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Influence of the Turing instability on the motion of domain boundaries
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Turing’s theory of pattern formation has provided crucial insights into the behavior of various biological,
geographical, and chemical systems over the last few decades. Existing studies have focused on moving-
boundary Turing systems for which the motion of the boundary is prescribed by an external agent. In this paper,
we present an extension of this theory to a class of systems in which the front motion is governed by the physical
processes that occur within the domain. Biological systems exhibiting apically dominant growth and corrosion
of metals and alloys highlight some of the noteworthy examples of such systems. In this study, we characterize
the nature of interaction between the moving front and the Turing-instability for both an activator-inhibitor and
an activator-substrate model. Behavioral regimes of periodic, as well as nonperiodic (nonconstant), growth rates
are obtained. Furthermore, the trends in the first show striking similarities with the cyclic-boundary-kinetics
observed in experimental systems. In general, a stationary, periodic structure is also left behind the moving
front. If the periodicity of the boundary kinetics agrees with the allowed range of the stable-periodic solutions,
the pattern formed tends to persist. Otherwise, it evolves to a nearby energy-minimum either by peak-splitting,
peak-decay, or by settling down to a spatially homogeneous state.

DOI: 10.1103/PhysRevE.102.012802

I. INTRODUCTION

Alan Turing proposed his pioneering theory for pattern
formation in biological systems in 1952 [1]. It relied on
the existence of a system of biochemical species he called
morphogens (in view of their possible role in determining the
structure of living organisms), reacting and diffusing within
a tissue. He suggested that the development of patterns in an
initially homogeneous embryo (e.g., leaves arranging period-
ically on a plant stem) can correspond to the stable stationary
waves of the concentration of morphogens generated as the
result of an instability of the homogeneous equilibrium state.
The simplicity of the theory, and its capability to produce a
wide range of distinctive patterns, has triggered significant
efforts to find specific applications. Murray’s [2] extension of
this work, in a paper titled “How the Leopard Gets Its Spots”,
shows striking similarities between simulated Turing patterns
and the stripes or spots observed on various mammalian coats.
Kondo et al. [3] used this framework to simulate stripes on the
marine angelfish, Pomacanthus, showing that it can explain
the observation that the stripe spacing remains constant as the
fish grows. Meinhardt et al. [4] proposed a reaction-diffusion
model that accurately reproduced the diverse patterns ob-
served on the shells of mollusks. A recent study [5] indicated
that the skin denticles on sharks, the structures that allow
them to swim swiftly, could also be a result of an underlying
Turing mechanism. Though originally developed and applied
extensively to the field of developmental biology, as discussed
above [2–7], the mathematical formalism of the theory has
also been found to be applicable to a much broader range
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of scientific problems, including the study of geological and
demographic patterns [8,9].

A. Mathematical structure

A Turing system is typically characterized by the evo-
lution of spatial patterns in the concentrations or values
u(x, t ), v(x, t ) of two interacting species, where x and t
correspond to spatial and temporal coordinates, respectively.
Such a system with linear diffusion can be described by the
differential equations

∂u

∂t
= Du

∂2u

∂x2
+ f (u, v),

∂v

∂t
= Dv

∂2v

∂x2
+ g(u, v) , (1)

where Du and Dv are the diffusion coefficients for u and
v, respectively. The functions f (u, v) and g(u, v) define the
influence of each concentration on its own growth rate, and
also the coupling between the two concentrations. Instabilities
can occur, leading to pattern formation, if one species (the
activator) has a promoting effect on itself, while the other sup-
presses itself. Here we shall take v to represent the activator,
in which case the inequalities

∂g(u, v)

∂v
> 0 ,

∂ f (u, v)

∂u
< 0 ,

∂g(u, v)

∂u

∂ f (u, v)

∂v
< 0 , Du > Dv (2)

define a necessary but not sufficient condition for pattern
formation. The inequality Du > Dv requires that the activator
should be less mobile than u.

The third inequality in Eq. (2) implies that u and v have
opposite effects on each other and can be satisfied in two
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different ways, i.e.,

∂g(u, v)

∂u
< 0 and

∂ f (u, v)

∂v
> 0, (3)

or

∂g(u, v)

∂u
> 0 and

∂ f (u, v)

∂v
< 0 . (4)

The conditions (3) define an activator-inhibitor system since
v activates both itself and u, while the inhibitor u suppresses
both itself and v. By contrast, Eq. (4) defines an activator-
substrate system, in which u suppresses itself but promotes
v, while v promotes itself and suppresses u. In this case u is
called the substrate since it is consumed while producing the
activator v.

