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Surface-directed spinodal decomposition (SDSD) is the kinetic interplay of phase separation and wetting
at a surface. This process is of great scientific and technological importance. In this paper, we report results
from a numerical study of SDSD on a chemically patterned substrate. We consider simple surface patterns for
our simulations, but most of the results apply for arbitrary patterns. In layers near the surface, we observe a
dynamical crossover from a surface-registry regime to a phase-separation regime. We study this crossover using
layerwise correlation functions and structure factors and domain length scales.
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I. INTRODUCTION

Consider a homogeneous binary (AB) mixture at high
temperature, which is rapidly quenched below the critical
temperature Tc. The system becomes thermodynamically un-
stable, and its subsequent evolution is characterized by the
emergence and growth of domains enriched in A or B. The
kinetics of phase separation has been extensively studied
[1–3]. The Cahn-Hilliard-Cook (CHC) model successfully
describes diffusion-driven segregation in a mixture [1–4].
The equal-time correlation function [C(�r, t ), where �r is the
distance] and structure factor [S(�k, t ), where �k is the wave
vector] of the order parameter field are used to study domain
growth. For a translationally invariant and isotropic system,
these quantities exhibit dynamical scaling as follows:

C(�r, t ) = g(r/L), (1)

S(�k, t ) = Ld f (kL). (2)

In Eqs. (1) and (2), g(x) and f (p) are scaling functions, L(t ) is
the time-dependent domain size, and d is the dimensionality.
For conserved kinetics with diffusive transport, the rate of
change of L(t ) is proportional to the particle current �J , which
is identified as the gradient of the chemical potential μ. Thus,

dL

dt
∼ J ∼ | �∇μ| ∼ σ

L2
, (3)

where σ is the A-B interfacial tension. The solution of Eq. (3)
yields L(t ) ∼ (σ t )1/3, which is known as the Lifshitz-Slyozov
(LS) growth law [5,6].

In experiments, the segregating system is often confined
to a container whose walls may have a preferential attraction
for one of the components of the mixture (say, A). The inter-
play between phase-separation kinetics and wetting kinetics
at a surface S is referred to as surface-directed spinodal
decomposition (SDSD). This process is of great technological
importance, and has attracted much experimental [7–9] and
theoretical [10–13] attention. The presence of a surface or
substrate breaks translational symmetry in the normal di-

rection. As a result, different morphologies and kinetics are
observed near the surface. The system shows either a partially
wet (PW) or completely wet (CW) equilibrium morphology,
depending upon the relative surface tensions between A, B,
and S. For the PW morphology, the interface between A-rich
and B-rich domains makes an angle θ with the substrate S.
This contact angle is determined by Young’s condition [14]:

σ cos θ = γBS − γAS, (4)

where γAS and γBS are surface tensions between the A-rich
and B-rich phases and S, respectively. Eq. (4) does not have
a solution when γBS − γAS > σ , and the B-rich phase is com-
pletely expelled from the surface forming a CW morphology.
In this case, the A-B interface is parallel to the substrate.

The problem of SDSD on chemically homogeneous and
physically flat substrates has been studied extensively via
experiments [7–9] and simulations [15–22]. The first success-
ful coarse-grained model for SDSD was proposed by Puri
and Binder (PB) [15], who supplemented the CHC model
with two boundary conditions which modeled the surface. PB
showed that, for the CW morphology, the surface gives rise
to an SDSD wave. This consists of alternating wetting and
depletion layers of the preferred component. The SDSD wave
propagates into the system, as seen experimentally by Jones
et al. [7]. PB focused on two experimentally relevant features
of the SDSD morphology:

(a) the growth law for the wetting layer thickness R1(t );
(b) the scaling behavior of layerwise correlation functions

C(�ρ, z, t ) and structure factors S( �kρ, z, t ), where �ρ and z de-
note the coordinates parallel and perpendicular to the surface
(located at z = 0).

PB showed that R1(t ) has an early-time behavior which
depends on the surface potential [19]. At late times, R1(t )
shows a crossover to the universal LS behavior. They also
studied the effect of off-criticality on the above picture.
For moderately off-critical quenches, where the bulk ex-
hibits spinodal decomposition (SD), the above scenario ap-
plies. However, for highly off-critical mixtures, where the
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homogeneous bulk remains stable, R1(t ) shows a late-time
diffusive behavior, R1(t ) ∼ t1/2. PB also showed that the
layerwise correlation functions and structure factors exhibit
dynamical scaling. Further, the lateral domain size L(z, t )
follows the LS law, but the prefactor is higher near the surface.
PB explained this as a consequence of the orientational effects
of the layered SDSD profile at the surface.

