020)

C. Average number of hops at intermediate
or high temperatures

High temperature conditions are typically the cases with
R > 106 and ε > 10−2, in which simulations indicate that
〈N〉 depends on both R and ε. Since the surface mobility is
high, the hopping of the adatom is expected to be limited
by the time 1/F = R/D0 necessary for the deposition of a
new layer (which buries the previous layer), instead of being
limited by attachment to NNs. Indeed, our simulations with
approximately constant ε indicate that 〈N〉 is approximately
proportional to R. This leads to the proposal

〈N〉 ∼ Rεb (6)

at sufficiently high temperatures, where b is an exponent to be
determined numerically.

However, it is very difficult to fit Eq. (6) because the
number of data points with large R is small (the simulations
are very time consuming) and it is difficult to anticipate a
reliable criterion for the high temperature limit. As an alterna-
tive, we look for a scaling relation that incorporates low and
high temperature behaviors and the crossover in intermediate
temperatures, in which a larger number of data points may be
available.

A scaling relation of general validity for 〈N〉 has to be
consistent with Eqs. (5) and (6). The consistency with Eq. (6)
suggests the form

〈N〉 ∼ Rεb f (x), x ≡ Rεc, (7)

where f is a function that converges to a constant as x → ∞
(i.e., very high temperatures), and c is another exponent to be
determined numerically. The consistency with Eq. (5) leads to
the exponent relation

c = b

1 − a
. (8)

Since the value a = 0.38 is known, Eq. (8) implies that the
values of b and c are not independent, and we have to search
only for the numerical estimate of one of them.

Following Eq. (7), we plotted 〈N〉/(Rεb) as a function of
the scaling variable x for several values of the exponent b; in
each case, c obtained from Eq. (8). Good collapse of our data
is obtained for 1.7 � b � 2, which corresponds to c = 3.0 ±
0.3. Figures 4(a) and 4(b) show scaling plots using the central
estimates of these exponents (b = 1.85, c = 3.0) in T50 and
T100, respectively. Those plots span more than 20 decades of
the abscissa x and more than 10 decades of 〈N〉/(Rεb). The
insets of Figs. 4(a) and 4(b) show magnified zooms of some
regions of the main plots, which permits the observation of
uncertainties in the data.

In Figs. 4(a) and 4(b), the data points with Rε3 � 102 seem
to converge to a constant value. Thus, this relation numerically
defines the high temperature regime. The small number of
data points in those conditions explains the difficulty to fit
Eq. (6). To observe the asymptotic behavior with constant
〈N〉/(Rεb), several simulations in much larger values of Rε3

would be necessary.
The results presented in this section and in the previous one

also show that there is no significant difference in the values of
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FIG. 4. Scaling plot of the average number of adatom hops using
b = 1.85 and c = 3.0 for the time intervals (a) T50 and (b) T100.
The uncertainties are smaller than the size of the data points. The
parameter sets are in Table I. The insets show magnified zooms near
the crossover regions.

〈N〉 obtained in the time intervals T50 and T100, and, within
error bars, no difference in scaling exponents.

D. Distributions of numbers of hops

When the distributions have universal shapes, they can be
written in the form

P(N ) = 1

〈N〉g

(
N

〈N〉
)

, (9)

where g is a scaling function. For instance, a similar form was
already shown to fit roughness distributions of growth models
[40]. Here we check this ansatz separately for low and for
intermediate to high temperatures.

Figure 5 shows the scaled distributions for three parameter
sets in the low temperature regime in the interval T50. The
upward curvatures of the plots suggest stretched exponential
tails, in the form exp [−(N/〈N〉)γ ] with γ < 1. This is con-
firmed in the inset of Fig. 5 using γ = 0.8; other choices
of this exponent also lead to good data fits and an estimate
γ = 0.80 ± 0.07.

Figure 6 shows two scaled distributions in the high temper-
ature regime defined in Sec. III C, i.e., Rε3 � 1, in the interval
T50. In these cases, the tails can be fit as simple exponential
decays. We stress that there is no difference between the
results presented for T50 and T100.