B. Moving boundary problems

Several forms were proposed for the interaction functions
f (u, v), g(u, v), and were shown to be capable of predicting
the development of Turing patterns in appropriate parameter
ranges [10–12]. Many of these studies focused on fixed spatial
domains, but the results proved useful in interpreting the
experimentally observed behavior of physical systems where
the domain grows in time [5,13]. Crampin et al. [14] devel-
oped a rigorous analytical framework for problems of this
class, and demonstrated the significance of domain growth
as a possible mechanism for reliability in pattern selection.
In particular, the long-time pattern is then independent of
the initial conditions, in contrast to results for fixed domains
[14,15]. This framework has been applied to systems where
all elements of the spatial domain grow either at a prescribed
growth rate [14–17] or at a rate that is controlled by the species
or reactants [18,19]. Recently, the analysis of such systems
was extended to include the effect of anisotropy in growth
rates and the curvature of growing ellipsoidal surfaces [20].
This case of bulk growth is appropriate for a wide variety
of biological systems, where each tissue within the domain
grows in size. However, there is another class of spatially
patterned systems where the domain grows only locally, at a
domain boundary or interface (for example, apically growing
biological systems [21], oxide layers formed on certain alloys
[22], and cloud patterns [23]).

Crampin et al. [16] simulated Turing systems with a mov-
ing domain boundary and observed the development of a
stationary periodic structure behind the moving front. Sim-
ilar results were obtained by other authors [24–26], but all
these investigations were restricted to systems in which the
boundary was prescribed to move at a constant rate. However,
we are interested in physical systems for which the boundary
or interface motion is not prescribed by an external agent,
but results from the physics within the domain, such as local
concentrations of species. For example, pollen tubes, which
exhibit localized growth at a tip [27], are observed to have
oscillatory growth rates [28] and periodic depositions of cer-
tain pectins [29]. In oxide films formed on zirconium alloys,
periodic increases from an approximately parabolic rate of the
metal-oxide interface movement (which, like many other oxi-
dation processes [30], is controlled by the local concentration
of the oxygen ions) are observed [22]. Additionally, the oxide
film exhibits a layered structure that is directly correlated with

this periodicity [22]. To the best of our knowledge, there are
no existing theories which provide a rigorous explanation of
the phenomena discussed above.

In this paper, we investigate the interaction between a
pattern-causing Turing instability and the motion of a domain
boundary for cases where the instantaneous boundary velocity
is driven by a local concentration. In particular, we shall
document the nature of this interaction in the context of
Gierer-Meinhardt’s activator-inhibitor model, and Schnaken-
berg’s activator-substrate model, as shown in the next section.

II. ACTIVATOR-INHIBITOR SYSTEM

Gierer-Meinhardt’s activator-inhibitor model can be ex-
pressed in dimensionless form as

∂ ũ

∂ t̃
= ∂2ũ

∂ x̃2
− ũ + ṽ2,

∂ ṽ

∂ t̃
= RD

∂2ṽ

∂ x̃2
+ c̃3

ṽ2

ũ
− c̃4ṽ (5)

(see Appendix A), where RD = Dv/Du, c̃3, c̃4 are dimension-
less constants and ũ, ṽ, x̃ and t̃ are dimensionless versions of
the parameters and coordinates introduced in Eq. (1). These
equations have a homogeneous steady-state solution

ṽ = c̃3

c̃4
, ũ =

(
c̃3

c̃4

)2

(6)

in an infinite spatial domain, but this is unstable in the range

c̃4

RD
>

1

(3 − 2
√

2)
≈ 5.82 , (7)

(see Appendix A). This instability results in the formation of
the stationary, periodic concentration profiles in an infinite
spatial domain, associated with Turing patterns [10]. In a
finite fixed domain, the periodicity may be modified near the
boundaries to adjust to the boundary conditions.