In many applications, the substrate may be heterogeneous
and patterned—either chemically or physically. The process
of SDSD on chemically patterned substrates has been very
useful in, e.g., the paper industry [23], lubrication [24,25],
enhanced oil recovery, tissue engineering, and biomaterial
development [26,27]. One of the potential applications of
such substrates is in stamping or contact printing [28], where
an elastomeric stamp is used to transport the material to
predefined regions. There exists a nanotransfer printing tech-
nique, which relies on tailored surface chemistries to transfer
metal films from the raised areas of a stamp to a substrate
when these are brought into contact [29]. Further, chemically
patterned substrates are used to self-assemble polymer mix-
tures [30–33]. In the pharmaceutical and cosmetics industries,
microfluidic assays commonly require the formation of stable
emulsions of immiscible fluids, such as oil and water [34,35].
Further, chemically patterned substrates are useful in promot-
ing the mixing of immiscible fluids in microchannels [36,37].

Given this large number of applications, it is useful to
gain a good theoretical understanding of SDSD on chemically
patterned substrates. This is the primary focus of the present
paper. Before proceeding, it is useful to review some earlier
work in this context. In conjunction with their experiments on
polymer blends, Karim et al. [31] also reported results from a
simulation of the CHC model at a surface. They showed that
a modulation of the surface potential resulted in a correspond-
ing checkerboard pattern in the segregating mixture. These
authors did not study the detailed pattern dynamics and only
showed typical simulation morphologies. An analogous study
is due to Chen and Chakrabarti [38], who studied morpholo-
gies in a block copolymer (BCP) on a patterned substrate.
The BCP is modeled by a simple variant of the CHC model
[39,40], and is characterized by mesoscale segregation, i.e.,
the segregating mixture freezes into an equilibrium structure
with a typical length scale Ls. Chen-Chakrabarti studied the
emergent morphologies as a function of Ls/M, where M is the
scale of the chemical pattern.

Let us also discuss some more recent numerical studies
of this problem [41–47]. Dessi et al. [42] and Serral et al.
[44] used cell dynamical system (CDS) models [48] to study
SDSD in BCPs on patterned surfaces. (These CDS mod-
els were equivalent to the modified CHC equation studied
by Chen and Chakrabarti [38].) These authors studied the
structures emerging from the interplay of the BCP mesoscale
morphology and the chemical pattern. Chen et al. [43] used
self-consistent field theory to study the self-assembly of BCPs
on patterned substrates. Xiang et al. [46] used dissipative
particle dynamics simulations to study structural transitions
in BCPs on chemically patterned substrates.

The above are just a few representative studies of this
problem. Most of these studies focused on classifying
emergent morphologies. To the best of our knowledge, there
is no detailed theoretical study of time-dependent quantities,

e.g., length scales, structure factors, etc., for SDSD on
chemically patterned substrates. This is surprising because
most of these quantities are experimentally accessible. As
a matter of fact, a quantitative analysis of the evolution is
necessary for a proper understanding of this problem. This is
the gap that we address here.

In this paper, we use Langevin simulations to study SDSD
on a chemically patterned substrate. In particular, we focus
on the time-dependence of morphological features near the
patterned substrate. This paper is organized as follows. In
Sec. II, we describe our model of SDSD on a chemically pat-
terned substrate. The detailed simulation results are presented
in Sec. III. Finally, we conclude this paper with a summary
and discussion in Sec. IV.

II. MODELING AND NUMERICAL DETAILS

We use the PB model [15] of SDSD to study the phase-
separation kinetics of a binary (AB) mixture at a chemi-
cally patterned substrate. The order parameter is defined as
ψ (�r, t ) = ρA(�r, t ) − ρB(�r, t ), where ρA(�r, t ) and ρB(�r, t ) are,
respectively, the local concentrations of A and B at position �r
and time t . The PB model consists of the CHC equation with a
surface potential, which describes bulk phase separation. This
is a fourth-order partial differential equation, and it must be
supplemented by two boundary conditions, representing the
effect of the surface.

