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Dynamical properties of densely packed confined hard-sphere fluids
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Numerical solutions of the mode-coupling theory (MCT) equations for a hard-sphere fluid confined between
two parallel hard walls are elaborated. The governing equations feature multiple parallel relaxation channels
which significantly complicate their numerical integration. We investigate the intermediate scattering functions
and the susceptibility spectra close to structural arrest and compare to an asymptotic analysis of the MCT
equations. We corroborate that the data converge in the β-scaling regime to two asymptotic power laws, viz.
the critical decay and the von Schweidler law. The numerical results reveal a nonmonotonic dependence of the
power-law exponents on the slab width and a nontrivial kink in the low-frequency susceptibility spectra. We
also find qualitative agreement of these theoretical results to event-driven molecular dynamics simulations of
polydisperse hard-sphere systems. In particular, the nontrivial dependence of the dynamical properties on the
slab width is well reproduced.
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I. INTRODUCTION

The structural relaxation of dense liquids displays a drastic
slowing down of transport upon compression or cooling, a
phenomenon commonly identified with the glass transition
[1]. Upon approaching this transition, a supercooled bulk
liquid exhibits several fascinating dynamical properties, in
particular, the aforementioned slowing down, stretching of
the intermediate scattering function, as well as a two-step
power-law-relaxation behavior. All of these features have
been observed in experiments [2–10] and simulations [11–18]
and were successfully described by mode-coupling theory of
the glass transition (MCT) [1,19–22]. The underlying mi-
croscopic picture behind MCT is the trapping of particles
in transient “cages” which are formed by their respective
neighbors. Consequently, confining the supercooled liquid
between two parallel walls is expected to have a significant
impact on the nature of the glass transition [23–25]. Strong
confinement will hinder or promote the formation of “cages”
and the wall-particle interaction will induce layering [26,27],
thus drastically changing the local structure in the fluid.
Analyzing the consequences of confinement is therefore of
fundamental interest, not only to question the microscopic
picture of the glass transition but also to better understand
physical, chemical, and biological systems where confinement
occurs naturally like porous rocks or crowded living cells.

In the past 20 years confined liquids have therefore been
studied extensively in experiments [28–38] and simulations
[27,39–55], showing that even general questions like whether
confinement accelerates or hinders the dynamics depends on
the nature of the wall-particle potential [49,51,54] or the sur-
face roughness [40,44,50]. Additionally, it has been found that
confinement even with suppressed layering leads to significant
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changes in the static and dynamical properties of the liquid
[39,56–58].

To better understand supercooled liquids in confinement
MCT was extended to describe a simple fluid confined be-
tween two parallel, flat, and hard walls (cMCT) [24,55,59,60].
The theoretical description depends on the introduction of
symmetry-adapted fluctuating density modes which mirror the
broken translational symmetry in lateral direction and lead
to matrix-valued structure factors and intermediate scattering
functions. The validity of this description for the statical prop-
erties and nonergodicity parameters of hard-sphere glasses has
been investigated and confirmed by event-driven molecular
dynamics simulations [55,60]. A remarkable feature of cMCT
is the emergence of a multiple reentrant glass transition for
liquids with constant packing fraction in a slab of variable slit
width [24,59], which could also be observed using computer
simulations [55,60]. Interestingly, it also has been shown that
the lines of constant chemical potential do not overlap with
the glass-transition lines in a nonequilibrium state diagram,
indicating that in a wedge geometry the observation of a
coexistence between glass and liquid regions is anticipated.

A fundamental difference between the mathematical struc-
ture of the MCT equations in confined geometry to MCT in
simple liquids is the emergence of multiple relaxation chan-
nels. These arise naturally due to a splitting of the particle-
conservation law into distinct currents in lateral and transverse
direction. Recently, it has been shown for MCT with multiple
relaxation channels that under very mild assumptions the β-
scaling equation is still valid despite this change of structure
[61]. This allows us to perform a full asymptotic analysis of
the dynamics by computing the power-law exponents for the
critical decay and the von Schweidler law from microscopic
expressions.

Here we focus on the dynamical properties of strongly
confined liquids as encoded in cMCT. For the first time we
present a numerical solution for the full time dependence
of the cMCT equations. We investigate the behavior of the

2470-0045/2020/102(1)/012612(13) 012612-1 ©2020 American Physical Society

https://orcid.org/0000-0002-6739-1603
https://orcid.org/0000-0001-6567-6923
https://orcid.org/0000-0002-6204-7192
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.102.012612&domain=pdf&date_stamp=2020-07-28
https://doi.org/10.1103/PhysRevE.102.012612


JUNG, CARAGLIO, SCHRACK, AND FRANOSCH PHYSICAL REVIEW E 102, 012612 (2020)

dynamic correlation functions close to structural arrest and
compare the results to glass-forming liquids in bulk. Addi-
tionally, we calculate the asymptotic power laws using the
analysis presented in Ref. [61] and show that they accurately
describe the numerical solution in the β-scaling regime. We
also investigate similarities and differences of our theoretical
results and event-driven molecular dynamics simulations. The
overall goal is to gain a better insight into the effects of
confinement on supercooled liquids.

The manuscript is organized as follows: In Sec. II we
recapitulate the mode-coupling theory in slit geometry and
present the equations of motion for the intermediate scattering
function. To enable a numerical integration we reformulate
these equations by introducing an effective memory and apply
an additional diagonal approximation. Afterwards, the nu-
merical solution of the cMCT equations for the intermediate
scattering function is presented in Sec. III and compared to the
asymptotic analysis. In Sec. IV we then compare the dynamics
predicted by cMCT to computer simulations. We summarize
and conclude in Sec. V.

