
PHYSICAL REVIEW E 102, 012610 (2020)

Rod separation by sawtooth channel
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By applying entropic barriers, we present a rod separation mechanism that induces the movement of rods of
different sizes in the opposite directions. This mechanism is based on the combination of the saw-tooth channel, a
static force, and an oscillating driving force. The asymmetric shape of the channel and the elongated shape of the
rod causesa complicated interaction effect between the rods and the channel walls which reduces the accessible
configuration space for the rods and leads to entropic free-energy effects.
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I. INTRODUCTION

Infiltration in microstructures such as porous media [1–5],
micro- or nanofluid channels [6–10], and living tissues [11,12]
is an important problem and has attracted the attention of
physicists, mathematicians, biologists, and engineers. A com-
mon property of these systems is walls of irregular shapes
which restrict the motion of the particles. One of the important
applications of this problem is the separation of particles
based on their size. Obtaining pure materials by separating
the desired elements from the impure elements is a major
challenge in industrial processes and fundamental research.
Particle separation techniques take advantage of the fact that
the reaction of particles to an external excitation, for example,
fields, depends on their size [13]. Reguera and co-workers
presented a mechanism for spherical particle separation [13].
In this paper, we present a mechanism for rod separation that
causes rods of different sizes to move in opposite directions
and to be sorted by their size.

The axially symmetric particles like rods when moving
near a wall experience an additional anisotropic drag force on
top of themselves due to their nonspherical shape [14]. Also,
the coupling between translation and rotation leads to compli-
cated behavior; for example, colloids [15–19], artificial and
biological filaments [3,20], microswimmers [21,22], DNA
strands [23,24], and DNA fragments [25] show a complicated
coupling between translation and rotation.

The rest of the article is organized as follows: In Sec. II
we investigate the dynamics of a suspended rod in a fluid. In
Sec. III we present the mechanism of rod separation using a
saw-tooth channel, and finally, we present general conclusions
in Sec. IV.

II. ROD DYNAMICS

In this section we investigate the rod dynamics under a
static force f and an oscillating force F (t ), assuming the rod’s
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density is diluted and immersed in a fluid with strong vis-
cosity at low Reynolds number dynamics. In the rod motion,
structural constraints produce anisotropy, and the presence of
walls leads to a general velocity decrease of Brownian motion
due to hydrodynamic interactions of the diffusing rods with
walls [26]. The diffusion coefficient is given by the Einstein
relation

D = KBT M = KBT

γ
, (1)

where KB is the Boltzmann constant, T is temperature, and
γ and M are friction coefficient and hydrodynamic mobility
of a rodlike particle, respectively. The tensor form of D is
DIJ = KBTMIJ = KBT/�IJ with I, J = X,Y, θ , where MIJ

and �IJ are the tensor form of M and γ , respectively. Here
the coordinates X,Y refer to the rod body frame, and θ is the
angle between direction of the rod (X axis) and the x axis,
where the coordinates x, y, z refer to the laboratory frame (see
Fig. 1, left). The diffusion tensor is given by

DIJ =

⎛⎜⎝DXX DXY DXθ

DY X DYY DY θ

DθX DθY Dθθ

⎞⎟⎠

= KBT

⎛⎜⎝�XX �XY �Xθ

�Y X �YY �Y θ

�θX �θY �θθ

⎞⎟⎠
−1

. (2)

The transformation matrix from the rod body to the labo-
ratory frame is

R =

⎛⎜⎝cos θ − sin θ 0

sin θ cos θ 0

0 0 1

⎞⎟⎠· (3)

The diffusivity in the rod body frame is measured by the
displacement covariance matrix (normal diffusion): 2DIJδt =
〈δIδJ〉 [27]. For example, DXX = 〈δX 2〉/2δt or DXθ =
〈δXδθ〉/2δt . The transition DIJ from the rod body to the
laboratory frame is applied by