We consider a short-ranged surface potential V (�ρ, z),
which acts in a microscopic layer of thickness a at the surface
S:

V (�ρ, z) = −h1(�ρ), z < a,

= 0, z > a. (5)

We set a = 0 as it is small compared to the coarse-graining
scale. Then, in dimensionless units, the free-energy functional
for an unstable binary mixture in contact with S is given by
[10,12]

F
[
ψ (�r)

] =
∫

d �ρ
∫ ∞

0
dz

[
−ψ2

2
+ ψ4

4
+ 1

4
( �∇ψ )2

]

+
∫

d �ρ
{

− g

2
ψ (�ρ, 0)2 − h1(�ρ)ψ (�ρ, 0)

− γψ (�ρ, 0)
∂ψ

∂z

∣∣∣∣
z=0

+ γ̃

2
[ �∇ρψ (�ρ, 0)]2

}

≡ Fb + Fs. (6)

Here, we have decomposed coordinates as �r = (�ρ, z), as
mentioned earlier. The dimensionless rescaling is provided in
Ref. [12]. Nevertheless, for ease of reference, it is useful to
recall some details here. The order-parameter scale is

ψ0 =
√

3

(
Tc

T
− 1

)1/2

, (7)

where Tc and T are the critical and quench temperatures,
respectively. The length scale is the bulk correlation length:

ξb =
[

q

2

(
1 − T

Tc

)]−1/2

, (8)

where q is the coordination number of the system.
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FIG. 1. Schematic of a chemically patterned substrate. The sub-
strate is decorated with a checkerboard pattern of brown and gray
patches, which are chemically distinct. Each brown (gray) patch of
the substrate preferably attracts the A (B) component of a binary
(AB) mixture.

In Eq. (6), Fb has the usual ψ4-form of the bulk free energy
[1,2]. The term Fs is the contribution to the free energy from
the surface. In Fs, the phenomenological constants g, γ , γ̃ are
related to the bulk correlation length and other system param-
eters [10,12]. For simplicity, we assume that the free-energy
cost of the ( �∇ψ )2-term is the same in the bulk and surface
layers, i.e., we set γ̃ = 0.5. In real experiments, these may
differ somewhat but would have the same order of magnitude.
The one-sided derivative term ∂ψ/∂z|z=0 appears due to the
absence of neighboring atoms for z < 0. The chemical pattern
on the surface is reflected in the �ρ-dependence of h1(�ρ ). If
h1(�ρ) > 0, then the surface attracts A, and h1(�ρ) < 0 means
that the surface is wetted by B. Figure 1 is a schematic of
a checkerboard substrate, where chemically distinct patches
are marked in different colors.

The evolution of ψ (�r, t ) in the bulk is described by the
CHC equation [1,2] as follows:

∂ψ (�r, t )

∂t
= −�∇ · �J (�r, t ) = �∇ ·

[
�∇
(

δF
δψ

)
+ �θ (�r, t )

]
, (9)

where �θ (�r, t ) is a vector Gaussian white noise. The noise has
zero average and obeys the fluctuation-dissipation relation:

θi(�r, t ) = 0 ∀ i, (10)

θi(�r ′, t ′)θ j (�r ′′, t ′′) = 2εδi jδ(�r ′ − �r ′′)δ(t ′ − t ′′). (11)

Note that this is the usual conserved noise as it has been added
to the current term [4]. An equivalent formulation is to define
the noise as η = �∇ · �θ . In that case, Eq. (11) would have
an extra Laplacian operator on the right-hand side. Here, ε

characterizes the strength of the noise in dimensionless units.

It is related to the temperature as [12]

ε = 1

3

(
Tc

T
− 1

)−2

ξ−d
b . (12)

For d < 4, ε diverges as T → T −
c so that order is destroyed

at the critical temperature. For bulk phase separation, the
asymptotic pattern dynamics is not affected by the noise am-
plitude. This is because thermal fluctuations only increase the
thickness of the interfaces, which we denote as w. However,
the asymptotic regime is realized when w/L(t ) → 0. Thus,
the presence of noise only delays the onset of the asymptotic
scaling behavior [49].