II. MODE-COUPLING THEORY IN SLAB GEOMETRY

A. Equations of motion

The fluctuating density modes of N particles confined in a
channel of accessible width L can be introduced as [24]

ρμ(q, t ) =
N∑

n=1

exp[iQμzn(t )]eiq·rn(t ), (1)

with particle positions xn = (rn, zn), restricted to the posi-
tions −L/2 � zn � L/2, wave vectors q = (qx, qy) and wave
numbers Qμ = 2πμ/L. In the following, we will refer to the
indices μ ∈ Z as mode indices. The packing fraction is defined
as ϕ = Nπσ 3/6V , with particle diameter σ , volume V = AH ,
wall area A, and wall distance H = L + σ . Directly connected
to the fluctuating density modes is its coherent time-dependent
correlation function,

Sμν (q, t ) = 1

N
〈ρμ(q, t )∗ρν (q, 0)〉. (2)

Its initial value Sμν (q) = Sμν (q, t = 0) is the structure factor,
generalized to the slit geometry.

For this setting the Zwanzig-Mori projection operator for-
malism [1,62,63] with {ρμ(q, t )} as set of distinguished vari-
ables was applied [24,59] to derive the equations of motion
for the intermediate scattering functions Sμν (q, t ),

Ṡ(t ) +
∫ t

0
K(t − t ′)S−1S(t ′)dt ′ = 0. (3)

Here, we have dropped the explicit dependence on the (magni-
tude of the) wave vectors q and introduced the matrix notation
[S(t )]μν = Sμν (q, t ). The memory kernel K(t ) describes the
non-Markovian dynamics of the intermediate scattering func-
tion and is related to the dynamic correlation function of the
density modes, ρ̇μ(q, t ).

To derive an expression for the memory kernel, we con-
sider the continuity equation for the density modes,

ρ̇μ(q, t ) = i
∑

α=‖,⊥
bα (q, Qμ) jαμ(q, t ), (4)

with the selector bα (x, z) = xδα‖ + zδα⊥ depending on the
channel index α ∈ {‖,⊥}, and the current channels jαμ(q, t ).
Since the currents in lateral (⊥) and longitudinal (‖) direction
are anticipated to behave differently, the memory kernel K(t )
splits naturally into multiple decay channels,

Kμν (q, t ) = [C{K}]μν

:=
∑

α,β=‖,⊥
bα (q, Qμ)Kαβ

μν (q, t )bβ (q, Qν ). (5)

By performing a second Zwanzig-Mori projection step using
the current modes { jαμ(q, t )} as distinguished variables the
equations of motion for the components of the memory kernel
Kαβ

μν (q, t ) can be derived. This yields the result

J −1K̇(t ) + D−1K(t ) +
∫ t

0
M(t − t ′)K(t ′)dt ′ = 0, (6)

with the matrix notation [K(t )]αβ
μν = Kαβ

μν (q, t ) and

J αβ
μν (q) = Kαβ

μν (q, t = 0) = v2
th

n∗
μ−ν

n0
δαβ. (7)

Here, we have introduced the thermal velocity vth = √
kBT/m

related to particle mass m and the thermal energy kBT , as well
as the decomposition of the inhomogeneous density profile
n(z) into Fourier modes

nμ =
∫ L/2

−L/2
n(z) exp[iQμz]dz, μ ∈ Z. (8)

We also included an instantaneous damping term given by
a positive semidefinite Hermitian matrix in the mode and
channel indices, D−1 
 0.

Mode-coupling theory now provides an approximation for
the force kernel M(t ) as a bilinear functional of the interme-
diate scattering functions Sμν (q, t ) [24,59],

Mαβ
μν (q, t ) = Fαβ

μν [S(t ); q], (9)

with

Fαβ
μν [S(t ); q] = 1

2N

∑
q1,

q2 = q − q1

∑
μ1, μ2
ν1, ν2

Yα
μμ1μ2

(q, q1, q2)

× Sμ1ν1 (q1, t )Sμ2ν2 (q2, t )Yβ
νν1ν2

(q, q1, q2)∗,
(10)

where the vertices Yα
μμ1μ2

(q, q1, q2) are smooth functions of
the control parameters,

Yα
μμ1μ2

(q, q1, q2) = n0

L4

∑
κ

v∗
μ−κ

× [
bα (q1 · q/q, Qκ−μ2 )cκ−μ2,μ1 (q1) + (1 ↔ 2)

]
. (11)

Here, the direct correlation function cμν (q) is defined via
the generalized Ornstein-Zernike equation [24,59,63,64],

S−1 = n0

L2
[v − c], (12)

and the matrix [v]μν = vμ−ν , with v(z) = n(z)−1, corresponds
to the local volume. For given control parameters S(q), c(q),
and n(z), the equations of motion, Eqs. (3) and (6), and the
mode-coupling functional Fαβ

μν [S(t ); q] define a closed set of
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integrodifferential equations with unique solution S(q, t ) that
also fulfills all the mathematical constraints of a correlation
function [65].

Finding a numerical solution of the above equations of mo-
tion is, however, a nontrivial task. To stabilize the numerical
schemes the introduction of an effective memory kernel M(t )
has been found to be very useful. To define M(t ) we employ
the Laplace transformation,

LT{A(t )}(z) = Â(z) := i
∫ ∞

0
A(t )eizt dt, (13)

and rewrite Eqs. (3) and (6),

Ŝ(z) = −[zS−1 + S−1K̂(z)S−1]−1, (14)

K̂(z) = −[zJ −1 + iD−1 + M̂(z)]−1. (15)

This allows us to define the effective memory kernel M̂(z)
implicitly via

K̂(z) = −[zJ−1 + iD−1 + M̂(z)]−1, (16)

where the effective matrices J = C{J } and JD−1J =
C{JD−1J } 
 0 have been obtained by comparing the high-
frequency behavior of the current kernel K̂(z). In the time
domain the equation of motion in terms of the effective
memory kernel reduces to the standard harmonic oscillator
equation with retarded friction,

J−1S̈(t ) + D−1Ṡ(t ) + S(t )S−1 +
∫ t

0
M(t − t ′)Ṡ(t ′)dt ′ = 0.

(17)

B. Diagonal approximation

To solve Eq. (16) for the effective memory kernel, we
rely on the diagonal approximation. We assume that off-
diagonal terms can be discarded in the mode-coupling func-
tional, Fαβ

