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Filling, depinning, unbinding: Three adsorption regimes for nanocorrugated substrates

Alexandr Malijevský
Department of Physical Chemistry, University of Chemical Technology Prague, Praha 6, 166 28, Czech Republic

and Department of Molecular and Mesoscopic Modelling, ICPF of the Czech Academy Sciences, Prague 165 02, Czech Republic

(Received 11 May 2020; accepted 2 July 2020; published 17 July 2020)

We study adsorption at periodically corrugated substrates formed by scoring rectangular grooves into a planar
solid wall which interacts with the fluid via long-range (dispersion) forces. The grooves are assumed to be
macroscopically long but their depth, width, and separations can all be molecularly small. We show that the
entire adsorption process can be divided into three parts consisting of (i) filling the grooves by a capillary liquid;
(ii) depinning of the liquid-gas interface from the wall edges; and (iii) unbinding of the interface from the top
of the wall, which is accompanied by a rapid but continuous flattening of its shape. Using a nonlocal density
functional theory and mesoscopic interfacial models all the regimes are discussed in some detail to reveal
the complexity of the entire process and subtle aspects that affect its behavior. In particular, it is shown that
the nature of the depinning phenomenon is governed by the width of the wall pillars (separating grooves),
while the width of the grooves only controls the location of the depinning first-order transition, if present.
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I. INTRODUCTION

Wetting phenomena, i.e., intrusion of a liquid phase at a
wall-gas interface, have been a subject of enormous scrutiny,
both theoretical and experimental, over the past few decades.
In particular, for the simplest case of perfectly flat and chem-
ically homogenous substrates there exist several comprehen-
sive reviews [1–6] that summarize in detail the most funda-
mental aspects of wetting transitions. Theoretical description
of these phenomena relies on various approaches of different
length scales. On a macroscopic level, the crucial quantity
is Young’s contact angle θ of a macroscopic liquid droplet
sitting on a substrate. A positive value of θ corresponds to
partial wetting states, while θ = 0 characterizes completely
wet substrates and temperature Tw, at which the contact angle
vanishes, is called the wetting temperature. In a more micro-
scopic approach, wetting states can be described in terms of
a mean thickness � of an adsorbed liquid film, such that its
value is microscopic below Tw and macroscopic (effectively
infinite) above Tw. This mesoscopic approach allows to study
the nature of the wetting transitions at Tw, which can be
first-order or continuous, by inspecting the competition of
the fluid-fluid and wall-fluid microscopic forces. Furthermore,
it also enables to describe other related phenomena such
as complete wetting, which corresponds to a divergence of
� along an isotherm T > Tw, as the chemical potential μ

approaches its saturation value μsat from below:

� ∼ |δμ|−βco , as δμ → 0−. (1)

Here δμ ≡ μ − μsat and βco is the (nonuniversal) critical
exponent characterizing the divergence of the liquid film
height; specifically, for systems where the interaction at
long distances is dominated by nonretarded dispersion forces
βco = 1/3.

More recently, attention has been focused on struc-
tured substrates, in which case a number of additional

interfacial phenomena occur [7–13]. For example, for sinu-
soidally shaped walls the complete wetting may be preceded
by an unbending transition, characterized by an abrupt flatten-
ing of the liquid-gas interface from the state at which the inter-
face follows the shape of the wall, and which occurs provided
the wall amplitude exceeds a certain critical value [14–19].
This behavior is further enriched if complex fluids, such as
nematic liquid crystals, are considered [20–23], for which a
sequence of re-entrant transitions has been observed. All these
studies rely mainly on an analysis of interfacial Hamiltonian
models that prove to be extremely helpful in a description
of wetting phenomena on structureless substrates. In a more
microscopic manner, wetting properties of nanoscopically
corrugated substrates have been investigated using molecular
based approaches, such as molecular dynamics or a classical
density functional theory (DFT) [24–31]. Recently, complete
wetting (T > Tw) of microscopically corrugated substrates
formed of a one-dimensional array of rectangular grooves,
each of width Lg and depth D, and separated by pillars of
width Lp, has been studied using DFT [28]; it has been shown
that in the particular case of L ≡ Lg = Lp, there exist two
molecularly small values of the corrugation parameter L, L−

c ,
and L+

c , such that the system exhibits depinning transition
within the interval of L−

c < L < L+
c at which the liquid-gas

interface detaches from the edges of the pillars and its height
jumps by a finite value. The depinning phase boundary ter-
minates at the critical value of the corrugation parameter L+

c ,
such that the adsorption on the corrugated substrate becomes
similar to that of a planar wall for L > L+

c . The other limit
of the phase transition L−

c corresponds to the minimal value
of L at which the depinning transition still exists and which
occurs right at saturation, μ = μsat. Therefore, below L−

c the
interface remains bound to the wall even at saturation which
prevents complete wetting of the wall.

The purpose of this work is to extend the previous
study [28] by generalizing the substrate model such that the
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parameters Lg and Lp are now independent, which, in par-
ticular, allows one to obtain a deeper understanding of the
mechanism of the depinning transition. From a broader per-
spective, however, we will show that the entire adsorption
process exhibits a number of additional interfacial phenomena
and surface phase transitions, and that it can be divided into
three parts. The first regime corresponds to filling of the
grooves with a dense, liquidlike phase, a process which has
recently attracted some attention [12,24,32–45]. For a single
macroscopically deep groove (or a capped capillary), D →
∞, the recent studies have shown that the filling is a first-order
transition for temperatures below Tw but continuous (critical)
otherwise with a critical exponent βg = 1/4 characterizing
the rate of the groove filling for systems including dispersion
forces. In both cases, the transition occurs at the chemical
potential μcc(Lg) corresponding to the location of the capillary
condensation in an infinite slit pore of width Lg.

However, for the current model the process of filling will
be shown to somewhat deviate from these predictions in two
aspects. First, the grooves depth D considered here is not
assumed to be generally macroscopic; for microscopic depths,
the finite distance between the bottom and top of the grooves
brings about a competition between two effective repulsive
forces pushing the liquid-gas interface away from both ends
of the grooves in a close analogy to condensation in slit
pores formed of antisymmetric walls (contact angles 0 and π )
[46–51]. This analogy suggests that for temperatures higher
than but not too far from Tw, there exists such a groove
width D∗(T ) with T ∗(D) → T +

w as D → ∞, for which the
groove filling undergoes first-order localization-delocalization
transition at μcc(Lg). In this case, the low-adsorption state
jumps to a state at which the grooves are filled with liquid
to about a midheight of the grooves. Second, in contrast to the
single groove model, the strength of the potentials exerted by
the bottom and side walls inside each groove is now different,
since the side walls are no more semi-infinite. Consequently,
the effective Hamaker constant of the side walls is now lower
than that of the bottom wall which means that for the current
model the filling process is expected to behave similarly
to that in chemically heterogenous grooves. Although this
should not affect the order of the filling transition, the previous
study on heterogenous grooves [52] suggests that the singular
behavior of the critical filling transition for the current model
will differ from that in an isolated groove.