In this paper, we consider the domain defined by 0 <

x̃ < h̃(t̃ ), where x̃ = 0 is a fixed boundary, and x̃ = h̃(t̃ ) is
a moving boundary whose motion is determined by local
concentrations. In particular, we assume

dh̃

dt̃
= k̃ũ(h̃, t̃ ) , (8)

where k̃ is a constant that might represent a reaction constant
if the boundary motion is associated with a chemical reaction
[30]. At the fixed boundary x̃ = 0, we assume

ũ(0, t̃ ) = ũ0 and
∂ ṽ

∂ x̃
(0, t̃ ) = 0 , (9)

and at the moving boundary,

ṽ(h̃, t̃ ) = ṽh̃ and − ∂ ũ

∂ x̃
(h̃, t̃ ) = [ũ(h̃, t̃ ) + Q̃]

dh̃

dt̃
. (10)

The last condition represents a flux balance for the species ũ,
with the constant Q̃ representing the amount of ũ consumed
per unit area in moving the boundary through a unit distance.
If the species ũ acts only as a catalyst for the process that
drives the boundary motion, Q̃ may be taken as zero.
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FIG. 1. Periodic behavior: (a) Contours of ũ showing periodic transitions between convex-upward segments of the boundary kinetics,
each caused by a peak in ũ at the moving front. The distance traversed between two transitions, h̃period, is equal to the wavelength (λ̃) of the
stationary pattern left behind the moving front. (b) Spatiotemporal concentration profile for the species ũ showing development of peaks at
the moving front. x̃ is the distance from the fixed surface. Results are obtained using Gierer-Meinhardt activator (v)-inhibitor (u) kinetics with
c̃4 = 0.6, RD = 3/40, c̃3 = 1, ũ0 = 1, ṽh̃ = 0.3, Q̃ = 1, and k̃ = 1.

A. Numerical procedure

For the numerical solution of these equations, it is con-
venient to use the coordinate transformation x̃ = ζ h̃(t̃ ) to
convert the problem to one on the fixed domain 0 < ζ < 1.
The governing equations then take the form

∂ ũ

∂ t̃
= ζ

h̃

dh̃

dt̃

∂ ũ

∂ζ
+ 1

h̃2

∂2ũ

∂ζ 2
− ũ + ṽ2, (11)

∂ ṽ

∂ t̃
= ζ

h̃

dh̃

dt̃

∂ ṽ

∂ζ
+ RD

h̃2

∂2ṽ

∂ζ 2
+ c̃3

ṽ2

ũ
− c̃4ṽ, (12)

dh̃

dt̃
= k̃ũ(1, t̃ ) , (13)

with boundary conditions

ũ(0, t̃ ) = ũ0 ,
∂ ṽ

∂ζ
(0, t̃ ) = 0 , ṽ(1, t̃ ) = ṽh ,

− ∂ ũ

∂ζ
(1, t̃ ) = h̃[ũ(1, t̃ ) + Q̃]

dh̃

dt̃
. (14)

This system of equations was solved using the finite-element-
based software package FLEX-PDE professional version 7.15.

To start the solution procedure, we needed to define a finite
initial domain size h̃(0) ≡ h̃0 and the corresponding initial
spatial distributions ũ(ζ , 0), ṽ(ζ , 0). Here we used h̃0 = 1 and
simple linear distributions, with parameters chosen to satisfy
Eqs. (13) and (14). In general, the numerical results were
found to be insensitive to initial conditions once the domain
size was large compared with h̃0.

B. Characterization of the model response

The response of the model can be periodic or nonperiodic
depending on the values of the dimensionless parameters
c̃3, c̃4, RD, k̃, Q̃ and the boundary values ũ0 and ṽh̃. In this
section, we shall give illustrations of several kinds of behavior,
and some indication of the parameter ranges in which they are
to be expected.

The simplest class of behavior is that where the inequality
(7) is not satisfied, so that the homogeneous solution is
stable. In this case, the moving boundary may advance at a
constant rate, or it may show periodic variations depending
on parameter values, but the distributions of ũ, ṽ eventually
converge on the homogeneous solution (6), except in regions
adjacent to the instantaneous domain boundaries.