μν [S(t ), q] = Fα
μ[S(t ), q]δαβδμν , in the structure fac-

tor, Sμν (q) = Sμ(q)δμν , and the direct correlation function,
cμν (q) = cμ(q)δμν . Consistent with the Ornstein-Zernike
equation, Eq. (12), we thus set vμ = 0, ∀μ �= 0 and J αβ

μν (q) =
J α

μ (q)δμνδαβ with J α
μ (q) = v2

th. Furthermore, we assume that
the instantaneous damping Dαβ

μν (q) = δαβδμνDα
μ(q) is also

diagonal in mode and channel indices. As a consequence of
the diagonal approximation the coupling of the intermediate
scattering functions Sμ(q, t ) for different wave numbers q
and mode indices μ arises purely on the level of the mode-
coupling functional. It should be noted that the diagonal ap-
proximation is a technical approximation to obtain numerical
results for the full time dependence which becomes exact
in the planar and bulk limits [66]. It has been successfully
applied to study the critical packing fraction and the noner-
godicity parameter for confined systems, where it has been
compared to the solution without diagonal approximation [67]
and to computer simulations [60,68] with good agreement.

With this approximation, the left-hand side of Eq. (16) can
be rewritten to find

q2

zv−2
th + iD‖

μ(q)
−1 + M̂‖

μ(q, z)

+ Q2
μ

zv−2
th + iD⊥

μ (q)−1 + M̂⊥
μ (q, z)

= 1

zJμ(q)−1 + iDμ(q)−1 + M̂μ(q, z)
, (18)

which can be transformed into an integrodifferential equation
for the effective memory kernel in the time domain. For the
sake of simplicity we will restrict ourselves to the case of
D‖

μ(q) = D⊥
μ (q) =: D0 and thus find

Ṁμ(q, t ) + v2
thD−1

0 Mμ(q, t ) + v4
th

∫
αμ(q, t − t ′)Mμ(q, t ′)dt ′

= v4
thβ̇μ(q, t ) + v6

thD−1
0 βμ(q, t )

+ v4
thJμ(q)−1

∫ t

0
M‖

μ(q, t − t ′)M⊥
μ (q, t ′)dt ′. (19)

Here, we have used that within the approximations intro-
duced above

Jμ(q) = (
q2 + Q2

μ

)
v2

th, (20)

Dμ(q) = (
q2 + Q2

μ

)
D0, (21)

and abbreviated

αμ(q, t ) = Jμ(q)−1
[
Q2

μM‖
μ(t ) + q2M⊥

μ (t )
]
, (22)

βμ(q, t ) = Jμ(q)−2
[
q2M‖

μ(t ) + Q2
μM⊥

μ (t )
]
. (23)

The initial value for the effective memory kernel is
generally given by JM(t = 0)J = −JD−1JD−1J +
C{JD−1JD−1J } + C{JM(t = 0)J }. In our case this
reduces to

Mμ(q, t = 0) = v4
thβμ(q, t = 0). (24)

III. NUMERICAL SOLUTION OF THE MCT EQUATIONS

In this section we investigate the intermediate scatter-
ing function (ISF) Sμ(q, t ) and the associated frequency-
dependent dynamic susceptibility

χ ′′
μ(q, ω) := ω

∫ ∞

0
Sμ(q, t ) cos(ωt )dt, (25)

within the diagonal approximation. The static input func-
tions, namely, the structure factor Sμ(q), the direct correlation
function cμ(q) and the density profile n(z) are calculated
for monodisperse hard spheres using fundamental measure
theory (FMT) and the Ornstein-Zernike equation with the
Percus-Yevick closure, as described in Refs. [24,57,59]. The
instantaneous damping terms are set to D0 = 0.1 vthσ in this
work. The particle diameter σ sets the unit of length and
σ/vth the unit of time. For the results the equations of motion,
Eqs. (17) and (19), are solved numerically by combining
techniques presented in Ref. [61,69–72]. Appendix A pro-
vides details on the numerical discretization scheme which are
important to achieve the desired numerical accuracy. For the
numerical Fourier transform for the susceptibilities we rely on
the modified Filon-Tuck algorithm [73,74].
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FIG. 1. Normalized coherent intermediate scattering function
S0(qm, t )/S0(qm, 0) for accessible width L = 2.0σ , for wave number
qmσ = 6.52 corresponding to the first sharp diffraction peak in
the structure factor. In the control parameter ε = (ϕ − ϕc )/ϕc =
±10−n/3, n ∈ N increases from left to right for ε < 0 and from top
to bottom for ε > 0. The critical correlator for ϕ = ϕc (or ε = 0) is
displayed as thick line and labeled as “c.”

A. Dynamics close to the glass transition

We start the analysis for an accessible width L = 2.0σ .
The (normalized) intermediate scattering function close to the
glass transition is displayed in Fig. 1. As is known from simple
bulk liquids, the dynamics in the vicinity of the glass transition
manifests itself within MCT via an algebraic decay to an
extended plateau. In the liquid regime [ε = (ϕ − ϕc)/ϕc <

0] this plateau is followed by a structural relaxation on a
timescale, that diverges as the critical packing fraction is
approached. Importantly, for any fixed finite time t , the inter-
mediate scattering function Sμ(q, t ) varies smoothly with the
packing fraction. Above the critical packing fraction (ε > 0),
the structure is not able to fully relax anymore and ergodicity
breaking is observed, characterized by a nonzero value for the
long-time limit, Fμ(q) := Sμ(q, t → ∞). The two-step relax-
ation scenario in the supercooled regime can also be observed
in the susceptibility spectrum (see Fig. 2). For frequencies
much smaller than the microscopic ones, the susceptibilities
display a power-law increase ∝ωa reflecting the critical decay
towards the plateau in the time domain. On the liquid side a
second power law ∝ω−b emerges at even lower frequencies
corresponding to the von Schweidler law as the initial part of
the terminal structural relaxation. Both power-law processes
are connected by a pronounced minimum which is by orders
of magnitude enhanced relative to a trivial superposition of
Debye peaks. The low-frequency peak is known as α-peak
and appears stretched on the high-frequency flank whereas it
behaves regularly at its low-frequency flank. A comparison of
these spectra to the ones of simple bulk liquids [75] shows
that in the case of comparatively large channel widths no
qualitative differences are observed.