D = RDrodRT , (4)
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FIG. 1. (Left: side view) Schematic illustration of a rod adjacent
to a wall. The coordinates x, y, z and X , Y refer to the laboratory
and rod body frames, respectively, and θ is the angle between the
direction of the rod (X axis) and the x axis (variable between +π/2
and −π/2). 2a and 2b are rod length and width, respectively. (Right:
top view) Schematic illustration of a rod between two parallel walls.
Z is the distance between two walls along the z axis, which has a
value of about 2bmax(Z = 2bmax + δZ), H is the distance between
the wall and the edge of the rod, and N is the distance between the
wall and the rod center (N = H + b).

where D and Drod refer to the diffusion tensor in the laboratory
and rod body frame, respectively, and T denotes the matrix
transpose.

For a single rod confined between two parallel walls with
distance Z, the lateral diffusion in the rod body frame can be
described by [28]

D2w(N, p,Z) = Dbulk(p) f 2w(N, b,Z), (5)

where p = a/b is rod aspect ratio and N is the distance
between the wall and the rod center (see Fig. 1, right). Dbulk(p)
is diffusion in the unbounded space, and the simplest approxi-
mation solution for f 2w(N, b,Z), suggested by Oseen [26], is

f 2w(N, b,Z) =
[

1

f 1w(N, b)
+ 1

f 1w(Z − N, b)
− 1

]−1

, (6)

which includes the effects of both walls. Here Dbulk(p) and
f 1w(N, b) are determined by the following relations for
H < b and 6 < p < 16 [29]:

Dbulk
‖ (p) = KBT

2πη2a

[
ln(p) + −1.951p2 − 9.132p + 69.16

p2 + 39p + 44.4

]
,

(7)

Dbulk
⊥ (p)= KBT

4πη2a

[
ln(p)+ −0.3604p2 + 28.36p + 72.63

p2 + 36.29p + 34.9

]
,

(8)

f 1w
‖ (N, b)

= 0.9909
(

N
b

)3 + 0.3907
(

N
b

)2 − 0.1832
(

N
b

) − 0.001815(
N
b

)3 + 2.03
(

N
b

)2 − 0.3874
(

N
b

) − 0.07533
,

(9)

f 1w
⊥ (N, b)

= 0.9888
(

N
b

)3 + 0.788
(

N
b

)2 − 0.207
(

N
b

) − 0.004766(
N
b

)3 + 3.195
(

N
b

)2 − 0.09612
(

N
b

) − 0.1523
,

(10)

FIG. 2. Schematic illustration of the quasi-two-dimensional
channel that restricts the rods’ movement. The walls’ structure is
determined by Eq. (12). The rods are driven by a constant force f and
an oscillating force F (t ) (e.g., a square wave) along the main axis of
the channel. The dashed blue (red) line represents the limit for the
positions of the largest (smallest) rod center inside the channel. h is
the half-width of the bottleneck, c represents the location of a point
with the maximum width, L is the periodicity of the channel, and Z
is the channel thickness along the z axis.

where η is the fluid medium viscosity and ‖ (⊥) denotes
parallel (perpendicular) to the long axis of the rod. In
Eqs. (9) and (10), instead of N , we put Z − N , to obtain
f 1w(Z − N, b).

Since the inertial forces of the rod are negligible with
respect to the viscous forces, we use overdamped Langevin
equations to describe the rod dynamics [27,30]:

d�r
dt

= RD2wRT

KBT
[ f rod + F rod(t )]�ex +

√
RD2wRT �ξ (t ), (11)

where �r is the rod center vector (in a laboratory frame) and
�ex is the unit vector along the x direction. f Rod and F Rod are
the forces applied to the rod. Fluctuations in the rod body
frame are “independent Gaussian white noises,” �ξ (t ), with
zero mean, 〈�ξ (t )〉 = 0, and 〈ξI (t )ξJ (t + t ′)〉 = 2δIJδ(t ′) for
I, J = X,Y, θ [27].