If the homogeneous solution is unstable, the distributions
far from the moving front should be unaffected by it, and
hence must converge on a steady state that is stable in an
infinite domain. In Appendix B, we determine both stable
and unstable periodic steady-state solutions of Eq. (5), using
the MATLAB package PDE2PATH [31,32]. For given parameter
values satisfying Eq. (7), stable periodic solutions exist in a
finite range of wavelengths, the upper bound of which is sig-
nificantly higher than that obtained by linear perturbation of
the homogeneous solution. For systems not satisfying Eq. (7),
no periodic solutions are obtained.

1. Periodic behavior

Figure 1 shows (a) contours of ũ and the motion of the
domain boundary h̃(t̃ ), and (b) the spatiotemporal distribu-
tions of ũ (following the work of Crampin et al. [14]), for the
parameter values c̃3 = 1, c̃4 = 0.6, RD = 3/40, k̃ = 1, Q̃ = 1
and boundary values ũ0 = 1, ṽh = 0.3. In Fig. 1(a), segments
of “convex-upward” boundary kinetics are separated by rapid
changes of velocity, which we refer to as “transitions”. Each
transition corresponds to the formation of a peak in the
concentrations of both ũ [as shown in Fig. 1(b)] and ṽ. After
the passage of the moving boundary, the spatial distributions
rapidly converge on a stationary periodic pattern (except near
the fixed boundary) in which the peaks of ũ and ṽ coincide.
In Fig. 1, each transition corresponds to a peak at the mov-
ing boundary and these peaks persist so that the resulting
stationary pattern has dimensionless wavelength λ̃, equal to
the advance h̃period of the moving front between successive
transitions. However, if c̃4 is increased to 1.4, keeping the
other parameters unchanged, the function h̃(t̃ ) has a periodic
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FIG. 2. Random behavior: (a) Contours of ũ showing erratic boundary kinetics. (b) Spatiotemporal evolution of the species ũ showing
random development of peaks at the moving boundary, and the following erratic fluctuations in the amplitude for Gierer-Meinhardt activator
(v)-inhibitor (u) kinetics with c̃4 = 1.8, RD = 3/40, c̃3 = 1, ũ0 = 1, ṽh̃ = 0.3, Q̃ = 1, and k̃ = 1. Homogeneous initial conditions consistent
with the boundary conditions are used.

form similar to that in Fig. 1(a), but behind the moving front
every second peak starts to decay, and the pattern eventually
evolves to one with a wavelength λ̃ = 2h̃period.

Fixed-domain simulations (see Appendix B) using these
parameter values show that steady-state periodic solutions do
exist with a wavelength λ̃ = h̃period, but they are unstable.
Thus, the moving front imposes a certain periodicity on the
pattern, but its persistence as a steady state or its subsequent
evolution depend on features of the equation system that are
independent of the domain size or its evolution in time.

2. Random behaviour

If c̃4 is increased further to 1.8 while keeping the other
parameters unchanged from those used in Fig. 1, the boundary
velocity exhibits essentially random perturbations from an
otherwise linear trend as shown in Fig. 2(a). The correspond-
ing concentrations of ũ at the moving boundary also fluctu-
ate randomly, but as the boundary recedes, the distributions
evolve into relatively isolated peaks as shown in Fig. 2(b).
The amplitudes of these peaks fluctuate erratically, with some
decaying eventually to zero. The others stabilize at a more or
less reproducible maximum value, which for these parameter
values is ũmax ≈ 0.64, ṽmax ≈ 1.56. Throughout this transient
process, the peaks in ũ and ṽ remain spatially coincident.

3. Periodic boundary motion without patterns

If c̃4 in the above case is increased beyond about 1.9,
the boundary motion reverts to a convex-upward periodic
form like that in Fig. 1(a), but the distributions of ũ and ṽ

then decay asymptotically to zero, so that regions away from
the boundaries eventually become completely devoid of both
species. At first sight, this appears to be inconsistent with
the presence of the term c̃3ṽ

2/ũ in Eq. (5). However, if we
assume that ũ, ṽ are spatially homogeneous and that ṽ � ũ,
these equations can be approximated as

dũ

dt̃
+ ũ = 0 ,

d ṽ

dt̃
+ c̃4ṽ = 0 , (15)

with solution ũ = C exp (−t̃ ), ṽ = D exp (−c̃4t̃ ) where C, D
are constants. The condition ṽ � ũ then reduces to

D

C
exp[(1 − c̃4)t̃ ] � 1 , (16)

which will be satisfied for all t̃ if c̃4 > 1 and the initial
conditions are chosen such that D/C � 1. Thus c̃4 > 1 is a
necessary but not sufficient condition for ũ and ṽ to decay
towards zero, as is shown by the results described above for
c̃4 = 1.4 and 1.8.