The situation is rather different for a channel width L =
1.0σ as shown in Fig. 3. While the two-step relaxation sce-
nario is still observable there is a distinct kink in the high-
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ω/(vthσ−1)

c n=6n=9

n=6n=9
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L/σ = 2.0, qmσ = 6.52

FIG. 2. Frequency-dependent susceptibility χ ′′
0 (qm, ω) for the

same parameters as described in the caption of Fig. 1. The dashed,
black line shows a Debye peak, χ ′′

D(ω) = 2χmaxωτD/[1 + (ωτD)2]
(χmax = 0.8, τD = 9.4 × 108σv−1

th ) for comparison.

frequency flank of the α-peak of the dynamic susceptibility.
A similar feature was recently observed in Ref. [61] for a
Bosse-Krieger model with two decay channels. Concluding
from this model, it seems natural that the reason for the
emergence of the kink is an asymmetry of the two decay
channels, parallel and perpendicular to the wall, since this
asymmetry increases for decreasing wall separation. We will
discuss this observation further in Sec. III C.

In the following we analyze in detail the two relaxation
processes: the critical decay and the von Schweidler law.

B. β-scaling regime

The critical spectra shown in the last subsection indicate
that the β-scaling regime exists also in case of strong confine-
ment. This is not surprising since the asymptotic analysis for
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100
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c n=6n=9
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L/σ = 1.0, qmσ = 6.52

FIG. 3. Frequency-dependent susceptibility χ ′′
0 (qm, ω) for chan-

nel width L = 1.0 σ . The parameters for the Debye peak (dashed
black line) are χmax = 0.79, τD = 6.2 × 1011σv−1

th .
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TABLE I. Critical packing fractions ϕc and asymptotic coeffi-
cients for the confinements lengths considered in this work. The
universal coefficient B was interpolated from the data in Ref. [76].
The timescale qσ = 6.52 is determined from matching the critical
law to the numerical results for μ = 0 and q = 6.52. The timescale
t ′
σ is determined for ϕ = ϕc − 10−7 (see Appendix B for definitions

and further details).

L/σ ϕc λ̃ λ a b B t0/σv−1
th t ′

σ /σv−1
th

1.0 0.4497 0.816 0.795 0.282 0.484 1.16 0.022 7.07 × 1015

1.25 0.4029 0.631 0.629 0.354 0.761 0.41 0.035 3.32 × 1011

1.5 0.3817 0.630 0.629 0.354 0.761 0.41 0.056 8.68 × 1011

1.75 0.4352 0.676 0.672 0.338 0.688 0.57 0.030 1.27 × 1013

2.0 0.4495 0.671 0.668 0.340 0.694 0.57 0.028 2.13 × 1012

MCT with multiple relaxation channels in Ref. [61] showed
the existence of a well defined β-scaling equation under very
moderate assumptions, which are all fulfilled here (i.e., dis-
continuous transition in all modes). This enables us to perform
an asymptotic analysis of the MCT equations in confinement
similar to the one performed for simple bulk liquids [75]. For
this we first determine the critical packing fraction ϕc using
the standard iteration for the nonergodicity parameter Fμ(q)
(see, e.g., Ref. [24]). Using Eq. (19) in Ref. [61] we can then
determine the Frobenius-Perron eigenvector and thus Götze’s
exponent parameter λ which encodes the critical exponents a
and b. The important quantities that were determined from the
described analysis can be found in Table I.

The critical decay of the intermediate scattering function
and the frequency-dependent susceptibility spectra are shown
in Fig. 4 for different mode indices μ and wave vectors q. For
times t � 103σv−1

th (frequencies ω � 10−3vthσ
−1) there is no

visible discrepancy between the asymptotic power laws and
the numerical solution of the MCT equations. The decay from
the plateau in the intermediate scattering function and the
corresponding asymptotic power law for a packing fraction
slightly below the critical value ϕc is then highlighted in Fig. 5
(upper panel). The lower panel demonstrates the validity
of the von Schweidler law. In these figures no qualitative
difference to the critical dynamics in bulk systems can be
observed. It should, however, be emphasized that these results
crucially depend on the correct fundamental constant λ which
is different from the constant λ̃ one would find without
splitting of the relaxation channels such as in bulk liquids (see
Table I and Appendix B). Depending on the dissimilarity of
the two decay channels this can lead to significant corrections
that need to be taken into account to match the numerical
solution and the asymptotic power laws.

The most important discrepancy between bulk and con-
fined liquids are the observed power-law exponents which
significantly depend on the channel width. This quantitative
impact of confinement on the asymptotic scaling laws will be
analyzed in the next subsection.

C. Effect of confinement

The effect of confinement on the nonequilibrium-state
diagram has been studied in detail in Refs. [24,55,59,60]. In
these works a multiple reentrant glass transition was found

0

0.2

0.4

0.6

0.8

1

10−1 101 103 105 107

S
μ
(q

,t
)/

S
μ
(q

,0
)

t/(σv−1
th )

L/σ = 2.0

μ = 0, q = qm

μ = 1, q = qm

μ = 0, q = ql

μ = 0, q = qg

10−5

10−4

10−3

10−2

10−1

10−7 10−5 10−3 10−1 101

χ
′′ μ
(q

,ω
)

ω/(vthσ−1)

L/σ = 2.0

μ = 0, q = qm

μ = 1, q = qm

μ = 0, q = ql

μ = 0, q = qg

FIG. 4. Critical law highlighted in both the normalized coherent
scattering function (upper panel) and the frequency-dependent sus-
ceptibility (lower panel) for accessible width L = 2.0σ and ϕ = ϕc.
Shown are different modes μ and wave numbers slightly below
(qlσ = 3.42), directly at (qmσ = 6.52) and slightly above (qgσ =
9.63) the first maximum in the structure factor S0(q, 0). The asymp-
totes in the upper and lower panel correspond to Eqs. (B6) and
(B7), respectively. The timescale t0 = 0.028σv−1

th was determined by
matching to the asymptotic solution of S0(qm, t ). The parameters for
the asymptotic analysis are summarized in Table I.