III. MECHANISM OF ROD SEPARATION BASED
ON THEIR SIZE

In this section, we present a mechanism for rod separation
using a saw-tooth channel. The principles of this mechanism
rely on the combination of a driving force and an entropic
rectification [31–34]. In an asymmetric structure, the entropic
potential becomes asymmetric. In this structure, we can create
a rectification to the right direction by a zero-mean oscillating
force and select a specific structure where the entropic barriers
in the left direction are larger than those in the right direction.
The strength of this rectification depends on the rod’s size.
For large rods, the entropic barrier is larger, so the strength
is stronger. Thus, in the presence of a static force f applied
in the left direction, the small rods follow the static force
while the large rods move in the opposite direction under the
influence of rectification, and rods of different sizes can be
separated. To illustrate this effect, we choose a quasi-two-
dimensional saw-tooth channel (see Fig. 2), where rods are
affected by a static force f and an oscillating force F (t ) so
that both forces are applied along the main axis of the channel.
The reason for choosing a quasi-two-dimensional channel
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FIG. 3. Illustration of the channel wall, the intersection points,
and the limit of the position of the rod center near the wall.

(not three-dimensional) is the anisotropic drag coefficients for
rod diffusion inherently increase when the rods are hardly
restricted between parallel walls [35]. In the quasi-2D con-
finement, the effects of entropic barriers on the rods increase
when the rod aspect ratio, p, increases and contribute to a
faster separation.

For the sake of the simplicity, we obtain the channel
structure in two dimensions (the x-y plane). The upper wall
of channel reads

yup(x) =
{

h + m1x̄, if x̄ <c

h + m2(L − x̄), otherwise
, (12)

where h is the half-width of the bottleneck, m1 and m2 are the
slopes of the walls, L is the periodicity of the channel, and
c = Lm2/(m1 + m2) represents the location of a point with
the maximum width. We choose the slopes of the walls in
order to have an angle of 90◦ in the point c, i.e., m1 ∗ m2 = 1,
where m1 > m2. The bottom wall of the channel ybottom(x) =
−yup(x), and x̄ denotes x inside a L period (to create a periodic
structure).

For a hard rod with half-width b and half-length a inside
the channel, the space available for its center is restricted as

FIG. 4. Average current vs the periodic force F for rods of
different aspects, for a channel with m1 = 4, m2 = 1/4, h = 1.6,
Z = 0.35, L = 14 and the rod with b = 0.1. For f < 0 small rods
move to the left, whereas large rods move to the right. The critical
aspect that determines these two behaviors can be tuned by the values
of F and f . The critical force that determines velocity inversion
depends on the rod length a.

FIG. 5. Schematic illustration of rods of different sizes inside the
channel where they are initially placed in the middle of the channel,
and after the forces were applied, the large rods moved to the right
and the small rods to the left.

follows:

W (x)up

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−√
b2 − x̄2 + h, 0 � x̄ < Op (a)

h + m1x̄ − b
√

1 + m2
1, Op � x̄ < cl p (b)

−
√

a2 − (x̄ − c)2 + h + m1c, cl p � x̄ < cr p (c)

h + m2(L − x̄) − b
√

1 + m2
2, cr p � x̄ < Lp (d)

−
√

b2 − (x̄ − L)2 + h, Lp � x̄ < L (e)

,

(13)

where Op is the intersection point of curve (a) with line (b),
Op = bm1/

√
1 + m2

1 , cl p is the intersection point of line (b)
with curve (c), cl p = c + (bm1 − √

a2 − b2)/
√

1 + m2
1 , cr p is

the intersection point of the curve (c) with line (d), cr p = c +
(
√

a2 − b2 − bm2)/
√

1 + m2
2 , and Lp is the intersection point

of line (d) with curve (e), Lp = L − (bm2)/
√

1 + m2
2 . The

bottom parallel curve is Wbottom(x) = −Wup(x). As a result,
the local width of the structure accessible for the rod center
becomes 2W (x) = Wup(x) − Wbottom(x). Figure 3 shows how
the channel walls limit the space for the rod center.