As the second adsorption regime one can identify the pro-
cess during which the liquid columns filling the grooves get
connected. It will be shown that the condition under which the
process is continuous or discontinuous is determined solely by
the pillar width Lp, while the groove width Lg only affects the
location μdep of the depinning transition (if present), such that
the dependence μdep(Lg) is nonmonotonic.

The final adsorption regime corresponds to an unbinding of
the liquid-gas interface from the top of the wall. The process
is similar to complete wetting of a planar wall and obeys
the same power law for the interface height in the limit of
μ → μsat. However, the shape of the interface which reflects
the lateral inhomogeneity of the wall is now periodically
undulated with amplitude a, which will be shown to decrease
continuously as the saturation is approached, such that a ∼
|δμ|4/3, as δμ → 0.

The rest of the paper is organized as follows. In Sec. II
we set the microscopic model by defining the fluid-fluid and
wall-fluid interactions, and formulate the DFT model based on
Rosenfeld’s fundamental measure theory. The numerical DFT
results and analytic predictions of mesoscopic models are
presented in Sec. III which is divided into three subsections,
each devoted to one of the three adsorption regimes. Finally,
summary of the work, the discussion of the main results and
outlook for extensions of the current study are subjects of
Sec. IV.

II. MICROSCOPIC MODEL

Classical density functional theory [53] is a statistical me-
chanical tool for a description of structure, thermodynamics,
and phase behavior of inhomogeneous molecular fluids. The
theory is based on a construction of a free-energy functional
F [ρ] of one-body fluid density ρ(r) which, except for some
very particular cases, requires approximations. Specifically,
for simple fluids one typically follows the perturbative scheme
in the spirit of the van der Waals theory:

F [ρ] = Fid[ρ] + Fhs[ρ] + Fatt[ρ], (2)

which splits the functional into the ideal gas, Fid, repulsive
hard-sphere, Fhs, and attractive, Fatt , contributions.

The ideal gas part is known exactly and is given by

βFid[ρ] =
∫

drρ(r){ln[ρ(r)�3] − 1}, (3)

where � is the thermal de Broglie wavelength and β = 1/kBT
is the inverse temperature.

The repulsive interaction of fluid molecules is mapped on
the hard-sphere potential and its free-energy contribution is
approximated using Rosenfeld’s fundamental measure theory
[54],

Fhs[ρ] = 1

β

∫
dr 	({nα}), (4)

where {nα} denotes a set of six weighted densities,

nα (r) =
∫

dr′ρ(r′)wα (r − r′) ; α = {0, 1, 2, 3, v1, v2},
(5)

given by convolutions between one-body fluid density (or den-
sity profile) and the weight functions wα which characterize
so called fundamental measures of the hard-sphere particles
of diameter σ :

w3(r) = �(R − |r|), w2(r) = δ(R − |r|), (6)

w1(r) = w2(r)/4πR, w0(r) = w2(r)/4πR2, (7)

wv2(r) = r
R

δ(R − |r|),wv1(r) = wv2(r)/4πR. (8)

Here, � is the Heaviside function, and δ is Dirac’s δ func-
tion and R = σ/2. Among various versions describing the
free-energy density 	 for the inhomogeneous hard-sphere
fluid, the original Rosenfeld prescription [54] was adopted,
which accurately describes short-range correlations between
fluid particles and satisfies exact statistical mechanical sum
rules [55].
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FIG. 1. Sketch of the substrate model in the x-z projection of the
Cartesian coordinate system. The wall consists of parallel grooves of
width Lg and depth D and are separated by pillars of width Lp. The
grooves (and pillars) are assumed to be macroscopically long along
the y axis.

For separations r > σ , a pair of fluid particles are assumed
to interact via the attractive part of the Lennard-Jones poten-
tial, which is truncated at the cutoff of rc = 2.5 σ :

ua(r) =
⎧⎨
⎩

0 ; r < σ,

−4ε
(

σ
r

)6
; σ < r < rc,

0 ; r > rc.

(9)

This attractive contribution is included to the free-energy
functional Eq. (2) in the usual mean-field fashion:

Fatt[ρ] = 1

2

∫∫
drdr′ρ(r)ρ(r′)ua(|r − r′|). (10)

Having set the approximative free-energy functional, the
equilibrium density profile is obtained by minimizing the
grand potential functional

�[ρ] = F[ρ] +
∫

drρ(r)[V (r) − μ], (11)

where μ is the chemical potential, and V (r) is the external
potential due to the static substrate (wall). For our model (see
Fig. 1), the latter can be written as

V (x, z) = Vπ (z) +
∞∑

n=−∞
VD(x + nP, z), (12)

where we have separated the contribution due to a planar wall
Vπ (z) filling the volume z < 0 and the potentials of the pillars,

each of height D and width Lp which are placed on the planar
wall with a periodicity of P = Lp + Lg. We assume that the
wall is formed by atoms that are distributed uniformly with a
density ρw interacting with the fluid particles via the Lennard-
Jones 12-6 potential:

φw(r) = 4εw

[(σ

r

)12
−

(σ

r

)6
]
. (13)

Here we have identified the potential parameter σ with the
one for the fluid-fluid interaction Eq. (9) which we eventually
use as a unit of length, so that the strength of the potential is
controlled by a single parameter εw. Integrating φw(r) over
the half-space z < 0 leads to the familiar Lennard-Jones 9-3
potential of the planar wall:

Vπ (z) =
{

πεwρwσ 3
[

1
45

(
σ
z

)9 − 1
6

(
σ
z

)3]
; z � 0,

∞ ; z < 0.
(14)

The potential VD(x, z) is obtained by integrating φw(r) over
the volume of a single pillar:

VD(x, z) = ρw

∫ Lp

0
dx′

∫ ∞

−∞
dy′

∫ D

0
dz′ (15)