Using Eqs. (6) and (9), we obtain

∂ψ (�r, t )

∂t
= �∇ ·

[
�∇
{
−ψ + ψ3 − 1

2
∇2ψ

}
+ �θ (�r, t )

]
,

z > 0. (13)

The corresponding (dimensionless) boundary conditions pro-
posed by PB at the surface are as follows:

τ0
∂ψ (�ρ, 0, t )

∂t
= − δF

δψ (�ρ, 0, t )

= h1(�ρ ) + gψ (�ρ, 0, t ) + γ
∂ψ

∂z

∣∣∣∣
z=0

+ γ̃∇2
ρψ (�ρ, 0, t ), (14)

0 =
[

∂

∂z

{
−ψ + ψ3 − 1

2
∇2ψ

}
+ θz

]
z=0

, (15)

where τ0 is a relaxational timescale. Equation (14) describes
nonconserved relaxational kinetics of the order parameter at
the substrate, and rapidly relaxes the order parameter to its
surface value. It can also be replaced by its static counter-
part with ∂ψ/∂t = 0. Equation (15) sets the z-component
of current at the surface to zero, as there is no flux across
the substrate. The quantities h1(�ρ), g, γ and γ̃ determine the
equilibrium phase diagram of the system [10,12].

In Sec. III, we will present results for SDSD in a critical
AB mixture on a chemically patterned substrate in d = 2, 3.
In d = 2, the linear substrate is placed at z = 0, and consists
of alternating chemically distinct patches of size Mx which
are wetted by A and B, respectively. Similarly, in d = 3, a
checkerboard substrate (cf. Fig. 1) is placed in the (x, y) plane
at z = 0. It consists of alternating rectangular patches of size
Mx × My. For the d = 3 case, we will also briefly discuss
SDSD on a random substrate. In this case, the substrate gives
rise to a random field h1(�ρ) due to the presence of surface
impurities. Such substrates are common in natural systems.

Using the Euler-discretization technique, we numerically
solved Eqs. (13)–(15). The discretization mesh sizes were

x = 1.0 and 
t = 0.03, which give a stable numeri-
cal scheme. The lattice size was Lx × Lz in d = 2 (Lx =
1024, Lz = 256), and Lx × Ly × Lz in d = 3 (Lx = Ly =
256, Lz = 64). The boundary conditions in Eqs. (14) and (15)
were imposed at z = 0. We used free boundary conditions at
z = Lz:

0 = ∂ψ

∂z

∣∣∣∣
z=Lz

, (16)
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0 =
[

∂

∂z

{
−ψ + ψ3 − 1

2
∇2ψ

}
+ θz

]
z=Lz

. (17)

We imposed periodic boundary conditions in all other direc-
tions.

We started the simulation with a random initial condition
for the order parameter: ψ (�r, 0) = 0.0 ± 0.01. This mimics
the disordered state with critical composition, prior to the
quench below Tc. The noise amplitude ε = 0.041, corre-
sponding to deep quenches with T � 0.22Tc [10,12]. The
lateral diffusion coefficient in Eq. (14) is γ̃ = 0.5. The other
parameter values were chosen as follows:

(a) For the checkerboard substrate, the chemically distinct
patches attracted A (B) with h1 = +1.0 (−1.0). Further, g =
−0.4 and γ = +0.4. This corresponds to the CW morphology
in equilibrium for a homogeneous substrate.

(b) For the random substrate, the field h1(�ρ) was a random
variable chosen from a Gaussian distribution with average 0
and variance 
 = 2.0. Moreover, g = −0.4 and γ = +0.4.

III. DETAILED NUMERICAL RESULTS

A. Checkerboard substrates

In this paper, we will primarily focus on checkerboard
substrates. Let us first present representative results for SDSD
in d = 2. Figure 2 shows the evolution snapshots of the
system at different times for patches with Mx = 16. The linear
stability analysis (about ψ∗ = 0) of Eq. (13) with �θ = 0 shows
us that the most unstable wave vector for the CHC equation
is km = 1, with wavelength λm = 2π/km = 2π . (Recall that
all lengths are measured in units of ξb, the bulk correlation
length.) Thus, the patches in Fig. 2 are 16/(2π ) � 2.55 times
the bulk spinodal wavelength. The domain morphology in the
vicinity of the substrate is complicated. The surface pattern
is always maintained in the z = 1 layer, and the bulk is
characterized by the usual bicontinuous SD morphology. In
the early stages of evolution, a few layers close to the substrate
maintain surface registry, but this dissolves at later times
when the bulk length scale L(t ) � Mx. Thus, the timescale
on which the registry melts is tc ∼ M3

x . Moreover, the degree
of surface registry is lower for larger z, due to the interfer-
ence of oppositely-oriented SDSD waves originating from the
checkerboard surface.