which can also be observed in computer simulations [55,60].
The reason for this behavior can be rationalized qualitatively
with the competition of two length scales: the (average)
particle diameter σ̄ and the wall separation H . If the ratio of
wall separation and average particle diameter n = H/σ̄ is an
integer, n ∈ N, then there are naturally n different layers in the
system which enable a relatively large longitudinal diffusion.
For half-integer n, however, there are particles between the
layers which significantly slows down the dynamics (incom-
mensurate packing). This nonmonotonic dependence on the
channel width then becomes apparent in the structure factor,
the critical packing fraction and the diffusion coefficient as
was shown in Refs. [24,55,59,60]. Here, we will study its
impact on the critical power-law exponents.
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FIG. 5. Same as Fig. 4 for the normalized intermediate scatter-
ing function (upper panel) and frequency-dependent susceptibility
(lower panel) in the α-relaxation regime for accessible width L =
2.0σ and ϕ = ϕc − 10−7. The asymptotes in the upper and lower
panel correspond to Eqs. (B9) and (B10), respectively. The param-
eters for the asymptotic analysis are summarized in Table I.

The critical decay and the von Schweidler law (lower
panel) for the frequency-dependent susceptibility for different
accessible widths L are displayed in Fig. 6. The most apparent
difference between the curves is the significantly different
power-law exponent for L = 1.0σ (strong confinement). To
investigate this in more detail, the exponents are plotted vs.
accessible width in Fig. 7. Strikingly, similar to the static
quantities, also this plot shows a nonmonotonic behavior of
the critical exponent a and the von Schweidler exponent b
with wall separation. This means that moderate confinement
L > 1.25σ reduces the stretching of the correlation functions
relative to the bulk system (an unstretched exponential would
correspond to b → 1) but a further decrease of the accessible
width then leads to stronger stretching. This shows that the
effect of confinement has indeed a nontrivial impact on all fea-
tures of glass-forming liquids. Interestingly, the convergence
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FIG. 6. Critical law (upper panel, ϕ = ϕc) and von Schweidler
law (lower panel, ϕ = ϕc − 10−7) for the frequency-dependent sus-
ceptibility for different accessible widths L. The parameters for the
asymptotic analysis are summarized in Table I.

of the exponents to the bulk limit for hard spheres is very slow.
We explain this with the inhomogeneous density profiles,
which significantly alter the glass transition and are strongly
pronounced even for large channels L > 4.5σ. Furthermore,
the critical packing fraction of the glass transition increases
significantly with L (from ϕc(L = 2.5σ ) = 0.437 to ϕc(L =
4.5σ ) = 0.469) which additionally amplifies the layering.

We now come back to the “kink” observed in the low-
frequency susceptibility spectrum for L = 1.0σ (highlighted
in Fig. 8). A similar kink in the low frequency-spectrum was
before observed as Cole-Cole peak [78], however, there the
kink emerges for frequencies larger than the von Schweidler
law. We rationalize the kink therefore in the same way as
was discussed in Ref. [61]. It can be observed in Fig. 8
(upper panel) that the green curve (μ = 1) decays faster than
the other curves due to a large ratio Hμ(q)/Fμ(q), where
Hμ(q) is the Frobenius-Perron eigenvector of the critical
expansion. Additionally, the two memory kernels that define
the relaxation of the red curve (μ = 0) are very different
since the parallel component couples stronger to itself then
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FIG. 7. Dependence of the critical exponents on the accessible
width L. The exponents were determined from the asymptotic anal-
ysis as described in Ref. [61]. The arrows indicate the value of the
exponents in the bulk limit for hard spheres (arrows pointing to the
right [75]) and hard discs (arrows pointing to the left [77]).

to other modes while the perpendicular component does not
couple at all to itself and has a strong coupling to other
modes. We therefore have a similar situation as discussed in
Ref. [61] where we introduced a toy model with two very
different decay channels. We thus draw a similar conclusion:
When the higher modes decay faster (represented here by
the green curve), we can observe multiple low-frequency
peaks in the susceptibility spectrum, each corresponding to a
different relaxation channel. Obviously, in the present case the
dissimilarity between the decay times of the different modes is
quite small which means that the two peaks strongly overlap.
This leads to the observed “kink.”

IV. COMPARISON TO EVENT-DRIVEN MOLECULAR
DYNAMICS SIMULATIONS

Event-driven molecular dynamics (EDMD) simulations
[79–81] enable the exact integration of equations of motion
for particles with hard-sphere interactions. Here we compare
our theoretical results to simulation results that we have
extracted from Ref. [55]. There the authors collected data
for polydisperse hard spheres in confined geometry as in the
current set-up. The introduction of polydispersity is necessary
to suppress crystallization. The full numerical solution of
the MCT equations presented in this manuscript now allows
us to directly compare theoretical and simulation results for
the dynamical properties of confined hard-sphere glasses (see
Fig. 9).

On the one hand, significant quantitative differences be-
tween theory and simulations are expected because the poly-
dispersity significantly reduces the effect of layering in the
system and the differences between commensurate and in-
commensurate packing. This can already be seen in the phase
diagram of the polydisperse hard-sphere system (see Fig. 6
(a) in Ref. [60]) and thus also reduces the differences in the
intermediate scattering functions for various accessible widths
L. Additionally, there is no ideal glass transition in simulation
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FIG. 8. Normalized intermediate scattering function (upper
panel) and frequency-dependent susceptibility (lower panel) in the
α-relaxation regime for channel width L = 1.0σ . Shown are different
modes μ and wave vectors slightly below (qlσ = 3.42), directly at
(qmσ = 6.52) and slight above (qgσ = 9.63) the first maximum in
the structure factor S0(q). The parameters for the asymptotic analysis
are summarized in Table I.

(and experiments) of hard spheres because eventually the
structure will fully relax, as is already known from simple
bulk liquids.