×φw[
√

(x − x′)2 + y′2 + (z − z′)2],

which is valid everywhere except for the region inside the
pillar where the potential is infinite. The integration can be
carried out separately for the attractive and the repulsive bits
of φw which allows to split the potential as follows:

VD(x, z) = V6(x, z) + V12(x, z), (16)

where

V6(x, z) = −π

3
εwσ 6ρw[ψ6(x, z) − ψ6(x, z − D)

−ψ6(x − Lp, z) + ψ6(x − Lp, z − D)] (17)

and

V12(x, z) = πεwσ 12ρw[ψ12(x, z) − ψ12(x, z − D)

−ψ12(x − Lp, z) + ψ12(x − Lp, z − D)]. (18)

Here,

ψ6(x, z) = 2x4 + x2z2 + 2z4

2x3z3
√

x2 + z2
(19)

and

ψ12(x, z) = 1

128

128 x16 + 448 x14z2 + 560 x12z4 + 280 x10z6 + 35 x8z8 + 280 x6z10 + 560 x4z12 + 448 z14x2 + 128 z16

z9x9(x2 + z2)7/2
− 1

z9
.

(20)

Minimization of Eq. (11) leads to the Euler-Lagrange
equation,

V (r) + δFhs[ρ]

δρ(r)
+

∫
dr′ρ(r′)ua(|r − r′|) = μ, (21)

which is solved iteratively on equidistantly discretized two di-
mensional grid with the spacing of 0.1 σ . The bulk properties
of the fluid model defined by Eq. (9) is obtained by solving
Eq. (21) by setting V (r) = 0. This allows to construct the
phase diagram of the bulk fluid which terminates at the critical
point at the temperature corresponding to kBTc/ε = 1.41.
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FIG. 2. Surface phase diagram for a planar wall interacting with
the fluid via the potential given by Eq. (14) with the strength parame-
ter εw = ε. The bulk liquid-vapor coexistence corresponds to the hor-
izontal line δμ = 0, on which the wetting temperature Tw , the critical
prewetting temperature Tcpw and the bulk critical temperature Tc are
denoted. The phase boundary for the prewetting transition connects
the saturation line tangentially at Tw and terminates at the critical
prewetting point. Also shown are the values of the chemical potential
departure from saturation, δμ = μ − μsat (T ), which correspond to
capillary condensation (at temperature kBT/ε = 1.2) in infinite slits
formed of a pair of walls a distance Lg = 10 σ apart and of width
(from top to bottom): Lp = 2 σ , Lp = 5 σ Lp = 10 σ Lp = 20 σ , and
Lp = ∞.

III. RESULTS

Throughout this work, the strength of the wall poten-
tial defined in the previous section is fixed to εw = ε; the
surface phase diagram of the corresponding planar wall is
displayed in Fig. 2. Since in our model the fluid-fluid inter-
action Eq. (9) is truncated and thus effectively short-range as
opposed to the long-range wall-fluid interaction, the wetting
transition occurring at the temperature Tw = 0.8 Tc and the
bulk liquid-vapor coexistence is inevitably of first-order [4].
Consequently, also present is the prewetting line denoting
the phase boundary between thin and thick wetting layers
which extends the surface free-energy singularity at Tw off
bulk coexistence and terminates at the critical prewetting
temperature Tcpw = 0.88 Tc. Hereafter, in a study of complete
wetting of periodically structured walls, we will consider two
isothermal paths with T > Tw, such that one, T = 0.85 Tc

(kBT/ε = 1.2), crosses the prewetting line while the other,
T = 0.92 Tc (kBT/ε = 1.3), does not.

A. Filling

We start by discussing the first adsorption regime, i.e., the
filling of grooves by a high density liquid-like phase. For
T > Tw, a meniscus separating liquid and gas phases in each
groove is formed and the filling process can be described by
monitoring the growth of the meniscus height as the chemical
potential is increased to the value near μcc(Lg). Here, a focus
will be made on aspects specific for the current substrate

model which change some features of the filling process
when compared to that occurring in a deep isolated groove,
as already studied in detail. To this end, the implications of
finiteness of the side walls (pillars) as well as the depth of
the grooves will be discussed. In this subsection, we will
consider the temperature T = 0.85 Tc < Tcpw which allows
for a prewetting jump and the filling inside of deep and
shallow grooves will be discussed separately.

1. Deep grooves

Figure 3(a) displays DFT results for the meniscus height
dependence on the chemical potential difference from satu-
ration, δμ = μ − μsat, for the substrate with deep grooves
(D = 50 σ ); the grooves are of width of Lg = 10 σ and are
separated by thin pillars of width of Lp = 2 σ . For sufficiently
low values of μ the meniscus height is largely determined by
an effective repulsion from the groove bottom which gives
rise to a steep growth of the meniscus as a certain threshold
value of the chemical potential is approached. It is well
known that for single and macroscopically deep grooves the
threshold value corresponds to μcc(Lg) pertinent to capillary
condensation in the infinite slit of the same width formed by
two semi-infinite solid slabs. However, in this substrate model
the grooves are formed of side walls of finite thickness and the
threshold now corresponds to the chemical potential μ

Lp
cc (Lg),

rather than to μcc(Lg), locating the capillary condensation in
slits formed by solid slabs of finite thickness Lp. In the surface

phase diagram of Fig. 2 the values δμ
Lp
cc (Lg) = μ

Lp
cc (Lg) − μsat

determining the location of the capillary condensation for slits
with Lg = 10 σ and various widths of the confining walls

obtained from DFT are depicted. We can see that μ
Lp
cc (Lg)

converge towards μcc(Lg) rather rapidly and become hardly
distinguishable from the limiting value already for Lp ≈ 10 σ .
However, for the thin walls with Lp = 2 σ the difference is

pronounced and the value δμ
Lp
cc (Lg) does indeed correspond

to the threshold shown in Fig. 3(a) beyond which the growth
of the meniscus height is considerably slower due to a strong
effective repulsion acting from the groove top [41].