This evolution should be contrasted with SDSD at a chem-
ically homogeneous substrate. In that case, at early times,
the SDSD waves have an oscillatory profile propagating into
the bulk. At later times, bulk phase separation destroys the
oscillatory profile, and only the wetting layer and depletion
layer survive [15,18,19].

In Fig. 3, we plot order-parameter profiles ψ (x, z, t ) versus
x for different z. These are obtained from the snapshots in
Fig. 2. First, consider the profile at z = 2. For t � 2000, the
profile exhibits an alternating behavior imposed by the surface
pattern. This melts at later times, as the bulk segregation
becomes the dominant process. A similar statement applies
for z = 3, except that we already see the initial stages of
melting of the registry by t = 300 (the earliest time shown).
The profiles at z = 128 show no signs of the surface pattern,
as expected. They are just the usual bulk SD profiles.

FIG. 2. Snapshots of SDSD in an unstable binary (AB) mix-
ture evolving from a homogeneous initial condition with critical
composition (ψ0 = 0). We show snapshots at (a) t = 300, (b) t =
1800, (c) t = 5400, and (d) t = 10 800. The A-rich regions with
ψ > 0 are marked in black, while the B-rich regions with ψ < 0
are unmarked. The snapshots correspond to a d = 2 lattice of size
Lx × Lz = 1024 × 256. The length of each chemical patch is Mx =
16—the regions which attract A are marked by lines just below
z = 0.

We next present results for the d = 3 case, where the
surface is two-dimensional. In Fig. 4, we show evolution
snapshots of the z = 3 layer. The size of patches on the
substrate is Mx × My = 16 × 16. (As in the d = 2 case, the
z = 1 layer is in registry with the substrate.) We observe a
checkerboard morphology at t = 270. However, the domains
are circular and form connecting necks to minimize the sur-
face tension. At later times, this morphology starts melting
as bulk phase separation dominates over surface-field-driven
patterning. The snapshot at t = 10 800 shows that the checker-
board morphology has almost completely disappeared. The
only remaining sign of the surface pattern is the corrugated
structure on the domain boundaries. (In bulk SD, the inter-
faces are smooth and flat as this minimizes curvature.) As in
the d = 2 case, the persistence time of the registry scales as
tc ∼ M3

x . Clearly, tc also increases with h1, the strength of the
surface field.

In Fig. 5, to study the role of z, we plot different layers
at t = 5400. As we move away from the substrate, the
checkerboard morphology disappears. The domain morphol-
ogy at z = 10 barely shows any sign of the surface pattern.
For a given patch size, the depth of surface registry increases
with h1.

Further, to study the effect of patch size on SDSD, we
plot cross-sections in the (x, y) plane at a given height, z = 5.
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FIG. 3. Order-parameter profiles ψ (x, z, t ) vs. x for different t ,
as specified. We show data for (a) z = 2, (b) z = 3, (c) z = 7, and
(d) z = 128. These profiles are obtained from the snapshots shown
in Fig. 2. For the sake of clarity, we have shown only the region
x ∈ [1, 192].

Figure 6 shows evolution snapshots at t = 5400 for different
patch sizes. Recall that the surface registry is destroyed when
the bulk length scale L(t ) becomes comparable to the patch
size. Therefore, at a given height, we expect the registry to
melt earlier for smaller Mx. For patch sizes 82, the morphology
is similar to that for bulk phase separation, and independent of
the surface pattern. However, for patch sizes 162, the pattern
is intermediate between registry and bulk SD. The domain
boundaries are affected by the patterning on the substrate.
Finally, the checkerboard morphology persists at t = 5400 for
patch size 322.