According to our assumptions in this paper, we neglect all
the hydrodynamic rod-rod interactions. The times of equilib-
rium along y and the rotation of rod, θ , are sufficiently short
(i.e., τy, τθ � τx where τy, τθ , and τx are diffusion times along
the y, θ , and x directions, respectively), so we can integrate the
probability density function ρ(x, y, θ, t ) to obtain P(x, t ) =

FIG. 6. The position of the rods’ center with different lengths and
the same widths (b = 0.1) after 60 sec. First, the rods were at x = 0,
and after 60 sec, the rods were separated.
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FIG. 7. Translational diffusion parallel to the long axis in
the unbounded space vs aspect ratio, for three widths, b =
1/6, 1/8, 1/10 μm.

∫∫
ρ(x, y, θ, t ) dy dθ [27], where P(x, t ) is the probability

of the rod’s existence in a cross section, at position x and
time t . The description of this system can be given by the
concept of an entropic potential [36]. The rod diffusion in the
channel can be described by the Fick-Jacobs (FJ) free energy.
Consequently, the corresponding FJ equation of Eq. (11) for
the distribution function at position x is [36–39]

∂P(x, t )

∂t
= ∂

∂x

{
D(x)

[
∂

∂x
P(x, t ) + P(x, t )

1

KBT

∂

∂x
V (x)

]}
,

(14)
where

V (x) = U − T S(x) = −[ f rod + F rod(t )]x − T KB ln[2W (x)]
(15)

is free energy and S(x) = KB ln[2W (x)] is the entropy. D(x)
is an effective longitudinal diffusivity function, which we will
obtain below.

Given that after the forces are applied along the x axis, the
rod density increases around y = 0 [40], and long relaxation
time in the longitudinal coordinate relative to the transverse
and rotational relaxation times, we conclude that diffusion
will be dominated along the x axis. From D = RDrodRT ,
and neglecting off-diagonal elements of Drod, the element of
diffusivity matrix along the main axis of the channel, Dxx, is
obtained,

D2w
xx = D2w

XX cos2 θ + D2w
YY sin2 θ, (16)

FIG. 8. Translational diffusion perpendicular to the long axis
in the unbounded space vs aspect ratio, for three widths, b =
1/6, 1/8, 1/10 μs.

FIG. 9. XX element of a translational diffusion tensor confined
between two parallel walls with distance Z, vs aspect ratio, for three
widths, b = 1/6, 1/8, 1/10 μm.

from Eqs. (5) and (6):

D2w
XX = Dbulk

‖ (p)

[
1

f 1w
‖ (N, b)

+ 1

f 1w
‖ (Z − N, b)

− 1

]−1

,

(17)

D2w
YY = Dbulk

⊥ (p)

[
1

f 1w
⊥ (N, b)

+ 1

f 1w
⊥ (Z − N, b)

− 1

]−1

.

(18)

We obtained the values of D2w and Dbulk for certain cases
analytically in the Appendix.

When the rods get very close to the boundaries, they are
reflected due to boundary conditions, and the orientation of
the longer rods in the channel bottleneck around the θ = 0
is constrained [27] (note that, to prevent the channel bottle-
neck from being blocked, we must have 2amax < 2h). But
in the middle of the channel cells, the rod can experience
any angle θ . However, using an approximation for near the
boundaries, we assume that the probability of the rod angles
across the channel is equal, then by averaging Eq. (16) over
θ , D2w

ave = 〈D2w
xx 〉θ , and replacing D2w

ave in the Rubi and Reguera
expression in Ref. [36] for a two-dimensional structure and an
approximation used in Ref. [27], D(x) is obtained:

D(x) = D2w
ave

[1 + W ′(x)2]
1
3

, (19)

where the prime refers to the derivative with respect to x.