According to the previous DFT studies of single grooves
[36,41], the considered groove depth (D = 50 σ ) is sufficient
to determine the critical exponent βg = 1/4 associated with
the divergence of the interface height as δμ → 0−, as ex-
pected for infinitely deep (and Lp semi-infinite) grooves. How-
ever, the log-log plot of the dependence shown in Fig. 3(b)
reveals that although the interface height still satisfies the
power law � ∼ [μLp

cc (Lg) − μ]−βg , the critical exponent is now
βg = 1/3. The change in the value of βg can be explained
using the sharp-kink analysis based on the model sketched
in Fig. 4. Here, we consider a single groove of depth D and
width Lg filled with a liquid of a constant density ρl up to the
height � from the groove bottom. Moreover, we also consider
wetting layers of the width of �π adsorbed at both side walls of
the groove (above the level of �) which should be taken into
account since the temperature of the system is T > Tw. The
rest of the groove with a volume of Vg = (Lg − 2�π )(D − �)
is occupied by a gas of density ρg. Within this approximation
the excess grand potential functional per unit length relative
to the system filled entirely by gas reduces to a function of a
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FIG. 3. (a) Meniscus height as a function of the chemical potential departure from saturation δμ = μ − μsat in a capillary groove of
width Lg = 10 σ and depth D = 50 σ . The width of the side walls is Lp = 2 σ . The vertical dotted line denotes the chemical potential μ

Lp
cc (Lg)

corresponding to the capillary condensation in an infinite pore formed by parallel walls of thicknesses Lp. (b) The log-log plot of the previous
dependence for μ < μcc. The line has a slope −1/3. For temperature T = 0.85 Tc.

single parameter �:

�(�) = (p − p+
l )[Lg� + 2�π (D − �)] − 2(� + �π )γ

+ (ρg − ρl )
∫

Vg

Vatt (r), (22)

where p is the pressure of the gas reservoir, p+
l is the pressure

of the corresponding (same temperature and chemical poten-
tial) metastable liquid, and the last term expresses the effective
interaction (binding potential) between the wall-liquid and
liquid-gas interfaces where only the attractive forces were
included:

Vatt = 2α

z3
+ V6(x, z) + V6(Lg − x, z), (23)

with α = −πεwρwσ 3/3 and V6(x, z) given by Eq. (17).

FIG. 4. Illustration of the sharp-kink approximation applied for
the analysis of filling in a single groove.

The equilibrium state corresponds to the minimum of �(�)
implying

δμ�ρ(L − 2�π ) + 2γ

= �ρ

∫ Lg−�π

�π

Vatt (x, �) dx

= 2α�ρ(Lg − 2�π )

�3
+ 2�ρ

∫ Lg−�π

�π

V6(x, �) dx (24)

after (p − p+
l ) ≈ −δμ�ρ and �ρ = ρl − ρg have been sub-

stituted and the contribution due the bottom wall carried out.
Now, in the limit of D → ∞ and Lp → ∞, the con-

tribution to the binding potential from the side walls is
2α�ρ(1/�2

π − (Lg − 2�π )/�3 + · · · ). Furthermore, assuming
that the film thickness �π at side walls is the same as that
for a planar wall, we can substitute �π = (2α/δμ)1/3 which
leads to

δμ�ρ(Lg − 3�π ) + 2γ

= 2α�ρ
Lg − 2�π

�3

− 2α�ρ

[
Lg − 2�π

�3
+ O(�−4)

]
. (25)

Dividing by �ρ(Lg − 3�π ) and using Kelvin’s equation with
Derjaguin’s correction for μcc(Lg) at T > Tw [56,57]:

μcc(Lg) = μsat − 2γ

�ρ(Lg − 3�π )
, (26)

Eq. (25) implies

δμcc(Lg) ≡ μ − μcc(Lg) ∼ �−4 (Lp → ∞), (27)

and therefore βg = 1/4. However, it is straightforward to
show that for Lp finite, the side walls contribute to the bind-
ing potential with 2α�ρ[1/�2

π + O(�−4)] which also follows
from dimensional arguments, since the integration domain of
the wall potential along the x axis is now finite. Therefore,
the bottom wall contribution of the order of �−3 is no more
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compensated and thus

δμcc(Lg) ∼ �−3 (Lp finite), (28)

hence βg = 1/3.
Finally, for our model consisting of a periodic array of

grooves, the contribution to the binding potential from the
pillars will be of the same form as for an isolated groove with
Lp infinite, i.e., 2α̃�ρ(1/�2

π − (Lg − 2�π )/�3 + · · · ), but with
a different coefficient α̃, since the effective potential strength
of the pillars is now weaker. Therefore, the leading order
term O(�−3) induced by the bottom wall does not cancel,
which leads to Eq. (28) again, and thus the critical coefficient
remains βg = 1/3, as for a single groove with side walls of
finite width.

Although the value of the critical exponent βg is in line with
our DFT results, it should be noted that according to the sharp-
kink analysis the steep growth in the height of the meniscus
takes place in the vicinity of μcc(Lg) as given by the modified

Kelvin equation, rather than at μ
Lp
cc (Lg) as obtained from DFT.

This microscopic-scale difference is clearly beyond the scope
of the mesoscopic analysis and, in particular, can be attributed
to the fact that the approximation �π = (2α/δμ)1/3 becomes
inaccurate for thin walls.

2. Shallow grooves

Let us now consider the case when the depth D of the
grooves is microscopically small. The meniscus is now a
subject of simultaneous effective interactions acting from the
groove bottom and the groove top which repel the meniscus
from both ends of the groove. Such a system is thus reminis-
cent of a slit pore formed of competing walls, as originally
pointed out in Ref. [33] and explicit mapping between the
two systems has been made in Ref. [58]. Following this anal-
ogy one expects that a localization-delocalization first-order
transition occurs along the capillary liquid-gas equilibrium
line, i.e., at μcc(Lg; T ) (or μ

Lp
cc (Lg; T ) for finite walls), for
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-0.0560

-0.0558

-0.0556

-0.0554
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-0.0550

Ω
ex
(l)
σ/
ε

l/σ

FIG. 5. Binding potential obtained from DFT by constrained
minimization. For the substrate with the parameters D = 10 σ , Lg =
10 σ, and Lp = 2 σ , temperature T = 0.85 Tc, and the chemical
potential βδμ = −0.093.

FIG. 6. Two-dimensional density profiles of two coexisting equi-
librium states corresponding to the minima of the binding potential
shown in Fig. 5. Left panel: The low adsorption or localized state
where the meniscus is pinned at the groove bottom. Right panel:
Delocalized state where the meniscus is near the midheight of the
groove.

the groove depth D∗(T ) which increases with decreasing T
with D∗(Tw ) → ∞, in which case the transition coincides
with the groove filling [51]. At the same time, there should
be a minimal value of the groove depth Dc = D∗(Ts) allowing
for the transition, where Ts > Tw is the spinodal temperature
characterized by a disappearance of the energy barrier in the
binding potential.