E. Results for the LM model

In Fig. 7(a), we show the roughness evolution of the
LM and CV models with different parameters and a suitable
scaling of the growth time with their parameters. The rescaling
of the CV data is similar to that of Ref. [16]; the rescaling by
G5/2 in the LM model is based on the results of Ref. [34],
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FIG. 5. Scaled distributions in the low temperature regime, for
the parameter sets and temperatures indicated in the plot. The inset
shows the same results with the variable (N/〈N〉)0.8 in the abscissa
(the dashed line is a guide to the eye).

and the product GP is incorporated with a role similar to that
of ε. The reasonable data collapse in Fig. 7(a), with slopes
near 0.2 for all parameter sets, confirms that both models
have the same roughness scaling. This rougheness scaling is
described by the Villain-Lai-Das Sarma (VLDS) equation in
the hydrodynamic limit [41,42].

Figure 7(b) shows the distributions of numbers of executed
hops in the LM model in the time intervals T50 and T100,
for G = 60 and P = 0.01; no rescale was used in these plots.
In these films, the number of detachments from lateral NNs
per atom was near 0.1, which means that such detachments
were not frequent. The distributions have peaks at N = G,
which originate from adatoms that executed all the initial
G hops; most of them probably moved on terraces all the
time. For N < G, the distributions seem to have stretched
exponential forms, which is confirmed in the inset of Fig. 7(b)
by the rescaling with the abscissa (N/〈N〉)0.75. The main
contribution to this part of the distribution is from adatoms
that stopped moving after the first attachment to a NN. For
N > G, Fig. 7(b) suggests a simple exponential decay; this

FIG. 6. Scaled distributions for two parameter sets and tempera-
tures, in the high temperature regime. The dashed line is a guide to
the eye.

FIG. 7. (a) Roughness as a function of scaled times in the CV
and the LM model for the parameters indicated in the plot. (b) Distri-
butions of the number of executed hops in the LM model for G = 60
and ε = 0.01. The inset shows a rescaling of the data for N < G with
(N/〈N〉)0.75 in the abscissa. The dashed lines in the main plot and in
the inset are guides to the eye.

part of the distribution corresponds to adatoms that detached
at least once from lateral NNs.

Since these distributions reproduce features of the low and
high temperature regimes of the CV model, we understand
that those features are not particular of that model and that
they are related to the processes of lateral attachment and
detachment.

IV. SCALING APPROACH

A. Trapping of random walkers and the low temperature regime

The results for the LM model indicate that the adatoms
that execute N < G hops are those that move on terraces
and permanently stick when they reach the terrace borders
(terrace steps), at the same height or hopping to a lower
height. Thus, those borders act almost as perfect traps. We
propose that the shape of the distributions are related to this
trapping phenomenon. Since the distributions in the CV model
at low temperatures have similar upward curvature, are fit by
similar stretched exponentials, and the CV roughening is the
same as the LM model, we expect that the same trapping
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FIG. 8. Scaled distributions of the number of executed hops
in the random trap model with three different densities. P1 is the
probability of survival after a single hop.

phenomenon occurs. The main difference is that, in the CV
model, the landscape in which the adatom moves (including
terrace borders) dynamically evolves, while in the LM model
it is static.

For these reasons, here we search for a possible relation
with a much simpler problem: the trapping of a random walker
on a surface with a random distribution of static traps with
density ρ. Approximate [33] or exact [31] solutions of this
problem show that, at very long times, the probability that
the walker survives without being trapped is an exponential
of the variable ρDW t1/2, where DW is the walker diffusion co-
efficient. However, previous simulations in large system sizes
with trap density 0.5 could not fit this theoretical prediction;
instead, they showed stretched exponential distributions with
exponents larger than 1/2 [32].