On the other hand, there are several features that are shared
by theory and simulations. Most prominent is the fact that
also in this case structural relaxation is slower for the system
with L = 1.3σ̄ than for L = 1.0σ̄ despite the general trend
that confinement slows down the dynamics. This leads to a
clear order of the curves which is the same for both theory and
simulations. Furthermore, both theory and simulations exhibit
a pronounced two-step relaxation scenario that was discussed
in detail in the previous section.

It is also noteworthy that the dependence of the von
Schweidler exponent on accessible width L as predicted by
MCT is in slight contradiction with event-driven simulations.
In Refs. [40,55] simulation results indicated that stretching
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FIG. 9. Comparison of MCT results for the coherent scattering
function at volume fraction ϕ = 0.42 with event-driven molecular
dynamics (EDMD) simulations at ϕ = 0.52. Simulation data are
extracted from Ref. [55]. The simulations use a polydisperse mixture
(s = 15%) and σ̄ denotes the average particle diameter.

could be strongest for incommensurate packing, which con-
tradicts the conclusion drawn for MCT in the last section.
One possible reason for the discrepancy could be the differ-
ent control-parameter distances ε = (ϕ − ϕc(L))/ϕc(L) since
the simulations for different accessible width L were all
performed at constant packing fraction ϕ while the results
reported for the theory were determined for ϕc(L) and thus
ε = 0. If |ε| becomes too large, then this will have an impact
on the simulation results.

V. SUMMARY AND CONCLUSION

In this manuscript we have presented a numerical solution
of the MCT equations of motion in slab geometry. This
enabled us to perform a deep analysis of the dynamics of
confined hard-sphere glasses. We have found that there are
no qualitative differences between the β-scaling regime in
systems with moderate confinement and bulk systems. Only
for very small accessible width L�1.25σ a clear feature of
the parallel relaxation scenario induced by the confinement
has been observed in the form of a kink in the low-frequency
susceptibility spectrum.

Additionally, we have applied an asymptotic analysis for
MCTs with multiple relaxation channels to investigate the
effect of confinement on the two asymptotic power laws: the
critical decay and the von Schweidler law. We have observed
that, similar to the nonmonotonic dependence of the critical
packing fraction, also the power-law exponents depend non-
trivially on the channel width. For moderate confinement we
have found that the stretching of the intermediate scattering
function is decreased (corresponding to an increase of the
von Schweidler exponent) while it is significantly increased
for strong confinement, indicating stronger heterogeneous
dynamics in the slit. Importantly, mode-coupling theory also

predicts a very slow convergence of the critical exponents to
the bulk limit for hard spheres.

The numerical results have also been compared to event-
driven molecular dynamics simulations of confined, polydis-
perse hard spheres. Both theory and simulations exhibit a
clear nonmonotonic dependence of their dynamic properties
on the channel width. Yet, a comparison beyond identifying
the relevant trends is unfeasible due to the different polydis-
persities and the known discrepancies of the ideal transition
as predicted by MCT to the dynamic crossover in simulations
and experiments.

This work opens up the possibility of a throughout analysis
of various aspects of confined fluids with mode-coupling
theory. Possible future projects are the incorporation of Brow-
nian dynamics [82] and the study of single particle proper-
ties like self-intermediate scattering functions [83] or mean-
square displacements. Importantly, the latter would enable a
significantly better comparison with computer simulations.
This can for example facilitate the search for a similar kink
as observed in the MCT solution of the low-frequency sus-
ceptibility spectrum. Additionally, it will be interesting to
look for signatures of parallel relaxation in experimental
measurements of dielectric spectra of molecules or confined
particles. Furthermore, using static quantities from computer
simulations for extreme confinement could enable the cMCT
analysis of the dimensional crossover to the planar bulk limit
for hard discs [84,85]. Currently this is not possible since the
iterative techniques to determine the static input functions do
not converge in extreme confinement.
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APPENDIX A: DETAILS ON THE NUMERICAL
DISCRETIZATION SCHEME

The correlation functions appearing in this manuscript
depend on a mode index, a wave vector, and time. In the
following, we will describe how these dependencies are han-
dled to obtain a numerical integration scheme for the MCT
equations of motion. The parameters used in this manuscript
are summarized in Table II.

1. Mode index

The mode index is already discrete due to the finite channel
width. However, for the numerical solution we have to intro-
duce a cutoff |μ| � M, chosen such that the neglected orders
do not have a significant impact on the main modes anymore.
Empirically we found M = 5 to be a reasonable cutoff for
L � 2σ . For the results in Fig. 7 we use M = 10 for L � 3.5σ

and M = 15 otherwise.

012612-8



DYNAMICAL PROPERTIES OF DENSELY PACKED … PHYSICAL REVIEW E 102, 012612 (2020)

TABLE II. Summary of the parameters used for creating the
static input using fundamental measure theory (FMT) and the
Ornstein-Zernike equation with the Percus-Yevick closure (OZ+PY)
as well as the numerical integration of the mode-coupling equations
of motion, Eqs. (17) and (19). (FMT) The parameters dz and nz

were used for the spatial linear discretization. The approximate
excess free energy functional used is the White-Bear mark II (WBII)
functional [87,88]. (OZ+PY) The parameter dz was used for the
spatial linear discretization in z-direction with nz = L/dz. The r-
direction is logarithmically discretized in the range [rmin, rmax] with
Nq grid points. Details in Refs. [57,67]. (MCT) The equations are
temporally integrated using D decimation steps with Nt time steps
each and an initial step size �t0.

FMT OZ + PY MCT

dz/σ 0.001 dz/σ 0.02 Nq 30
nz 8192 Nq 1 024 M 5
F ex WBII rmin/σ 0.0001 �qσ 1.0345

rmax/σ 10 000 Nt 8192
D 100
D1 22

�t0/(σv−1
th ) 10−9

εs 10−8

2. Wave vector

As done in Ref. [24] we first introduce the thermodynamic
limit of Eq. (10) by replacing

lim
N,A→∞

1

N

∑
q1,

q2 = q − q1

(...) = 1

n0(2π )2

∫ ∞

0
dq1

×
∫ q+q1

|q−q1|
dq2

4q1q2√
4q2

1q2
2 − (

q2 + q2
1 − q2

2

)2
(...). (A1)

Here, A is the surface area of the box with volume V = HA.