To test these arguments we present the DFT results for
the groove with the same parameters as in the previous part,
except that we now vary the depth of the groove. At the
fixed temperature of T = 0.85 Tc and the capillary liquid-gas
coexistence μ

Lp
cc (Lg; T ), we construct the constrained grand

potential per unit length by fixing a certain value � of the
meniscus height from the groove bottom. We found that
the constrained grand potential possesses two equally deep
minima for the groove depth of D = 10 σ as is displayed in
Fig. 5. The density profiles of the two coexisting states are
shown in Fig. 6.

B. Depinning

We now turn out attention to the second adsorption regime
which we associate with merging of the liquid columns ad-
sorbed in the grooves. As shown previously for the special
case of L = Lg = Lp, there exists a depinning transition for a
sufficiently small value of L [28]. Within the present model
we wish to obtain a deeper understanding of the nature of the
transition by investigating the roles of the parameters Lg and
Lp independently. To this end, we show in Fig. 7 the phase
diagram of the depinning transition in the Lp–δμ plane for
three fixed values of the grooves width, Lg = 5 σ , Lg = 10 σ ,
and Lg = 20 σ , as obtained from DFT. The main upshot based
on these results is that the behavior of the depinning transition
is largely controlled by the pillars width Lp with the critical
values L+

cp and L−
cp, whose meanings are analogous to L+

c and
L−

c , and which seem to be independent on the grooves width.
The only impact of Lg is that the phase boundary is shifted
closer towards the coexistence line as Lg increases.

This is to a greater detail illustrated in Fig. 8 where we
fix the pillar width, Lp = 10 σ , and vary the groove width
Lg instead. Here, in contrast to the previous case, the line
of the depinning transition is unbounded from above ap-
proaching asymptotically the bulk coexistence, similarly to
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FIG. 7. The phase diagram of the depinning transition for three
fixed values of the groove width. The critical point of the transition is
about L+

cp ≈ 12 σ and the depinning line connects the saturation line
at L−

cp ≈ 4 σ independently of the groove width. For T = 0.92 Tc.

the case of capillary condensation, which, wherever present,
of course precedes the depinning transition. In fact, over the
displayed range of Lg the modulus of δμ corresponding to
the capillary condensation (for the slit width of Lg and the
same temperature) is by one order in magnitude larger than
that for the depinning. Also, the capillary critical point at
this temperature is about Lc ≈ 6 σ , while the depinning line
terminates only at Lg ≈ σ in which case the fluid atoms cannot
intrude the grooves anymore due to excluded volume effects.
Note that for even smaller values of Lg the depinning transition
would be replaced by the bridging transition on a planar
but chemically heterogenous wall consisting of periodically
repeating hydrophilic and hydrophobic stripes [59].

0 5 10 15 20
-0.020

-0.015

-0.010

-0.005

δμ/ε

Lg/σ

FIG. 8. The phase diagram of the depinning transition for the
fixed value Lp = 10 σ of the pillar width. The transition line is shown
up to Lg = 20 σ but proceeds onwards while it terminates at Lg = 1 σ

when no liquid can intrude the grooves. For T = 0.92 Tc.

FIG. 9. Coexisting density profiles of pinned (left panels) and
depinned states (right panels) shown over three periods of the wall.
The pillar width is Lp = 10 σ in all the cases, while the groove
width is (from top to bottom): Lg = 1.6 σ , Lg = 2.6 σ , Lg = 3.6 σ ,
and Lg = 4.6 σ . Note a number of adsorbed layers inside the grooves
which gradually increases by one. For T = 0.92 Tc.

Another interesting feature of the results shown in Fig. 8
is that the depinning line exhibits nonmonotonic, oscillating
behavior with increasing amplitudes as Lg decreases. This
is a purely microscopic effect due to strong packing effects
of the fluid confined in the groove, as is illustrated by sev-
eral representative density profiles in Fig. 9. The density
profiles correspond to very narrow grooves, the width of
which increases by 1 σ , which represents the periodicity of
the envelope modulating otherwise monotonically increasing
character of the depinning line. The density profiles differ
by gradually increasing number of liquidlike layers adsorbed
in the grooves, and the strongly nonmonotonic behavior of
the transition line reflects how a certain number of adsorbed
layers is commensurate with the given groove width.

To interpret al least some of these results we formulate a
simple mesoscopic theory describing the depinning transition
in terms of the height of the liquid-gas interface �(x) which is
a subject of an effective potential arising from the long-range
interactions between the fluid and wall atoms. Before this, it is
useful to compare the density profiles of the coexisting phases
as is shown in Fig. 9. In general, the density profiles suggest
that in the lower adsorption phase, i.e., before depinning,
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liquid drops form at pillars and are pinned at the edges.
Avoiding the contributions common for both phases, we can
compare the grand potentials per unit length for the lower
adsorption (pinned) and the higher adsorption (depinned)
states. The grand potential for the pinned state per unit wall
period can be written as

�pin =
√

2Aγ ln Lp + |δμ|�ρSdrop + τ, (29)

where A is the Hamaker constant of the corresponding planar
wall and Sdrop is the area of the drop cross-section in the
x-z plane. The first contribution to �pin is a logarithmically
diverging Casimir-like free energy, taking into account surface
tension effect and the substrate potential, and can also be
associated with the finite-size scaling of the free energy at
complete wetting [60]; the second term is the free-energy cost
due to a presence of an undersaturated liquid and τ is the line
tension associated with the three-phase coexistence at both
pillar edges.

The grand potential corresponding to the depinned state is
the global minimum �dep of the function

�̃dep(�) = ALp

(� − D)2
+ |δμ|�ρ(� − D)(Lp + Lg), (30)

which yields for the equilibrium height �eq of the the liquid
film:

�eq = D +
[

2ALp

|δμ|�ρ(Lp + Lg)

] 1
3

, (31)

and upon substituting �eq back to Eq. (30), we get for the grand
potential

�dep = 3

2
(2ALp)

1
3 [|δμ|�ρ(Lp + Lg)]

2
3 . (32)

Here, a number of approximations has been made, namely:
(1) In the depinned state, the undulation of the liquid-gas
interface is neglected and its shape is assumed to be flat and
of a uniform height � measured from the groove bottom; (2)
the liquid-gas interface is assumed to be a subject of the
binding potential A/h2 where h is its normal distance from
the wall (this contribution is included explicitly in Eq. (30)
and implicitly in Eq. (29) within the first term [60]) and the
contribution due to the bottom wall is neglected; (3) the shape
of the liquid drops attached at the pillars are deemed not to
be appreciably different from that at saturation; therefore, the
maximum height of each droplet is hm ≈

√
Lp

√
A/2γ and its

local height, when the origin of the coordinate system is put
to the middle of a pillar top, is h(x) = hm

√
1 − 4(x/Lp)2 [60].