FIG. 10. YY element of translational diffusion tensor confined
between two parallel walls with distance Z, vs aspect ratio, for three
widths, b = 1/6, 1/8, 1/10 μm.
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For the sake of a dimensionless description, we introduce
three parameters: the length L, energy KBT , and diffusion time
along the main axis of the channel, τx = L2/D2w

ave(min). Then
free energy and effective diffusivity being dimensionless,
respectively, become Ṽ (x) = −[ f rod + F rod]x − ln[2W (x)]
and D̃(x) � (h + H + b)/{(a + N )[1 + W ′(x)2]

1
3 }. Here

D2w
ave � D2w

ave(min)(h + H + b)/(a + N ), where D2w
ave(min) is

the diffusion coefficient of a rod with a � h and 2b � Z. The
forces applied to the rods in the fluid depend on the rods’
aspect, so we will consider f Rod = f a/h and F Rod = Fa/h.

Using the Stratonovich’s formula, the dimensionless cur-
rent reads [30,41–43]

J (F ) = 1 − e−(F+ f )a/h∫ x0+1
x0

dz 1
D(z) eV (z)

∫ z
z−1 dx e−V (x)

. (20)

In the adiabatic limit, the average velocity becomes 〈v〉 =
[J (F ) + J (−F )]/2 [13].

Figure 4 indicate the average current of rods for different
values of periodic force F . If we apply a small static force
f in the left direction, rods larger than a given threshold
aspect move to the right, whereas rods smaller than that move
to the left. So we can separate rods of different aspect and
induce them to move in opposite directions. The reason for
this separation is that the large rods are more affected by
the applied forces, and the entropic barriers (rectification to
the right) only allow the small rods to move to the left. This
behavior can be tuned by the value of F and f . The splitting
effect is illustrated schematically in Fig. 5.

Now let’s consider a sample of 20 rods with the same width
and different lengths at the position x = 0 and calculate how
far the rods will go after 60 sec. To do this, we consider the
static force as f = −1 and the oscillating force as F = ±9.
Using the obtained velocities (assuming the velocity remains
constant) and the time of 60 sec, we obtain the position of the
rods according to Fig. 6. As it turns out, the distance from the
smallest rod to the largest rod after 60 sec is about five units
(for example, a micrometer).

Finally, we make some predictions about the effects of
different factors on diffusion. It is preferable to use the small
value in periodic force F (t ), because at a very high value,
the change in the oscillating force is so fast that the rods
cannot follow the force, and as a result there is a vanishing
effect of the oscillating force [13]. By selecting the channel
geometry, the entropy splitter effect can be adjusted, for
example, a change the asymmetry of the walls, change in
the slopes of the channel walls, or change in the bottleneck
width 2h.

FIG. 11. The element of diffusivity matrix along the main axis
of the channel, Dxx , vs the angle of the rod, for three aspect ratios,
p = 6, 10, 14 and two widths, b = 1/6, 1/10 μm.

IV. CONCLUSION

In this paper, we present a mechanism for separating
rods based on their size using a saw-tooth channel. This
mechanism combines a saw-tooth structure to create entropic
barriers and two forces along the main axis of the channel,
where f is fixed and F (t ) oscillates to create an entropic
rectification. This rectification is able to guide the rods in
different directions by changing the direction of the rods’
movement, and thus they are sorted by their size. The geo-
metrical parameters of the channel and the values of applied
forces can be changed more efficiently. This process can
be used to separating any rod-shaped object such as DNA
strands. This idea can be applied to similar structures such
as narrow channels and holes where the entropic effects are
prominent.

APPENDIX: DIFFUSION VALUES

We obtain translational diffusion, analytically for a rod
in the unbounded space and confined between two parallel
walls with distance Z, for several specific parameters in
Figs. 7–11. We chose water at a temperature of 293 K as
the fluid inside the channel. For the bulk diffusion, we placed
the following parameter values in Eqs. (4)–(9): KB = 1.38 ×
10−23 m2 kg s−2 K−1, η = 10−3 kg m−1 s−1, related to the wa-
ter of T = 293 K, bmax = 1/6 μm, bmin = 1/10 μm, and for
a rod confined between two parallel walls, Z = 0.35 μm. It is
assumed that the rod is trapped almost in the middle of two
parallel walls.
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