The q-dependence is then discretized to q = q0 + m�q, with
m = 0, ..., Nq − 1. The integral is evaluated using a modified
trapezoidal rule in which the value of the function to be
integrated is not taken in the middle of two grid points,
qm = m�q and q(m+1), but at qm + q0, with q0 = 0.303�q.
This provides the best discrete description of the Jacobian
of the transformation to bipolar coordinates which allows
to write the right term in Eq. (A1) [72,77]. In this work
we chose Nq = 30 and �qσ = 1.0345 such that qmaxσ = 30.
This choice allows us the solve the equations of motion with
the necessary accuracy in the dynamical correlation functions
while the numerical error due to the q-discretization remains
small.

3. Time

To find a numerical solution of the integrodifferential
equations, Eqs. (17) and (19), we need to discretize their
time dependence such that the derived integration schemes
are stable for about 15–20 orders of magnitude in time. To
achieve this goal, we apply similar schemes as previously
proposed in the MCT literature, like decimation [61,69,71],
which shall not be repeated here. In the following, we will

list some important remarks that are necessary to stabilize the
numerical discretization scheme.

(1) As discussed in Ref. [61], Appendix B, we find that tak-
ing the time derivative on both sides of Eq. (19) and discretize
the obtained second order integrodifferential equation yields a
significantly more stable numerical scheme for longer times.
Starting from decimation step D1 we therefore integrated the
memory kernel with this second-order equation which has the
same form as Eq. (17). The applied discretization scheme is
thus the same as for the integration of the scattering function.

(2) We symmetrize the discretized convolution integrals in
the same way as described in Ref. [61], Appendix B.

(3) The instantaneous contributions to the memory kernels,
D−1 and D−1, are explicitly included to the values of M(t =
0) and M(t = 0), respectively. We thus obtain

M̃μ(q, t = 0) = v4
thβμ(q, t = 0) + Dμ(q)−1/�t, (A2)

M̃α
μ(q, t = 0) = Fα

μ[S(t = 0); q] + D−1
0 /�t . (A3)

This yields a more compact numerical integrator. The
integration scheme using moments (see Refs. [69,71]) ensures
that these contributions are handled correctly in the decima-
tion steps.

Taking all this into account we arrive at the following
integration scheme for the coherent scattering function (not
including the explicit dependence on q and μ):

ASSi = 2.5Si−1 − 2Si−2 + 0.5Si−3

+ �t2J

4
(2 dM̃1Si−1 + 2M̃iS0 − M̃i−īSī − M̃īSi−ī )

− �t2J

2

ī∑
j=1

dS j (M̃i− j+1 − M̃i− j )

− �t2J

2

ī∑
j=2

dM̃ j (Si− j+1 − Si− j )

− �t2J

4

{
dSi−ī(M̃ī+1 − M̃ī ) if ī �= i − ī
0 otherwise

− �t2J

4

{
dM̃i−ī(Sī+1 − Sī ) if ī �= i − ī
0 otherwise

,

AS = 1 + �t2J

2

(
S−1

0 + dM̃1
)
, (A4)

with Si = S(i�t ), dSi = �t−1
∫ i�t

(i−1)�t dt ′S(t ′) and similarly

M̃i, dM̃i. We also introduced ī = �i/2�. The brackets � j�
denote the largest integer less or equal j. Before decimation
step D1 the effective memory kernel is integrated via

AM̃1
M̃i = 4/3M̃i−1 − 1/3M̃i−2 − �t2v4

th

3
α[dM̃1]M̃i−1

+ v4
th

(
β[M̃i] − 4/3β[M̃i−1] + 1/3β[M̃i−2]

)

− �t2v4
th

3

i−ī∑
j=1

dM̃ j (α[M̃i− j+1] + α[M̃i− j])
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− �t2v4
th

3

ī∑
j=2

α[dM̃ j](M̃i− j+1 + M̃i− j )

+ �t2v4
thJ−1

3

ī∑
j=1

dM̃‖
j (M̃⊥

i− j+1 + M̃⊥
i− j )

+ �t2v4
thJ−1

3

i−ī∑
j=1

dM̃⊥
j (M̃‖

i− j+1 + M̃‖
i− j )

AM̃1
= 1 + �t2v4

th

3
α[dM̃1], (A5)

where we defined α[B] = Jμ(q)−1[Q2
μB‖

μ(t ) + q2B⊥
μ (t )] and

β[B] = Jμ(q)−2[q2B‖
μ(t ) + Q2

μB⊥
μ (t )]. As discussed before,

after decimation step D1 we change the integration algorithm
and use

AM̃1
M̃i = 2.5M̃i−1 − 2M̃i−2 + 0.5M̃i−2

+ �t2v4
th

4

(
2α[dM̃1]M̃i−1 − α[M̃i−ī]M̃ī − α[M̃ī]M̃i−ī

)
+ v4

th

(
β[M̃i]−2.5β[M̃i−1] + 2β[M̃i−2]−0.5β[M̃i−3]

)

− �t2v4
th

2

t̄∑
j=1

dM̃ j (α[M̃i− j+1] − α[M̃i− j])

− �t2v4
th

2

t̄∑
j=2

α[dM̃ j](M̃i− j+1 − M̃i− j )

− �t2v4
th

4

{
dM̃i−ī(α[M̃ī+1] − α[M̃ī]) if ī �= i − ī
0 otherwise

− �t2v4
th

4

{
α[dM̃i−ī](M̃ī+1 − M̃ī ) if ī �= i − ī
0 otherwise

+ �t2v4
thJ−1

4
(M̃‖

i−ī
M̃⊥̄

i + M̃⊥
i−īM̃

‖
ī
)

+ �t2v4
thJ−1

2

t̄∑
j=1

dM̃‖
j (M̃⊥

i− j+1 − M̃⊥
i− j )

+ �t2v4
thJ−1

2

t̄∑
j=1

dM̃⊥
j (M̃‖

i− j+1 − M̃‖
i− j )