Integrating h(x) along the pillar width yields the area of the
drop cross-section Sdrop = π/4L3/2

p (A/2γ )1/4.
Despite its relative simplicity, the mesoscopic model al-

lows to interpret most of the DFT results presented above.
First, the comparison of Eqs. (29) and (30) explains imme-
diately the origin of the depinning transition which resides in
the tradeoff between the volume and the surface/interaction
terms. More specifically, the greater free-energy cost due to
the presence of the metastable liquid in the depinned state is
compensated by the free-energy loss given by narrowing the
liquid-gas interface and its greater distance from the wall (the
Hamaker constant A is necessarily positive above the wetting

temperature). It means that at low values of the chemical
potential (large |δμ|) in which case the volume terms are
dominant, the system will be preferentially in the pinned
state, while the depinned state becomes more favored near
the bulk coexistence line, as observed. Furthermore, from the
comparison of Eqs. (29) and (32) it follows that the depinned
state becomes more stable as Lp is increased, for fixed δμ

and Lg, due to the positive term in �pin including Sdrop ∝ L3/2
p

which grows fastest with Lp, in line with the results shown
in Fig. 7. If, however, we keep Lp fixed and vary Lg instead,
then the mesoscopic model predicts that the transition will be
shifted towards smaller values of |δμ| with increasing Lg, in
view of the increased slope of the free-energy dependence
on |δμ| for the depinned state, while the free energy of the
pinned state remains constant (does not depend on Lg), which
explains the behavior of the depinning phase boundary shown
in Fig. 8 for large Lg.

Nevertheless, it still remains to clarify the existence of the
critical widths L−

cp and L+
cp. As for L−

cp, i.e., the pillar width for
which the depinning transition occurs at saturation, δμ = 0,
the free energy for the depinned state clearly vanishes, since
� → ∞, in contrast to the free energy for the pinned state
as given by Eq. (29). However, for very low values of Lp

the pillars become too narrow to accommodate a liquid drop
in which case the corresponding free energy also vanishes.
This suggests that L−

cp can be interpreted as the critical pillar
width below which nucleation of liquid drops at the pillars
is not possible anymore and for which the microscopic and
macroscopic (complete wetting) adsorption states coexist.
This interpretation is supported by the results shown in Fig. 7
where all the depinning transition lines terminate at the value
of Lp ≈ 4 σ independent of Lg and also by the absence of
the lower critical point in the Lg–δμ phase diagram shown in
Fig. 8.

The mesoscopic model assuming two distinct liquid con-
figurations is unable to predict the critical point L+

cp for which
the difference between the pinned and depinned states just
disappears. For this, a model containing an order parameter
distinguishing between the two states and vanishing contin-
uously as the critical point L+

cp is approached from below
is required. However, admitting the existence of the critical
point in the depinning transition, its behavior observed in
Fig. 7 can be interpreted rather straightforwardly. First, as
the depinning transition cannot precede the capillary con-
densation, it follows from Kelvin’s equation that the critical
point gets closer and closer to the saturation as the groove
width Lg is increased in line with the results presented in
Fig. 7. Second, complementing the free-energy balance by
the condition equating the first derivatives of the free energies
with respect to the chemical potential, we obtain that at the
critical point Lp ∝ e−τ/

√
2Aγ , which explains why, at the given

temperature, the critical point occurs at the same value Lp for
all the groove widths considered.

C. Unbinding

Finally, we focus on the last adsorption regime which
corresponds to unbinding of the liquid-gas interface from the
wall. We consider a substrate with the pillar width Lp > L−

cp

and wish to describe the process δμ → 0− in terms of the
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FIG. 10. Schematic plot showing an anticipated shape of the
liquid-gas interface in the unbinding regime for Lp = Lg = L. The
local height of the liquid-gas interface �(x) is a periodic function
with the mean value �0 and maximum �0 + a.

interface shape �(x). In what follows we focus on the “sym-
metric” case, such that Lp = Lg ≡ L illustrated in Fig. 10 and
formulate a simple mesoscopic theory based on the interface
Hamiltonian model which per unit length and one period of
the wall can be written as

H[�] =
∫ L

−L
dx

{
γ

2

(
d�(x)

dx

)2

+ W (�)

}
, (33)

where the binding potential W (�) is assumed to adopt a simple
local form

W (�(x)) =
{|δμ|�ρ�(x) + A/�(x)2 ; x < 0,

|δμ|�ρ(�(x) − D) + A/[�(x) − D]2 ; x � 0.

(34)
The first term in the binding potential is due to a presence
of the metastable liquid and the second term stems from the
dispersion interaction between the liquid-gas interface and the
wall. With the the origin of the Cartesian coordinates chosen
according to Fig. 10, the mean height of the liquid film above
the grooves bottom �(x) is an odd function with a periodicity
P = 2L and can thus be reasonably parametrized as follows:

�(x) = �0 + a sin
(πx

L

)
, (35)

where we expect a � �0 for small δμ.
Substituting Eqs. (34) and (35) into Eq. (33) leads to

H (a, �0) = γ

2

∫ L

−L

(
d�(x)

dx

)2

dx + |δμ|�ρL(2�0 − D)

+
∫ 0

−L

A

�2
dx +

∫ L

0

A

(� − D)2
dx

= γ

2

1

L

∫ 1

−1

(
d�(x̃)

dx̃

)2

dx̃ + |δμ|�ρL(2�0 − D)

+ AL
∫ 0

−1

1

�2(x̃)
dx̃ + AL

∫ 1

0

1

[�(x̃) − D]2
dx̃.

= γ a2π2

2L
+ |δμ|�ρL(2�0 − D)

+ AL
∫ 0

−1

1

�2(x̃)
dx̃ + AL

∫ 1

0

1

[�(x̃) − D]2
dx̃.