Here we performed our own simulations with 109 random
walks in very large square lattices and trap densities from
0.001 to 0.1. We measured the distributions Pt (Nt ) of the
number of executed hops Nt , where the subindex t refers to
the trapping problem. In Fig. 8, we show an excellent data
collapse of the distributions after a suitable rescaling of ρ and
Nt . Accounting for the different rescalings that also produce a
good collapse of those distributions, we obtain

Pt (Nt ) ∼ exp [−(Nt/〈Nt 〉)γt ], γt = 0.75 ± 0.05, (10)

where

〈Nt 〉 ∼ ρ−λ, λ = 1.10 ± 0.02. (11)

This is an effective (not asymptotic) scaling, but it is a good
approximation from Nt ∼ 1 to Nt ∼ 104.

The exponent γ obtained in the distributions of the CV
model at low temperatures is very close to γt in the trapping
model. Although the distribution of the “trapping terrace
borders” in the CV model is spatially correlated, we believe
that their fluctuations reduce the effect of these correlations
from the point of view of the atoms that diffuse on the terraces.

To provide additional support to this interpretation, we
analyze the effect of the trap density. Simulations of the CV
model with ε = 0 (which is representative of low temper-
atures) show the formation of terraces whose average area

scales as A ∼ R0.6 [34]. Assuming that these terraces have
relatively compact borders, the density of surface steps ρs

is expected to scale approximately as the perimeter-to-area
ratio, i.e., ρs ∼ R−0.3. The average number of hops in the CV
model, which is given in Eq. (5), can be written in terms of
this density as 〈N〉 ∼ ρ−0.38/0.3

s = ρ−1.3
s . The exponent 1.3 in

this relation is not very distant from the effective exponent
1.1 of the trapping model [Eq. (11)]. The discrepancy may
be a consequence of not accounting for the disorder in the
terrace borders, which leads to a different perimeter-to-area
ratio, and for the approximation underlying the assumption of
randomness in the trap distribution.

In the above reasoning, the kinetic roughening of the CV
model plays a role in the scaling of the average area because
the exponent 0.6 stands for the ratio 2/z, where z is the
dynamical exponent of the VLDS class [41,42]. However,
R is a nonuniversal parameter in that context. Consequently,
the above results establish a connection between universal
and nonuniversal features of the CV model and the two-
dimensional random trapping problem.

B. Smooth surfaces in intermediate to high temperatures

In the scaling plots of Figs. 4(a) and 4(b), deviations from
the linear decay (low temperature behavior) are observed
for Rε3 � 10−3. This is the region analyzed here, which we
generically term intermediate to high temperatures.

The surface roughness in this regime is always smaller
than 1 in T100 and T50, which means that the local height
is typically equal to the average or fluctuates one unit above
or below the average. Figures 9(a) to 9(c) show the top views
of three surfaces after the deposition of 100 layers, which
confirm that they are very smooth.

At very high temperatures, the average number of hops
scales as Eq. (6) with b close to 2. The observation of Fig. 9(c)
shows that the corresponding surfaces have very large ter-
races. This morphology resembles that of islands in high
temperature submonolayer growth, i.e., with an incomplete
layer being formed on a flat surface of the same material.

For intermediate coverages (0.05–0.30), the submonolay-
ers produced by the CV model in those conditions have large
islands with a rounded shape, which are surrounded by a free
adatom gas with density ρ f ∼ ε2 [11]. These free adatoms
have no NN and can rapidly move in the region between the
islands; see, e.g., the illustrations in Ref. [11]. That value
of the density is related to a balance between the random
attachment of the free adatoms to the islands and a preferential
detachment at kink sites (n = 2) of the island borders.

In those high temperature submonolayers or in the high
temperature films, the adatoms at island borders are more
tightly bound, so the average number of hops in a given time
interval is dominated by those free adatoms. In a time interval
δtF = 1/F , a new layer of adatoms covers the relatively
smooth surface, so this is the time in which a given set of
free adatoms is expected to move with coefficient D0. Thus,
the average number of hops is 〈N〉 ∼ ρ f D0δtF = Rε2, which
is in good agreement with our numerical estimate for the
exponent b.