The primary aim of this paper is to make quantitative
statements about the time-dependence of the domain mor-
phology. Let us now tackle this task. To characterize the
morphologies [15], we calculated the layerwise correlation
function C(�ρ, z, t ) of the order parameter field. Here, we
choose layers close to the substrate, as well as in the bulk of
the system. The layerwise equal-time correlation function is
defined as

C(�ρ, z, t ) = 1

Lx × Ly

∫
d �R[〈ψ ( �R, z, t )ψ ( �R + �ρ, z, t )〉

− 〈ψ ( �R, z, t )〉〈ψ ( �R + �ρ, z, t )〉], (18)

where the angular brackets denote an averaging over indepen-
dent initial conditions and thermal fluctuations. The pattern is
isotropic in the �ρ plane, so we spherically average C(�ρ, z, t )

FIG. 4. Snapshots of SDSD in an unstable binary (AB) mixture
evolving from a homogeneous initial condition with critical com-
position (ψ0 = 0) in d = 3. The snapshots correspond to (a) t =
270, (b) t = 2700, (c) t = 5400, and (d) t = 10 800. The system
size is Lx × Ly × Lz = 256 × 256 × 64. The snapshots show a cross-
section in the (x, y) plane at z = 3. The projections of chemically
distinct patches on the substrate are marked in brown and gray,
respectively. The size of the patches is Mx × My = 16 × 16.

to obtain C(ρ, z, t ). If the evolution of the system is charac-
terized by a single z-dependent length scale L(z, t ), then we
expect the correlation functions to exhibit dynamical scaling:

C(ρ, z, t ) = gz

[
ρ

L(z, t )

]
. (19)

Eq. (19) is the generalization of Eq. (1), where we allow for
the possibility that the scaling function also depends on z.

We also compute the layerwise structure factor S(�kρ, z, t ),
which is the Fourier transform of C(�ρ, z, t ) at wave vector �kρ :

S(�kρ, z, t ) =
∫

d �ρ ei �kρ ·�ρ C(�ρ, z, t ). (20)

We spherically average S(�kρ, z, t ) in the �kρ plane to obtain
S(kρ, z, t ). The dynamical scaling form of S(kρ, z, t ) is the
appropriate generalization of Eq. (2):

S(kρ, z, t ) = L(z, t )d fz[kρL(z, t )]. (21)

All statistical quantities presented here were obtained as aver-
ages over 20 independent runs. Each run started from a differ-
ent initial condition and had a different noise realization. As
this is a nonequilibrium system, we do not average statistical
quantities over time.

Figure 7 is a scaling plot of C(ρ, z, t ) and S(kρ, z, t ) at
z = 3 (cf. Fig. 4), i.e., a layer close to the substrate. In
Fig. 7(a), we plot C(ρ, z, t ) versus ρ/L(z, t ) at different times.
We define L(z, t ) as the first zero crossing of C(ρ, z, t ). We
do not observe a data collapse for C(ρ, z, t ), showing the
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FIG. 5. Snapshots at t = 5400 for (a) z = 2, (b) z = 5, (c) z =
10, and (d) z = 32. The other details are the same as described in the
caption of Fig. 4.

breakdown of dynamical scaling in this case. This is due to
the kinetic interplay of surface-field-driven registry and bulk
phase separation near the substrate. This interplay results in
a crossover from a checkerboard morphology (for t < tc) to
an SD morphology (for t > tc). Therefore, C(ρ, z, t ) at early
times [t = 1800 in Fig. 7(a)] is similar to that for z = 1 [solid
line in Fig. 7(a)], which is a long-range oscillatory function
due to the checkerboard morphology. In the bulk (for large
z = 32), we found that C(ρ, z, t ) obeys dynamical scaling, as
the surface is not relevant. The bulk C(ρ, z, t ) is also shown
as a solid red line in Fig. 7(a). We see that C(ρ, z, t ) at
later times [t = 9000 in Fig. 7(a)] is similar to that for the
bulk. In Fig. 7(b), we plot S(kρ, z, t )L(z, t )−2 vs. kρL(z, t ) on
a log-log scale. As in Fig. 7(a), the data does not collapse
but rather shows a crossover from surface registry to bulk
phase separation. In the limit of large kρ , S(kρ, z, t ) ∼ k−3

ρ

at all times, following the well-known Porod’s law [50,51].
This is a consequence of scattering from sharp interfaces,
which are always present in the morphology even though it
is undergoing a crossover in this time-window. The behavior

seen in Fig. 7 applies for all values of z near the substrate, with
an appropriate shift in the crossover time tc.

