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Thermodiffusion-induced traveling and shock waves in a colloidal solution
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The formation of chemical waves in a nonlinear spatially extended system is one of the most fascinating
far-from-equilibrium phenomena. An externally imposed thermal gradient in a liquid mixture may induce a
concentration gradient generating a thermodynamic cross-flow, which is known as thermal diffusion or the
Ludwig-Soret effect. The motion of the components of the mixture is governed by a nonlinear, partial differential
equation for the density fraction in space and time. Here, we show that under an externally imposed constant
thermal gradient, a traveling wave can emerge in a solution of self-propelled neutral colloid. An exact analytic
solution of the spatially extended system is presented in one dimension for a constant thermal gradient to show
the time development of a traveling wave. We analyze the effect of a small finite relaxation time of flux, which
takes care of the finite inertia of the dispersing colloidal species. While the wave speed remains unaffected, the
wave shape is significantly modified by the presence of the finite relaxation time of flux. Our result demonstrates
that the traveling wave may reduce to a shock wave provided the product of the square of the wave speed and
the relaxation time exactly balances the mass diffusion coefficient. This condition can be achieved by suitably
adjusting the velocity of the emergent traveling wave by tuning the value of the constant thermal gradient and
maintaining the appropriate boundary condition.
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I. INTRODUCTION

The spontaneous occurrence of spatiotemporal order is a
ubiquitous phenomenon in spatially extended systems in na-
ture [1–3]. Nonlinearity present in the source kinetics or in the
transport processes is the key to such occurrences. Thermal
diffusion, thermodiffusion, or the Ludwig-Soret effect refers
to the phenomenon of mass transport under the influence of a
thermal gradient [4,5]. Thermodiffusion has been effectively
used to separate the constituent components in a mixture by
exposing them to an appropriate thermal gradient [6,7]. The
phenomenon has played a significant role in understanding a
number of widely varying natural processes, e.g., thermod-
iffusive convection in oceans [8], the onset of convective
oscillations [9,10] in a binary mixture, colloidal suspensions
[11–16], polymer solutions [17–20], micellar solutions [21],
and component segregation in metallic alloys undergoing
solidification [22,23]. The influence of a thermal gradient on
reaction-diffusion systems [24,25] has also been explored to
show that the imposed gradient may destabilize a chemical
front giving rise to absolute and convective instability, initiat-
ing the propagation of waves and the formation of stationary
Turing-like instabilities. For a sinusoidal temperature field
[26,27] in a binary mixture and a large Ludwig-Soret effect,
a moving front in the form of a shock wave has been experi-
mentally realized and theoretically explained by ignoring the
dissipative effects due to mass diffusion.

Mathematically, the Ludwig-Soret effect is governed by
a nonlinear partial differential equation in space and time.
Diffusion is the key physical process for mass transport in
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the Ludwig-Soret effect. An elementary consideration based
on the fundamental Gaussian solution of a diffusion equation
with a point source of particles at some initial time asserts
that there is always a finite nonzero density of particles at a
very large distance from the source even when the time is very
short. This implies that the particles have infinite speed. To
avoid this difficulty, one may introduce, following Cattaneo
[28–31], a nonzero relaxation time (τ ) of the diffusive flux
that takes care of the finite inertia of the dispersing species.
At the microscopic level, this corresponds to the model of
a correlated random walk introduced by Furth and others
[32,33]. Although a number of mathematical and computa-
tional studies of thermodiffusion [34–36] have been carried
out recently, the effect of the finite inertia of the particles
has been ignored. The focal theme of the present paper is to
find an exact analytic solution of the Ludwig-Soret equation
for a constant temperature gradient in a binary mixture of
self-propelling colloidal particles with finite inertia.