(36)

The integrals can be carried out analytically

∫ 0

−1

dx̃

�2(x̃)
=

π�2
0 + 2�2

0 arctan
(

a√
�2

0−a2

) + 2a
√

�2
0 − a2

π�0
(
�2

0 − a2
) 3

2

= 1

�2
0

+ 4

π

a

�3
0

+ O
(
a2/�2

0

)
, (37)

considering small δμ.
Similarly,∫ 1

0

dx̃

[�(x̃) − D]2
= 1

(D − �0)2
− 4

π

a

(�0 − D)3

+O[a2/(�0 − D)2]. (38)

To first order in a/�0 and a/(D − �0), H (a, �0) becomes

H (a, �0) ≈ γ a2π2

2L
+ |δμ|�ρL(2�0 − D)

+ AL

[
1

�2
0

+ 4

π

a

�3
0

+ 1

(�0 − D)2
− 4

π

a

(�0 − D)3

]
.

(39)

At a given δμ, the equilibrium state corresponds to the sta-
tionary point:

∂H

∂a
= ∂H

∂�0
= 0, (40)

implying

|δμ| = A

�ρ

[
1

�3
0

+ 1

(�0 − D)3
+ 6a

π�4
0

− 6

π

a

(�0 − D)4

]
(41)

and

a ≈ 12AL2

π3γ

D

�4
0

. (42)

It may be interesting to compare the mean height �0 of the
equilibrium undulated interface with that of a flat interface
�π where we simply set a = 0 and which is obtained by
minimizing the Hamiltonian function

Hπ (�) = |δμ|�ρL(2� − D) + AL

�2
+ AL

(� − D)2
, (43)

which yields

|δμ| = A

�ρ

[
1

�3
π

+ 1

(�π − D)3

]
. (44)

In Fig. 11 we compare the mean height of the undulated
interface, �0, as obtained by solving Eqs. (41) and (42), with
the height of the flat interface with �π , obtained from Eq. (44).
Also shown are the DFT results of �(0) determined from
the density profiles using the middensity rule, ρ[0, �(0)] =
(ρv + ρl )/2, for the substrate with D = 10 σ and L = 20 σ .
The comparison reveals that all the three sets of results
are very close to each other in the displayed range of the
chemical potential and essentially collapse to a single curve
as |δμ| < 10−3ε. We can thus conclude that the interface
Hamiltonian model in a combination with the parametrization
Eq. (35) provides an accurate prediction for the mean height
of the unbinding interface �0 which, moreover, is shown to
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FIG. 11. Mean height of the liquid-vapor interface (in units of
σ ) as a function of |δμ| = μsat − μ (in units of ε) measuring the
departure of the given thermodynamic state from the bulk two-phase
coexistence. The solid line represents the prediction based on the
interfacial Hamiltonian theory as given by Eqs. (42) and (41), while
the symbols represent DFT results. Also shown (red dashed line)
is the interface height corresponding to configurations with a flat
interface. For the temperature T = 0.92 Tc.

get increasingly close to that of the flat interface �π , as the
saturation is approached, hence �0 ∼ |δμ|−1/3, as |δμ| → 0.
Furthermore, from this and Eq. (42) it follows for the interface
roughness a ∼ δμ4/3, as |δμ| → 0.

To obtain still more detailed insight into the process of the
interface flattening, we compare the free energies pertinent
to the undulated and flat interfaces. They are, respectively,
given by

F = 2Lγ + min{H (�0, a)} (45)

and

Fπ = 2Lγ + min{Hπ (�π )}, (46)

where the contribution 2Lγ due to the free (flat) liquid-gas in-
terface has been included. Assuming that �0 ≈ �π , as justified
for small δμ according to the previous results, the free-energy
difference is

�F = F − Fπ ≈ π2γ a2

2L
+ 4ALa

π

[
1

�3
0

− 1

(�0 − D)3

]

≈ −π2γ a2

2L
. (47)

The comparison of the free energies shown in Fig. 12
reveals that the equilibrium interface flattens in a continuous
way, such that the free-energy difference between the undu-
lated and flat states decays as �F ∼ �−8

0 ∝ |δμ|8/3, as δμ →
0. In Fig. 13, density profiles as obtained from DFT for the
substrate with D = 10 σ and L = 20 σ are shown to illustrate
the interface flattening as the saturation is approached. From
the density profiles, the amplitude a of the interface can
be determined using the same middensity rule as described
above. In Fig. 14 the log-log plot of the dependence of a on
δμ is displayed which obeys a linear behavior in line with

1.2x10-3 1.8x10-3 2.4x10-3 3.0x10-3 3.6x10-3
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0.8

fre
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|δμ|

FIG. 12. A comparison of the free energy per unit length (in
units of ε/σ ) for the undulated (sinusoidal) and flat configurations
as determined from Eqs. (45) and (46), respectively, as a function of
the chemical potential difference from saturation |δμ| (in units of ε).

the expected power-law dependence. Moreover, the line with
the best fit to the data has a slope which is very close to the
predicted value of 4/3.

IV. SUMMARY AND CONCLUDING REMARKS

In this work we studied complete wetting (T > Tw) of
periodically structured substrates which interact with the fluid
via long range (dispersion) forces. The model substrates are
formed by scoring rectangular, macroscopically long grooves
of depth D and width Lg into a planar wall, such that the

FIG. 13. Two-dimensional DFT density profiles shown over a
single period of the wall with the groove depth of D = 10 σ and
the pillar/groove width of L = 20 σ . The density profiles correspond
to the chemical potential departure from saturation (in units of ε):
(a) 2 × 10−2, (b) 4 × 10−3, (c) 2 × 10−3, and 4 × 10−4. For the
temperature T = 0.92 Tc.
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FIG. 14. A log-log plot of the dependence of the interface am-
plitude a on the chemical potential departure from saturation as
obtained from DFT for the substrate with D = 10 σ and L = 20 σ

at temperature T = 0.92 Tc. The slope of the fitting line is approxi-
mately 1.35.

grooves are separated by pillars of width Lp. The entire ad-
sorption process can be divided into three parts: (i) the filling
regime within which the grooves become filled with liquid;
(ii) the depinning regime which corresponds to (continuous
or discontinuous) merging of the liquid columns filling the
grooves; and (iii) the unbinding regime when the (single)
liquid-gas interface moves away from the substrate and its
undulated shape gradually flattens. All the three regimes
have been examined separately in some detail and the main
conclusions can be summarized as follows:

(1) Filling regime: In the initial part of adsorption (well
below μsat), the liquid phase nucleates at the bottom of the
grooves, while the upper part of the wall (pillars) are covered
by only a microscopically thin layer of liquid. In contrast to
low temperatures T < Tw, in which case the grooves become
filled with liquid via a first-order transition, the filling process
is continuous for temperatures T > Tw and can be associated
with a gradual rise of menisci separating liquid and gas phases
in each groove, as the chemical potential is increased. For
sufficiently deep grooves one can identify a critical exponent
βg characterizing the growth of each meniscus as the chemical
potential approaches the value μcc(Lg), pertinent to capillary
condensation in an infinite slit of the same width and at the
same temperature. However, compared to thoroughly studied
systems involving only a single groove, the filling process for
the current model with a periodic array of grooves deviates
in two ways: First, the power-law dependence for the height
of the meniscus is now associated with the difference of the
chemical potential from the value μ

Lp
cc (Lg) which corresponds

to capillary condensation inside a slit formed of a pair of walls
of width Lp and which is higher than μcc(Lg), in view of the
weaker wall potential. Second, for the similar reasons, the
critical exponent is now βg = 1/3 rather than 1/4 as valid the
for the single groove, since the grooves are now effectively
chemically heterogenous (due to the weaker effective strength

of the side walls potential)—this implies that the fine compen-
sation of the leading order terms in the binding potential is not
present anymore (as for the single groove) which results in the
shift of the denominator in βg by one.

If the grooves are only microscopically deep, then the
filling process is no more critical and cannot thus be
characterized by a critical exponent anymore but there is
a new aspect instead. Now, the effective repulsive po-
tentials induced by the groove bottom and groove top
which both repel the meniscus compete with each other
and may give rise to a localization-delocalization transi-
tion. For the walls which exhibit first-order wetting transi-
tion, as considered here, the localization-delocalization tran-
sition is also first-order and induces a jump in the height
of the meniscus at capillary liquid-gas coexistence μcc(Lg).
The transition terminates at temperature Ts above which
the corresponding binding potential possesses only a single
minimum.

(2) Depinning regime: After the grooves get filled with
liquid, i.e., the menisci reach the grooves top, a single liquid-
gas interface eventually forms within the regime which is
referred to as depinning. As already pointed out recently,
this process is either first-order or continuous depending on
the wall parameters. Here, we have shown that the nature of
the depinning depends solely on the pillar width Lp which
possesses two threshold values L−

cp and L+
cp, such that: For L >

L+
cp the process is continuous, for L−

cp < L < L+
cp the depinning

is first-order transition and for L < L−
cp the depinning does not

occur and the wall remains nonwet at saturation. The values
L−

cp and L+
cp are microscopically small and are independent of

the grooves width Lg which only determines the location of
the depinning transition (if present). The dependence of the
location of the transition on the groove width is nonmonotonic
and exhibits strongly oscillating character for small values
of Lg with a periodicity of one molecular diameter due to
packing effects that induce well distinguishable liquid layers
inside the grooves. Although microscopic in nature, most
of these phenomena observed using the microscopic density
functional theory can be explained by a simple mesoscopic
theory. In particular, L−

cp has been interpreted as a critical
pillar width below which a liquid drop cannot be accom-
modated, while L+

cp has been shown to be tied with the line
tension.

(3) Unbinding regime: Finally, for any value of the pil-
lar width L > L−

cp a single liquid-gas interface forms and
unbinds from the wall as μ approaches μsat. In contrast to
complete wetting on a planar wall, the liquid gas interface
in now periodically undulated (even on a mean-field level)
but its mean height �0 grows in a very similar fashion to
that of a flat interface and eventually diverges in the limit of
δμ → 0 according to the same power law, i.e., with the critical
exponent βco = 1/3 for systems involving dispersion forces.
The growth of the interface is simultaneously accompanied by
a gradual flattening of the interface (or unbending), such that
the undulation amplitude decays as a ∼ �−4

0 , or, alternatively,
as a ∼ |δμ|4/3 for “symmetrically” structured substrates, such
that Lg = Lp.

In conclusion, we have seen that despite its relatively
simple structure, the model of a grooved substrate predicts an
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interesting interplay of various surface phase transitions giv-
ing rise to a very complex phase behavior of adsorbed fluids.
The presence and nature of the phase transitions depend sen-
sitively on the wall parameters, such that the entire adsorption
isotherm may reflect a whole sequence of phenomena: within
the filling regime a first-order localization-delocalization can
occur for shallow grooves or a continuous filling transition for
deep grooves; this is followed by a depinning transition which
can be rounded, critical or first-order depending on the width
of the pillars separating the grooves; finally, the adsorption
isotherm diverges continuously due to complete wetting of
the top surface which, moreover, can still be preceded be a
prewetting jump (not shown here). Some of the conclusions
deserve further comments. For instance, we have claimed that
the critical exponent for the filling in deep grooves is now
βg = 1/3, rather than βg = 1/4 pertinent to a single groove.
This conclusion was supported by DFT results considering
a rather extreme case of very thin pillars of width Lp = 2 σ ,
while the width of the grooves was Lg = 10 σ . However, for
substrates with very thick pillars, such that Lp � Lg, it can be
anticipated that filling does not appreciable differ from that
present in a single groove and therefore the critical exponent
βg may actually interpolate between 1/4 and 1/3 in this case.
In fact, these arguments are only of a mean-field character and
βg ultimately crossovers to the true value βg = 1/3 for μ very

close to μ
Lp
cc (Lg) in any case, due to fluctuation effects [41].

The capillary fluctuations have even more significant effect
regarding a possible finite jump in the height of the meniscus,

since this phenomenon occurring individually in each groove
is a pseudo-1D transition and is thus expected to be rounded
in a real experiment. However, the depinning transition is
a phenomenon where the grooves (and pillars) are collec-
tively involved and thus will not be destroyed by fluctuation
effects.

Clearly, the work can be extended by numerous modifi-
cations of the substrate model. One can consider different
geometries of the pits which will presumably have a strong
impact on the nature of the phase transitions; for example,
one does not expect a presence of the depinning transition for
smooth surfaces that do not involve sharp edges. One can also
attempt to obtain a more realistic approximation for rough
solid surfaces by considering grooves of different depths,
widths or separations; condensation in grooves formed by two
differently high side walls is actually of some interest in its
own right. Finally, one may further decorate the surface of
the wall and investigate the effect of such smaller length-scale
defects. We intend to study such problems, some of which
require a 3D DFT analysis, in future work.
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