Finally, we study the domain growth laws. In Fig. 8(a),
we plot L(z, t ) vs. t on a log-log scale for different values
of z and patch size 162 (cf. Fig. 4). For layers far from the
substrate (e.g., z = 32), L(z, t ) follows the LS growth law,
L(t ) ∼ t1/3. We observe an anomalous growth law at early
times for layers closer to the substrate, e.g., z = 3, 5, 10. For
an extended period of time, L(z, t ) is approximately constant
at the patch length scale Mx. With the passage of time, the
checkerboard is destroyed and the length scale crosses over
to the LS growth law. The melting of the registry occurs
layerwise, so the data for z = 3 is the last data set to cross over
into the LS regime. To study the role of patch sizes, we plot
L(z, t ) vs. t at z = 5 for different patch sizes in Fig. 8(b) (cf.
Fig. 6). Clearly, anomalous growth is observed at early times,
which crosses over to LS growth at later times. The crossover
time tc increases with the patch size. As a matter of fact, our
data for Mx × My = 322 in Fig. 8(b) has not yet entered the
LS regime.

In the above discussion, we have restricted ourselves to
surfaces with square patches. There are also many appli-
cations which involve rectangular patches with Mx �= My.
In particular, the case of a one-dimensional surface pattern
(stripes) with My = Ly is experimentally very interesting. We
defer a study of this problem to future work.

B. Random substrates

Next, let us present some results for randomly patterned
substrates. In many natural systems, surface impurities give
rise to random fields. We model this by assuming that h1(�ρ)
is a random variable drawn from a Gaussian distribution:

P(h1) = 1√
2π


e−h2
1/(2
2 ), (22)

where 
 measures the disorder strength. The results presented
below correspond to 
 = 2.0.

In Fig. 9, we show snapshots of the ψ field in the (x, y)
plane for SDSD with a random field. The pictures correspond
to t = 5400 and z = 1, 2, 32. The bulk snapshot for z = 32
is shown for reference purposes. The snapshots for z = 1
(surface layer) and z = 2 show a similar morphology, as
expected. However, there are two important differences:

(a) The domains for z = 1 are much noisier, with many A
atoms lying inside the B-rich domains and vice versa, due to
the random field.

FIG. 6. Snapshots at t = 5400 and z = 5 for patch sizes (a) Mx × My = 8 × 8, (b) Mx × My = 16 × 16, and (c) Mx × My = 32 × 32.
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FIG. 7. Scaling plot of layerwise correlation functions and struc-
ture factors for the evolution shown in Fig. 4. (a) Plot of C(ρ, z, t ) vs.
ρ/L(z, t ) for z = 3 at different times. For reference, we also show
data for z = 1, 32. We define the length scale L(z, t ) as the first
zero crossing of C(ρ, z, t ). (b) Log-log plot of S(kρ, z, t )L(z, t )−2

vs. kρL(z, t ) for z = 3 at different times. We also show data for
z = 1, 32. The symbols used have the same meaning as in (a). The
solid line labeled k−3

ρ shows Porod’s law.

(b) The domain boundaries for z = 1 are much rougher, as
the interfaces find locally favorable positions in the random
field.

These “fractal” domains for z = 1 have important implica-
tions for the correlation function and structure factor, as we
will see next.

10
2

10
3 10

4

t

10L
(z

, t
)

z =  3
z =  5
z = 10
z = 32
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1/3
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FIG. 8. Time-dependence of the characteristic length scale
L(z, t ). (a) Log-log plot of L(z, t ) vs. t for different z, as indicated.
The size of patches on the substrate is Mx × My = 16 × 16(see
Fig. 4). (b) Log-log plot of L(z, t ) vs. t for z = 5 and different patch
sizes, as specified (see Fig. 6). The line labeled t1/3 denotes the LS
law.

In Fig. 10, we show the scaling behavior of C(ρ, z, t )
and S(kρ, z, t ). In Fig. 10(a), the scaled correlation function
is comparable for z = 2 and z = 32, showing that the bulk
morphology sets in by z = 2. However, C(ρ, z, t ) for z = 1 is
markedly different. An important difference is that C(ρ, z, t )
decays from its maximum value with a cusp behavior [1 −
C(ρ, z, t ) = aρθ + . . .]. This should be contrasted with the
linear decay [1 − C(ρ, z, t ) = bρ + . . .] for z = 2, 32. The
linear decay characterizes sharp interfaces and gives rise to