We first show that the thermal diffusion equation for a con-
stant temperature gradient admits a moving front or traveling
wave solution in the absence of any finite relaxation time of
flux of the self-propelled colloidal system. The direction of
the traveling wave depends on the sign of the Soret coefficient
or the thermal diffusion constant of the colloidal system. It
turns out from the theoretical analysis that the velocity of
the moving front depends on the applied thermal gradient,
the boundary conditions, and the self-propulsion velocity of
the colloidal particles. However, we see that the aforemen-
tioned traveling wave can emerge even in the absence of
any self-propulsion velocity of the colloidal system, which
asserts that this wave instability originates purely as a re-
sult of thermodiffusion. Natural or synthetic self-propelling
colloids show additional features and versatile spatiotemporal
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behavior under the influence of an applied thermal gradient. In
the case of self-propelled colloidal particles showing negative
thermodiffusion, i.e., movement toward the hot end of the
one-dimensional channel under the imposed constant thermal
gradient, we observe that a directional change of the moving
front can occur with the increase of the applied thermal gra-
dient when the self-propulsion velocity is positive. Moreover,
a situation of a standing wave with zero velocity can arise for
a particular value of the applied thermal gradient. Apparently,
we find that the moving front takes the form of a shock wave in
the limit of vanishing mass diffusion (or a large thermal diffu-
sion coefficient). The extent to which thermal diffusion shocks
are visible in the laboratory is clearly a function of how large
the thermal diffusion factor can be made. In the present paper,
we have considered that the applied temperature gradient does
not cause any reactive changes of the colloidal systems, and
also that the Soret coefficient does not appreciably depend on
the temperature or concentration.

To this end, it is important to mention that our study is
focused on the fact that we consider the roles of mass diffusion
and thermodiffusion on an equal footing without assuming
that thermal diffusion will be dominating over mass diffusion,
as most of the earlier studies have considered. As follows, we
also take into account the finite inertia of the diffusing par-
ticles by introducing a small relaxation time of the diffusive
flux with the help of Cattaneo’s modification of Fick’s law
[29,30]. Our results demonstrate that, while the velocity of
the traveling wave does not depend on the relaxation time, the
smoothening of the moving front depends significantly on the
inertia of the diffusive particles. Moreover, a condition may
arise in which the traveling wave reduces to a shock wave
when the mass diffusion coefficient is exactly balanced by the
product of the relaxation time of flux and the square of the
wave velocity. This condition can be achieved by varying or
adjusting the wave velocity, which is a function of the thermal
gradient, the boundary condition, and the self-propulsion of
the colloidal species. Overall, our study theoretically explores
the emergence of spatiotemporal instability in a self-propelled
colloidal system under the influence of an externally applied
constant thermal gradient in a one-dimensional channel.

The rest of the paper is organized as follows: In Sec. II,
we provide an exact solution of the transport equation for a
constant thermal gradient, which demonstrates the develop-
ment of a traveling wave of concentration of the self-propelled
colloidal species. We analyze the direction and the magnitude
of the wave velocity as a function of imposed temperature
gradient for different cases. In Sec. III, we analyze and
demonstrate the effect of a small but finite relaxation time of
the flux of the dispersing colloidal species, which is attributed
to an interesting dynamical scenario. The paper is concluded
in Sec. IV.

II. SOLUTION OF THE TRANSPORT EQUATION OF A
SELF-PROPELLED COLLOIDAL SYSTEM FOR A

CONSTANT THERMAL GRADIENT

Under a constant thermal gradient, the transport equation,
which accounts for mass diffusion, thermal diffusion, and drift
motion altogether, can be written down in different forms [4].
We proceed with the traditional equation relating the mass flux

to the thermal and concentration gradients present in a self-
propelled colloidal system neglecting hydrodynamic motion.
For an incompressible colloidal solution, the total flux j is
written by

j = jdiff + jSoret + jdrift

= −[ρD∇w + ρw(1 − w)DT ∇T + v0ρw]. (1)

Here jdiff refers to the diffusive mass flux, jSoret is the mass
flux contribution due to the Soret effect (or thermodiffusion)
proportional to the constant temperature gradient ∇T , and
jdrift represents the additional flux of the colloidal particles
having a constant positive self-propelling velocity v0. ρ is
the material density of the solution, w is the mass fraction
of the solute, D represents the mass diffusion coefficient, and
the phenomenological quantity DT is called the coefficient
of thermal diffusion or the thermal diffusion constant. DT

is a complex function of molecular parameters of individual
species, their mass and size, and the associated interaction
forces. Even for a particular mixture, it is a complex function
of temperature and density, and there is no universal law to
describe these features for liquids. The ratio of thermal to
ordinary mass diffusion is called the Soret coefficient ST =
DT /D. The Soret coefficient may be positive or negative
depending on the sign of DT or on the sense of migration of
the reference component (to the cold or to the hot end). In
absolute value, an order of magnitude of Soret coefficients
for usual organic mixtures or aqueous solutions is | ST |∼
10−3–10−2 K−1 but it can be several orders of magnitude
larger for macromolecular and colloidal solutions (0.25–0.17
K−1) [13,17]. We consider a dilute suspension of the colloidal
particles having a small diameter to avoid intercolloidal and
solvent interactions, so that ST can be taken as a constant
and independent of concentration in our present study. At the
same time, we restrict the use of a large thermal gradient or
temperature difference so that the Soret coefficient ST could
be assumed to remain constant for the range of temperature
gradients studied for the present problem.