C. Dependence of Turing-pattern wavelength
on boundary kinetics

For the Gierer-Meinhardt model, Turing patterns corre-
spond to stable time-invariant periodic solutions of Eq. (5).
The results described above show that boundary kinetics have
a significant effect on the distributions generated immediately
behind the moving front, but the resulting patterns persist only
if they lie in the appropriate stable wavelength range (see
Appendix B), or if they can evolve to such a wavelength.

Figure 3 shows the wavelength of the resulting steady-
state pattern as a function of the growth-rate parame-
ter k̃ in Eq. (8) for two sets of parameter values, A:
[RD = 1/16, c̃3 = 0.83, ṽh = 0.3] and B: [RD = 3/40, c̃3 =
1.0, ṽh = 0.1]. The remaining parameters c̃4 = 0.5, ũ0 = 1,
and Q̃ = 1 are common to both cases. The dashed lines in
Fig. 3 represent the lower (λ̃1) and upper (λ̃2) bounds of
the range of wavelengths of stable periodic patterns obtained
numerically, as discussed in Appendix B. Notice that the
upper bound for case [A] is approximately λ̃A

2 ≈21 so does
not appear in Fig. 3.

Case [A] corresponds to the ratio c̃4/RD = 8, which is well
above the boundary for the instability defined in Eq. (7). At
lower values of k̃, the wavelength generated at the moving
front is retained in the steady state, and it decreases monotoni-
cally as k̃ is increased over five orders of magnitude. However,
for k̃ > 1 some of the peaks generated decay, leading to a
larger steady-state wavelength, as discussed in Sec. II B 1.
These results are indicated by triangles in Fig. 3.
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FIG. 3. Turing-pattern wavelength as a function of the growth-
rate parameter k̃ in Eq. (8). Hollow symbols [A] are for RD =
1/16, c̃3 = 0.83, ṽh = 0.3 and solid symbols [B] are for RD =
3/40, c̃3 = 1.0, ṽh = 0.1. In both cases, c̃4 = 0.5, ũ0 = 1, and Q̃ =
1. Triangles identify cases leading to peak decay, while circles
identify cases of peak splitting. Dashed lines represent bounds on
wavelengths of stable patterns (see Appendix B).

Case [B] corresponds to c̃4/RD = 6.7, for which a narrower
range of wavelengths is stable in the steady state. The actual
wavelength increases with decreasing k̃ down to k̃ ≈ 0.1,
below which some of the generated peaks split into two
through a transient process that we describe in more detail in
Sec. II C 1. Steady-state patterns generated by peak splitting
are indicated by circles in Fig. 3. Notice that peak splitting
occurs before h̃period reaches values for which steady-state
patterns are unstable. To elucidate this behavior, we performed
numerical simulations on a large fixed domain with periodic
initial conditions of wavelength close to the upper boundary

in Fig. 3. Results show that the pattern converges on the
steady state only if the initial distributions are very close to
those in the steady state. With all other initial conditions,
the system preferentially evolves towards a pattern with a
different wavelength.

1. Peak-splitting

In the previous section, we noted that peak splitting causes
the wavelength of the final pattern for case [B] to differ
from that generated at the moving front as this wavelength
approaches the upper boundary of the range of stable Turing
patterns for certain parameter values. Figure 4 shows this
evolutionary process for ũ(x̃, t̃ ) with k̃ = 1. For instance,
Fig. 4(a) shows that at t̃ ≈ 1475, a peak develops rapidly
near x̃ = 41. The shape of this peak changes relatively slowly
until t̃ ≈ 1620, at which time it starts to split into two peaks.
As these new peaks develop, they also move apart. The right
peak moves to the right, and eventually stabilizes at x̃ ≈ 40,
while the left peak moves a larger distance to the left, reaching
the location x̃ ≈ 47.5. Such an event is observed to occur
periodically. The corresponding influence on the motion of the
boundary is shown in Fig. 4(b). The initial peak development
is associated with a large increase in boundary velocity ˙̃h
labeled “strong transition” while the peak-splitting event gives
only a minor perturbation in the velocity. Strong transitions
are separated by a distance 2λ̃, where λ̃ is the wavelength of
the resulting Turing pattern.