FIG. 9. Snapshots at t = 5400 for SDSD on a random substrate. The cross-sections are taken in the (x, y) plane at (a) z = 1, (b) z = 2, and
(c) z = 32.
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FIG. 10. Scaling plot of layerwise correlation functions and
structure factors for the snapshots shown in Fig. 9. (a) Plot
of C(ρ, z, t ) vs. ρ/L(z, t ) for z = 1, 2, 32. (b) Log-log plot of
S(kρ, z, t )L(z, t )−2 vs. kρL(z, t ) for z = 1, 2, 32. The dashed line
labeled k−1.54

ρ shows a fractal Porod law.

a Porod law [50] in the structure factor, S(kρ, z, t ) ∼ k−(d+1)
ρ ,

which we have mentioned earlier. On the other hand, the
cusp behavior for z = 1 gives rise to a fractal Porod law
[52–55]: S(kρ, z, t ) ∼ k−(d+θ )

ρ , where θ is related to the fractal
dimension dm as θ = dm − d for a mass fractal. This is
confirmed in Fig. 10(b), where we plot S(kρ, z, t )L(z, t )−2

vs. kρL(z, t ). We see a Porod tail in the data for z = 2, 32.
However, we see a fractal Porod tail in the data for z = 1. The
corresponding decay exponent is estimated as d + θ � 1.54,
showing that the domains in Fig. 9(a) are mass fractals with
dm � 1.54.

In Fig. 11, we show the time-dependence of the layerwise
length scales for z = 1, 2, 32. In the surface layer, the growth
is significantly slower than the bulk. However, the growth law
is consistent with the LS law for all three layers—only the
prefactors are different. We see no signature of the logarithmic
growth reported for domain growth in the random-field Ising
model (RFIM) [56,57]. We expect that logarithmic growth
would be observed here if the surface gives rise to a long-
range random field, rather than the short-range field consid-
ered here.

IV. SUMMARY AND DISCUSSION

Let us conclude this paper with a summary and discussion
of our results. We have studied surface-directed spinodal
decomposition (SDSD) on a chemically patterned substrate.
We primarily consider the case of a checkerboard pattern

FIG. 11. SDSD on a random substrate: log-log plot of L(z, t ) vs.
t for z = 1, 2, 32.

(see Fig. 1), where alternating patches are wetted by the
components A and B of the mixture, respectively. However,
most of our results apply to arbitrary surface patterns. In
contrast to earlier studies, our goal is to make quantita-
tive statements about the pattern dynamics near and at the
surface.

We modeled the system using the Puri-Binder (PB) model
of SDSD [15]. In the PB model, bulk phase separation is
described by the Cahn-Hilliard-Cook (CHC) equation with an
additional term due to the surface potential. This is a fourth-
order partial differential equation, so it must be supplemented
by two boundary conditions whenever a surface is introduced.
The first boundary condition relaxes the order parameter at
the surface to its equilibrium value via nonconserved kinetics.
The second boundary condition is the no-flux or zero-current
condition, which accounts for the absence of material trans-
port across the surface.

We start our simulation with a homogeneous mix of A and
B, and quench the system to low temperatures. The surface
patches are rapidly wetted by the preferred components on a
timescale which is much faster than that of phase separation.
In the initial stages, the surface registry extends several layers
into the bulk. However, the ongoing phase separation melts
the surface pattern, starting with the uppermost layers. The
melting process destroys the surface registry, until only the
surface layer remains registered to the base pattern. The
melting time (tc) scales with the patch size (Mx) as tc ∼ M3

x .
Thus, the morphology at a fixed z (near the substrate) shows
a crossover from surface registry to bulk phase separation.
This crossover can also be seen in the layerwise correla-
tion function C(ρ, z, t ) or structure factor S(kρ, z, t ), and the
corresponding length scale L(z, t ). A universal feature that
survives the crossover is the Porod tail in the structure factor,
which arises due to scattering from sharp interfaces—these
are present in both the surface pattern and the bulk segregation
pattern.

As stressed in the introduction, the problem of SDSD
on chemically patterned substrates is of great scientific and
technological importance. We hope that the theoretical re-
sults presented here will be subjected to experimental test.
There are many aspects of this problem which remain poorly
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understood, e.g., mixture composition, hydrodynamic veloc-
ity fields in fluid mixtures, confined geometries like thin
films and wedges, etc. We believe that future experiments and
theoretical studies should focus on some of these outstanding
problems.
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