These arguments also suggest that the adatom diffusion is
limited by the deposition of new atomic layers. Since there is a

012805-7



LUIS, CARRASCO, DE ASSIS, AND REIS PHYSICAL REVIEW E 102, 012805 (2020)

0

100

200

300

400

500

100 200 300 400 500

97

98

99

100

101

102

(a)

y

x

0

100

200

300

400

500

100 200 300 400 500

98

99

100

101

102

(b)

y

x

0

100

200

300

400

500

100 200 300 400 500

98

99

100

101

102

(c)
y

x

FIG. 9. Top view of films grown with the parameter sets (a) H (T = 340 K), (b) I (T = 560 K), and (c) F (T = 253 K).

random atomic flux, an adatom that executed a given number
of hops has a constant probability of not being able to execute
an additional hop. This explains the simple exponential decay
of P(N ) in intermediate to high temperatures.

Our numerical results also predict that the crossover from
the low to the high temperature regime occurs when Rε3 ∼ 1.
In the characteristic time δtF , we have Rε3 = D0ε

3δtF , which
is the probability of an adatom to detach from a straight terrace
step where it has three lateral NNs. Consequently, we interpret
the crossover as the condition in which detachment of adatoms
from straight terrace steps begins to be relevant (of course the
detachment is much more frequent from angular parts of those
steps, in which the number of NNs is 1 or 2).

As a final note, the above-mentioned results of Ref. [11]
account for island growth control by attachment and detach-
ment of adatoms from their borders, even in the conditions of
low flux. The dominant role of the attachment or detachment
kinetics is also observed in studies of postdeposition coarsen-
ing in the CV model, in which other processes such as island
diffusion and coalescence may be relevant only at early times
after the deposition has stopped [43,44].

V. CONCLUSION

We studied the scaling properties of the distribution of the
number of hops of adatoms at the surface of growing films in
the Clarke-Vvedensky model in a simple cubic lattice. Various
sets of energy parameters and temperatures were considered,
with no barrier for crossing step edges. We distinguish low

and high temperature regimes, which are, respectively, char-
acterized by irreversible adatom aggregation to a single lateral
neighbor and by possible adatom detachment from terrace
borders with up to three lateral neighbors.

At low temperatures, the scaled distributions show a
stretched exponential decay and the average number of hops
scales with the diffusion-to-deposition ratio R, but does not
depend on the detachment probability ε from lateral neigh-
bors. The stretched exponential is interpreted in terms of a
trapping of the diffusing adatoms by the borders of the terraces
in which they begin to move after adsorption. Simulations of
a two-dimensional trapping model show a similar stretched
exponential decay of the survival probability (which is an
effective scaling valid up to ∼104 hops). They also show that
the effect of the trap density is similar to the effect of the
density of terrace steps on the average number of hops of the
CV adatoms. At high temperatures, the scaled distributions
have a simple exponential decay, which is related to the
randomness of the flux that eventually covers the previous
atomic layer. The average number of hops is dominated by
freely moving atoms in a relatively smooth surface, and the
scaling with R and ε is explained by results of submonolayer
growth.

These results show that kinetic roughening theory and
nonequilibrium reaction-diffusion problems, such as the trap-
ping models, may be useful to describe the statistics of adatom
hops in a film growth model. This is particularly important
when the film landscape is responsible for constraining the
adatom diffusion. Here, this was the case of low temperatures,
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but in more complex growth models with different energy
barriers, the film surfaces may be rough or have patterns at
higher temperatures. Our results may also be important for
the design of novel models of thin film deposition that mimic
the CV model or its variants, and which have been studied by
several authors in recent years [18,36,45–49].

From the distributions of the numbers of hops and from
the type of diffusion executed by the adatoms (normal or
anomalous), it is possible to obtain distributions of diffusion
lengths and average values of those lengths. With the advance
in imaging techniques, some of these results may be tested
experimentally, despite the difficulties that are expected to

monitor the diffusion of an atom while a film of the same
material grows.
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