The number of peaks that split in case [B] depends on the
value of k̃ and appears to self-select a value that results in a
wavelength well within the steady-state bounds. For example,
the points shown in Fig. 3 for case [B] as k̃ is decreased in the
range 0.1 > k̃ > 0.05 include cases where (i) one out of four,
or (ii) two out of every five peaks split, or (iii) each newly
generated peak splits four times. In each case, the resulting
pattern then adjusts as in Fig. 4 to give a uniform spacing in
the steady state.

At even lower values of k̃, a single peak is generated at
the moving boundary when the process starts; thereafter, all

FIG. 4. Periodic behavior with peak-splitting: (a) Spatiotemporal evolution of the species ũ showing each peak formed at the boundary
splitting once. (b) Contours of ũ showing a strong transition in the boundary kinetics for each peak formed at the boundary. The peaks farther
away from the moving front are observed to be stationary with a wavelength of λ̃. Strong transitions are separated by a distance h̃period = 2λ̃.
Results are obtained using Gierer-Meinhardt activator (v)-inhibitor (u) kinetics with c̃4 = 0.5, RD = 3/40, c̃3 = 1, ũ0 = 1, ṽh̃ = 0.01, Q̃ = 1,
and k̃ = 1.
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FIG. 5. Behavior of Schnakenberg’s activator-substrate model for RD = 3/400, ã = 0.9, b̃ = 0.1, ũ0 = 1, ṽh = 0.1, Q̃ = 1, and k̃ =
0.05. (a) Contours of ũ showing troughs developed at the boundary causing periodic transitions between concave-upward segments, in contrast
with the convex-upwards behavior in Fig. 1(b). (b) Contours of ṽ show every second peak formed at the boundary splitting. The peaks farther
away from the moving front are observed to be stationary. Peaks in ṽ coincide with troughs in ũ. Transitions are separated by a distance
h̃period = (3/2)λ̃. x̃ is the distance from the fixed surface.

subsequent peaks are generated by splitting the peak nearest
the moving boundary. In this case, there are no strong transi-
tions of the form shown in Fig. 4(b), and the boundary kinetics
are only slightly perturbed from linear.

These results are obtained using numerical simulations,
and, hence, we can only investigate cases with particular
parameter values. However, to give a broader picture of the
system behavior, Appendix C presents a map showing the
dependence of qualitative features of the behavior as functions
of ṽh and c̃4.

III. ACTIVATOR-SUBSTRATE SYSTEM

We next consider Schnakenberg’s activator-substrate
model [11], which can be described in the dimensionless form

∂ ũ

∂ t̃
= ∂2ũ

∂ x̃2
+ ã − ṽ2ũ,

∂ ṽ

∂ t̃
= RD

∂2ṽ

∂ x̃2
+ b̃ + ṽ2ũ − ṽ , (17)

[see Appendix D], where ũ, ṽ act as substrate and activator,
respectively, and RD � 1. As in Sec. II, we assume that the
velocity of the moving front is determined by Eq. (8), and the
remaining boundary conditions by Eqs. (9) and (10).

Figure 5 shows the response of the system for parameter
values RD = 3/400, ã = 0.9, b̃ = 0.1, ũ0 = 1, ṽh = 0.1, Q̃ =
1, and k̃ = 0.05. Troughs in the substrate concentration ũ
[Fig. 5(a)], and simultaneous peaks in the activator concen-
tration ṽ [Fig. 5(b)], are developed periodically at the moving
boundary. These events are associated with a transient reduc-
tion in domain growth rate, leading to the concave-upwards
boundary kinetics, in contrast to the convex-upwards kinetics
of the Gierer-Meinhardt model in Fig. 1(a).

Figure 5 also shows that for these set of parameters,
every second peak generated at the moving boundary splits.
Also, the splitting process initiates when this peak is two
peaks away from the boundary. The distribution, therefore,
eventually converges on a stationary periodic pattern, with
λ̃ = (2/3)h̃period.