+ �t2v4
thJ−1

4

{
dM̃‖

i−ī
(M̃⊥̄

i+1 − M̃⊥̄
i ) if ī �= i − ī

0 otherwise

+ �t2v4
thJ−1

4

{
dM̃⊥

i−ī(M̃
‖
ī+1

− M̃‖
ī
) if ī �= i − ī

0 otherwise
,

AM̃1
= 1 + �t2v4

th

2
α[dM̃1]. (A6)

In each time step, Si is initialized by setting Si = Si−1. With
this the memory kernels M̃α

μ(q) are calculated using Eq. (10)
in the thermodynamic limit as described in Eq. (A1). Si

is then determined self-consistently by solving Eqs. (A4)
and (A5)/(A6) until the convergence reaches an accuracy

of max
q,μ

|Sn
i,μ(q) − Sn−1

i,μ (q)| < εs in the nth iteration step as

described in Refs. [69,86].

APPENDIX B: ASYMPTOTIC EXPANSION

In Ref. [61] an asymptotic analysis of mode-coupling-
theory equations with multiple relaxation channels has been
presented. The reference proves the validity of the β-scaling
equation and derives relations for the critical exponents that
characterize the slowing down at the glass transition. In the
following, we recapitulate the most important relations and
describe how they can be applied to the mode-coupling equa-
tion in confined geometry.

Starting from the equations for structural relaxation,
Eqs. (14) and (15), with negligible contributions of zJ +
iD−1, we perform an asymptotic expansion using the ansatz
S(q, t ) − Fc(q) = √|σ |G(1)(t ) + O(σ ), for a small separa-
tion parameter σ . (In this Appendix, we follow the standard
MCT notation and σ denotes a separation parameter, not the
hard-sphere diameter.) We thus assume that the correlator
is close to its plateau value [i.e., the critical nonergodicity
parameter Fc(q)]. It has been shown that close to the glass
transition, σ = Cε, with constant C and control parameter
ε = (ϕ − ϕc)/ϕc.

To first order we find the factorization theorem,

G(1)(q, t ) = H(q)g(t̂ = t/tσ ), (B1)

stating that close to the glass transition on a timescale tσ all
dynamical correlation functions can be rescaled by the critical
amplitudes H(q) to superimpose on a single universal master
curve g(t̂ ).

The equation of motion for this master curve is then derived
as solubility condition by considering the second order of the
expansion [61],

d

dt̂
(g ∗ g)(t̂ ) = λg(t̂ )2 + sgn σ, (B2)

which is the well-known β-scaling equation. The exponent
parameter λ connects the power law exponents for the critical
decay, a, and the von-Schweidler law, b, via Götze’s exponent
relation,

�(1 + b)2

�(1 + 2b)
= λ = �(1 − a)2

�(1 − 2a)
. (B3)

The subtleties derived in Ref. [61] are that this β-scaling
equation is only found via rescaling, which is possible due to
its scale invariance. From the asymptotic analysis we obtain

λ = λ̃/(1 − �), (B4)

with channel asymmetry � = 0 in case of bulk geometry.
The parameters H(q),C,� and λ̃ are complicated functions
of the mode-coupling functional in confined geometry (and
therefore also the static input functions) as well as the critical
nonergodicity parameters (see Ref. [61] for details).

The workflow to apply the asymptotic expansion is the
following:

(1) Find the critical packing fraction ϕc using binary search
based on the asymptotic equation,

S(q) − F(q) = [S(q)−1 + N(q)]−1, (B5)
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where N(q) = C{F [F(q); q]−1}−1
. This equation can be read-

ily used as self-consistent iteration scheme to determine the
nonergodicity parameter [24,59] and such the ideal glass
transition.

(2) Evaluate the critical nonergodicity parameter, Fc(q),
to calculate the mode-coupling functional at the critical
point and thus the critical amplitude (using the eigenvalue
Eqs. (27)– (29) in Ref. [61]).

(3) Calculate the parameters λ̃ and � using Eqs. (38)
and (39) in Ref. [61]. From this determine the power law
exponents a and b with Eqs. (B4) and (B3).

(4) For ε �= 0, we can also directly calculate σ using
the nonergodicity parameter Fε (q) for ϕ = ϕc(1 + ε) (see
Eq. (37) in Ref. [61]).

It is important to note that � ≈ 0 and thus λ̃ ≈ λ implies
that the relaxation channels parallel and perpendicular to
the walls become very similar. It does, however, not mean
that confinement has no influence on the critical exponents,
since the expansion is still based on the full mode-coupling
functional for confined geometry.

The asymptotic dynamics of the correlation functions can
be directly extracted from the β-scaling equation, similar to
bulk liquids (see Refs. [1,75]). To summarize:

(1) For times t much larger than the microscopic ones
and t � tσ the short-time solution g(t̂ � 1) = t̂−a sets tσ =
t0|σ |−1/2a and we obtain,

S(q, t ) � Fc(q) + H(q)(t/tσ )−a
√

|σ |, (B6)

χ′′(q, ω) � H(q)�(1 − a) sin (πa/2)(ωtσ )a
√

|σ |. (B7)

Here, χ′′(q, ω) = ωS′′(q, ω) is the dynamic susceptibility, de-
termined from the Fourier cosine transform of the correlation
function, S′′(q, ω) = ∫ ∞

0 cos(ωt )S(q, t )dt .
(2) For σ � 0 and t � tσ the nonergodicity parameter is

given by

F(q) = lim
t→∞ S(q, t ) � Fc(q) + H(q)

√
σ

1 − λ
. (B8)

(3) For σ < 0 and t � tσ a second power law emerges,
g(t̂ � 1) = −Bt̂b, corresponding to the early α-relaxation on
a timescale t ′

σ = (t0/B1/b)|σ |−γ , with γ = 1/2a + 1/2b. For
the correlation function and the dynamic susceptibility we find

S(q, t ) � Fc(q) − H(q)(t/t ′
σ )b, (B9)

χ′′(q, ω) � H(q)�(1 + b) sin (πb/2)(ωt ′
σ )−b. (B10)
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