We use a similar mathematical approach to that used in
[37] to solve the heat transport phenomenon equation for
our present study to obtain a spatiotemporal wave instabil-
ity induced by thermodiffusion as follows. Considering the
x-component of the flux, Eq. (1) can be written as

j(x, t ) = −D
∂c(x, t )

∂x
− c(x, t )[1 − αc(x, t )]DT ∇T

+ v0c(x, t ), (2)

where ρw = c(x, t ) is the variable corresponding to the con-
centration of colloid, α = 1/ρ. By substituting Eq. (2) into the
equation of continuity,

∂c(x, t )

∂t
+ ∂ j(x, t )

∂x
= 0, (3)

we obtain

∂c

∂t
= − ∂

∂x

[
−D

(
∂c

∂x

)
− c(1 − αc)DT ∇T + v0c

]

= D
∂2c

∂x2
+ (β − v0)

∂c

∂x
− 2αβc

∂c

∂x
, (4)
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where ∇T is taken to be constant throughout and DT ∇T is
abbreviated as β.

Now using the traveling wave transformation with the
variable z = x − vt , where v is the speed to be determined
and writing c(x, t ) ≡ U (z), we obtain Eq. (5) in the following
form:

−v
∂U

∂z
= D

∂2U

∂z2
+ (β − v0)

∂U

∂z
− 2αβU

∂U

∂z
. (5)

Equation (5) can be rearranged as follows:

−
(

v + β − v0

2αβ

)
∂U

∂z
+ U

∂U

∂z
−

(
D

2αβ

)
∂2U

∂z2
= 0. (6)

Expressing P = v+β−v0

2αβ
and K = D

2αβ
, Eq. (6) can be

rewritten as

−P
∂U

∂z
+ U

∂U

∂z
− K

∂2U

∂z2
= 0. (7)

Physically at a very large and very small z, i.e., way behind
or way before the wavefront, the concentration U should
be constant so that the boundary conditions are maintained.
We now impose the boundary conditions on U (z) that it
asymptotically tends to a constant value u1 as z → −∞ and u2

as z → ∞ and u1 > u2. Nevertheless, this choice of boundary
values does not necessarily mean that an infinitely elongated
medium is needed to observe a moving chemical front. One
can use a Soret cell of a finite length whose both the ends
meet the boundary values as demanded by a wavefront.

A direct integration of Eq. (7) yields

∂U

∂z
= 1

2K
(U 2 − 2PU − 2Q), (8)

where Q is the integration constant.
If u1 and u2 are the roots of the quadratic equation

(U 2 − 2PU − 2Q) = 0, then the constants P and Q can be
obtained as

P = 1
2 (u1 + u2) and Q = − 1

2 u1u2. (9)

Therefore, the wave speed can be calculated by the following
expression:

P = v + β − v0

2αβ
= 1

2
(u1 + u2)

so that we have

v = β[α(u1 + u2) − 1] + v0. (10)

Equation (8) can then be expressed in the form

∂U

∂z
= 1

2K
(U − u1)(U − u2), (11)

which on direct integration gives

U (z) = u1 + u2 exp
[

z
2K (u1 − u2)

]
1 + exp

[
z

2K (u1 − u2)
] , (12)

or U (z) = u2 + u1 − u2

1 + exp
[

z
2K (u1 − u2)

]
.

(13)
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FIG. 1. Plot of the traveling wave U (z) as a function of collective
coordinate z for different values of imposed constant temperature
gradients for the parameters v0 = 1.0, α = 1.0, D = 1, DT = 1.0,
u1 = 2.0, u2 = 1.0. The arrow represents the direction of the travel-
ing wave.