IV. CONCLUSION

In this paper, we examine the interaction between pattern-
forming Turing instabilities and a domain boundary whose
motion is governed by the local concentration of one of
the species. Results for both the Gierer-Meinhardt activator-
inhibitor model [10] and the Schnakenberg activator-substrate
model [11] show parameter ranges in which the velocity of
the boundary is periodic, with the former exhibiting convex-
upward segments and the latter concave-upward segments, in
each case separated by rapid changes in velocity [transitions].
Both convex-upward [22,28] and concave-upward kinetics
[33] are observed in experimental systems.

Periodic boundary motion leaves behind a spatially peri-
odic pattern whose wavelength is determined by the mean
velocity and the frequency of transitions. If this wavelength
is one for which stable Turing patterns can exist in an infinite
domain, the pattern will generally persist, but in other cases it
may evolve through peak decay or peak splitting to a different
[and stable] wavelength, or it may decay to a homogeneous
state.
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APPENDIX A: GIERER-MEINHARDT MODEL:
DIMENSIONLESS FORMULATION

Gierer and Meinhardt [10] defined their activator-inhibitor
model through the equations

∂u

∂t
= Du

∂2u

∂x2
+ c1v

2 − c2u,
∂v

∂t
= Dv

∂2v

∂x2
+ c3v

2

u
− c4v.

(A1)
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FIG. 6. Bifurcation diagram for Gierer-Meinhardt activator (v)-
inhibitor (u) kinetics with RD = 3/40, c̃3 = 1.0, c̃4 = 0.5 (case [B]
in Fig. 3), assuming the domain to be fixed. Solid squares represent
the stable steady states while hollow squares mark the unstable
steady-states, obtained under zero-flux boundary conditions. Stable
patterns are obtained in the wavelength range of 3.1 < λ̃ < 6.8
(bounds λ̃B

1 , λ̃B
2 ). H.S.S stands for the homogeneous-steady-state

solution of Eq. (6).

For the moving boundary problem we use the boundary
conditions and growth law

u(0, t ) = u0,
∂v

∂x
(0, t ) = 0, v(h, t ) = vh ,

−Du
∂u

∂x
(h, t ) = [u(h, t ) + Q]

dh

dt
,

dh

dt
= ku(h, t ) . (A2)

A dimensionless form of these equations can be obtained by
defining

ũ = c1u

c2
, ṽ = c1v

c2
, x̃ = x

√
c2

Du
,

t̃ = c2t , h̃ = h

√
c2

Du
. (A3)

Using these expressions in the governing Eqs. (A1) and the
boundary conditions (A2) we obtain Eqs. (5) and (8) to (10),
respectively, where

RD = Dv

Du
, c̃3 = c3

c2
, c̃4 = c4

c2
, ũ0 = c1u0

c2
,

ṽh = c1vh

c2
, Q̃ = c1Q

c2
, k̃ = k

c1

√
c2

Du
(A4)

are the independent dimensionless parameters defining the
system.

Nesterenko et al. [34] derived the condition

Du

Dv

>
c2

(3 − 2
√

2) c4

(A5)

for the homogeneous solution of Eq. (A1) to be unstable,
leading to the formation of Turing patterns. Using the notation
of Eq. (A4), this can be expressed in the form of Eq. (7).

FIG. 7. The solid symbols in this map indicate numerical sim-
ulations that resulted in pattern formation, and the open symbols
indicate numerical simulations that did not result in pattern for-
mation. The triangular symbols indicate conditions under which
the boundary moved in a linear fashion, rather than in a periodic
fashion. The lower shaded area, and the corresponding circular
points, represent a region in which peak-splitting was observed. The
upper shaded region represents where chaotic, random behavior was
observed that was very sensitive with respect to small changes in
the values of input parameters. The lower dotted line corresponds
to the condition c̃4 = 5.8RD, which is the instability condition of
Eq. (7). These results were obtained using Gierer-Meinhardt activator
(v)-inhibitor (u) kinetics with RD = 0.075, c̃3 = 1, ũ0 = 1, Q̃ = 1,
and k̃ = 1.

APPENDIX B: STATIONARY SOLUTIONS OF THE
GIERER-MEINHARDT MODEL IN FIXED DOMAINS

In this Appendix, we discuss the numerical procedure for
determining stable and unstable steady states of the Gierer-
Meinhardt model of Eq. (5) in a fixed domain. We achieve
this using MATLAB’s continuation and bifurcation package
PDE2PATH [31,32].