Equation (13) can be written in another useful form as given
by the expression

U (z) = 1

2
(u1 + u2) − 1

2
(u1 − u2) tanh

[
z(u1 − u2)

4K

]
. (14)

As u1 > u2, the wave profile U (z) decreases monotonically
with z from the constant value u1 as z → −∞ to the constant
value u2 as z → ∞ (provided K is a positive constant if
the Soret coefficient is positive) as shown schematically in
Fig. 1. This suggests the development of a traveling wave
moving in a positive direction with a speed as given by v =
DT ∇T [α(u1 + u2) − 1] + v0. The expression of the velocity
reveals that it depends linearly on the coefficient of thermal
diffusion and the applied constant temperature gradient. It also
depends on the values of the boundary condition. Even in the
case of the colloidal particles having no self-propulsion, i.e.,
v0 = 0, we find the development of a traveling wave moving
in a positive direction with a velocity v = β[α(u1 + u2) − 1].
This velocity of the spatial inhomogeneity in the form of
a moving front essentially appears due to the presence of
thermodiffusion. In absence of the externally applied constant
thermal gradient (∇T = 0), the wave profile does not exist
and the velocity of the colloidal particles means the self-
propulsion, i.e., v = v0.

To demonstrate the quantitative relation between the wave
velocity and the thermal gradient, we plot the velocity of
the traveling wave v as a function of the externally imposed
temperature gradient ∇T as depicted in Fig. 2. For the type
of self-propelling colloids that move toward the cooler end
as a response toward the applied thermal gradient, i.e., those
having positive Soret coefficients, we obtain a right-moving
traveling wave implying positive velocity. We observe that
wave speed increases with an increase of the externally ap-
plied constant thermal gradient.

On the other hand, self-propelling colloidal species that
show movement toward the hot end as a response to the
applied thermal gradient, i.e., having a negative thermal dif-
fusion or Soret coefficient, exhibit a conspicuous dynamical
scenario. If K is negative, i.e., colloidal particles move to-
ward the hot end in the presence of an externally applied
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FIG. 2. Plot of speed of the traveling wave as a function of
temperature gradient for the parameters v0 = 1.0, α = 1.0, D = 1,
DT = 1.0, u1 = 2.0, u2 = 1.0.

constant thermal gradient ∇T , the wave profile U (z) increases
monotonically with z from the constant value u1 as z → −∞
to the constant value u2 as z → ∞ provided u1 < u2. A
transition from a right-moving wave to a left-moving wave
might occur with an increase of ∇T when DT is negative. The
underlying reason for this reversal is rooted in the presence of
the self-propulsive motion of the colloidal particles. Initially,
for the low values of imposed temperature gradients, the wave
speed is positive and it decreases with an increase of ∇T . For
∇T = v0/DT [α(u1 + u2) − 1], the wave profile stops moving
in any direction and stalls, giving rise to a stationary instabil-
ity. Again, with an increase of applied thermal gradient, the
wave starts to move in the opposite direction as the velocity
becomes negative. In Fig. 3, we depict the directional change
of the traveling wave as a function of the constant thermal gra-
dient in the case of negative thermodiffusion. Corresponding
wave profiles for three different values of ∇T = 0.25, 0.5, and
1.0 are shown in Fig. 4.

At z = 0, U = (1/2)(u1 + u2). The shape of the wave form
Eq. (14) is significantly affected by the constant K = D

2αβ
. The

expression of the wave form can be obtained by incorporating
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FIG. 3. Plot of the speed of the traveling wave as a function of
temperature gradient for the parameters v0 = 1.0, α = 1.0, D = 1,
DT = −1.0, u1 = 1.0, u2 = 2.0.
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FIG. 4. A plot of the traveling waves U (z) as a function of
collective coordinate z for different values of imposed temperature
gradients for the parameters v0 = 1.0, α = 1.0, D = 1, DT = −1.0,
u1 = 1.0, u2 = 2.0. For ∇T = 0.5, the wave speed is zero. Arrows
represent the direction of the movement of the traveling waves.

the explicit form of K to yield

U (z) = 1

2
(u1 + u2) − 1

2
(u1 − u2) tanh

[
z(u1 − u2)DT ∇T

2ρD

]
.