We use h̃ as the bifurcation parameter for analyzing the
PDEs in Eqs. (11) and (12), while neglecting the advection
terms containing dh̃/dt̃ (i.e., in a fixed domain 0 < ζ < 1
where ζ = x̃/h̃). Zero-flux boundary conditions are used. For
the purpose of demonstration, we show results for parameters
of case [B] of Sec. II C (RD = 3/40, c̃3 = 1.0, c̃4 = 0.5)
in Fig. 6. The trajectory of concentration of species ũ is
represented by its maximum absolute value, max(|ũ|). The
solid and hollow squares represent the stable and unstable
solutions, respectively. The horizontal branch at max(|ũ|) =
4 corresponds to the homogeneous steady state of Eq. (6).
The other two branches, λ̃ = 2h̃ and λ̃ = h̃, correspond to
stationary periodic solutions, found to be stable in the range
3.1 < λ̃ < 6.8. Notice that the boundary conditions support
solutions with an integer number of half-waves in the domain.
Note that for this case, the homogeneous-steady-state is unsta-
ble to small perturbations with wavelengths in a significantly
smaller range of 3.1 < λ̃ < 4.8. This shows that a linear
stability analysis about the homogeneous solution gives only
an imperfect guide to the range of wavelengths to be expected
in a transient simulation.
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For case [A] of Sec. II C, stable patterns in the range
2.6 < λ̃ < 21 were obtained using a similar procedure. Note
that PDE2PATH permits fairly general dependence of the co-
efficients on ũ, ṽ, and ζ but not on time t̃ , so it cannot
be applied to the moving-boundary problem of Eqs. (11)
and (12), even if the domain growth h̃(t̃ ) were specified or
approximated.

APPENDIX C: BEHAVIORAL MAP OF THE
ACTIVATOR-INHIBITOR MODEL

Shifts in the response of the activator-inhibitor model of
Sec. II, with respect to the change in the dimensionless param-
eters ṽh̃ and c̃4, are shown in Fig. 7. While nonlinear boundary
kinetics of convex-up segments [as shown in Fig. 1(a)] are
observed for lower values of the activator concentration ṽh̃,
increasing it beyond ∼1 results in a local buildup of the
inhibitor concentration (ũ) at the moving front, which then
moves linearly in response. For regions not satisfying the
instability condition of Eq. (7), i.e., for c̃4 < 5.8RD, no pat-
terns are observed. However, boundary kinetics still shows
a periodicity for some of such cases. As we move away
from this region by increasing c̃4, a general trend of pattern
formation, chaotic concentration distribution, followed by no
pattern formation, is observed. Notice that as the solution is
numerical, this map does not provide any general conclusions
for all parameter ranges, as opposed to a linear stability
analysis [35–37]. However, as shown in Appendix B, a linear
stability analysis only provides a subset of wavelengths which
form stable patterns in reaction-diffusion systems of Eqs. (5)
and (17).

APPENDIX D: SCHNAKENBERG MODEL:
DIMENSIONLESS FORMULATIONS

The governing differential equations for the Schnakenberg
model [11] are

∂u

∂t
= Du

∂2u

∂x2
− c1v

2u + a ,

∂v

∂t
= Dv

∂2v

∂x2
+ c1v

2u − c2v + b . (D1)

We use the same boundary conditions and growth law (A2) as
in the Geirer-Meinhardt model. A dimensionless formulation
can then be obtained by defining

ũ = μu , ṽ = μv , x̃ = x

√
c2

Du
, h̃ = h

√
c2

Du
, t̃ = c2t

(D2)

[16], where μ = √
c1/c2. Substituting these relations in

Eq. (D1), we obtain the dimensionless governing Eqs. (17).
The corresponding dimensionless boundary conditions and
growth law are unchanged from Eqs. (8) to (10). In this case,
the independent dimensionless parameters defining the system
comprise

RD = Dv

Du
, ã = μa

c2
, b̃ = μb

c2
, ũ0 = μu0 ,

ṽh = μvh, Q̃ = μQ , k̃ = k√
Duc1

. (D3)
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