(15)

This solution connects the two asymptotic limits, and the
presence of diffusion prevents the gradual distortion of the
wave profile. It is also apparent from the expression (15) that
in the absence of diffusion (D = 0) and with DT > 0, the
wave profile suffers from gradual distortion and steepening,
and eventually it breaks up with the development of a shock.
Shock waves are formed as a result of a balance between the
steepening effect of the thermal diffusion (nonlinear) term
and the smoothing effect of the linear diffusion term in the
equation of motion. It is also noteworthy from Eq. (15) that
in the absence of a thermal gradient ∇T = 0, the solution is a
constant and represents a flat wave profile. The outcome of the
above analysis is that the nonlinear advection and diffusion
terms exhibit opposite effects. The former introduces sharp
discontinuity in the wave solution profile while the latter tends
to spread out (smoothing) the discontinuity into a smooth
profile. In view of this property, D represents the role of
kinematic viscosity [38] in fluid flow, which measures the
viscous dissipation.

Multiplying both the numerator and denominator of
Eq. (12) by exp [ z

2K (u1 − u2)], we can write the solution in
the form

U (z) = u2 + u1 exp
[− z

2K (u1 − u2)
]

1 + exp
[− z

2K (u1 − u2)
] . (16)

Expressing

δ = K

u1 − u2
=

D
2αβ

u1 − u2
, (17)

we observe that the exponential factor in the solution (16)
indicates the existence of a thin transition layer of thickness δ.
This thickness can be referred to as the shock thickness, which
tends to zero as D → 0 for a fixed u1 and u2. Also δ increases
as u1 → u2 for a fixed D. If δ is small compared with other
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typical length scales of the problem, the rapid shock transition
can satisfactorily be approximated by a discontinuity. The
solution (15) is a key result of this paper. It reveals that a
traveling wave type inhomogeneous profile of concentration
of tanh form propagates without distortion of its shape with
a constant speed. A closer look at the result shows that
while pure mass diffusion cannot sustain a traveling wave,
the presence of a thermal gradient can give rise to a traveling
wave instability due to the Soret effect. The generic origin of
this type of instability lies in the nonlinearity of the Soret flux
(thermodiffusion).

III. INCLUSION OF FINITE RELAXATION TIME OF FLUX

Diffusion is a key physical process for mass transport in the
Ludwig-Soret effect. An elementary consideration based on
the fundamental Gaussian solution of the diffusion equation
with a point source of particles at some initial time asserts
that there is always a finite nonzero density of particles at a
very large distance from the source even when the time is very
short. This implies that the particles have infinite speed. To
avoid this difficulty, one may introduce, following Cattaneo
[28], a nonzero relaxation time (τ ) of the diffusive flux that
takes care of the finite inertia of the dispersing species. At
the microscopic level, this corresponds to the model of a
correlated random walk introduced by Furth and others [32].
Our goal in this section is to include the effect of finite inertia
of particles in the Ludwig-Soret diffusion equation. Following
Cattaneo’s modification of Fick’s law, the total flux including
thermodiffusion can be written in the form

j(x, t + τ ) = −
[

D
∂c(x, t )

∂x
+ c(x, t ){1 − αc(x, t )}DT ∇T

]

+ v0c(x, t ), (18)

which takes care of the adjustment of a concentration gradient
at time t with a flux j(x, t + τ ) at a later time (t + τ ), and τ

being the delay time of the particles in adopting one definite
direction. Expanding j(x, t + τ ) in Eq. (18) up to first order
τ , we obtain

τ
∂ j(x, t )

∂t
+ j(x, t )

= −D
∂c(x, t )

∂x
− c(x, t ){1 − αc(x, t )}DT ∇T

+ v0c(x, t ). (19)

Differentiating Eq. (19) with respect to x and Eq. (3) with
respect to t and eliminating j from the resulting equations,
one arrives at the following equation:

τ
∂2c(x, t )

∂t2
+ ∂c(x, t )

∂t
= D

∂2c(x, t )

∂x2
+ (β − v0)

∂c(x, t )

∂x

− 2αβc(x, t )
∂c(x, t )

∂x
. (20)

Equation (20) is a hyperbolic variant of the nonlinear diffusion
equation. It reduces to the spatially extended system described
by the evolution equation (4) for τ = 0. We now seek as
before a traveling wave solution of Eq. (20) of the form
U (z) = c(x − v′t ), z = x − v′t , where v′ is the wave speed

to be determined. This results in the following equation:

− (v′ + β − v0)

2αβ

∂U

∂z
+ U

∂U

∂z
− (D − τv′2)

2αβ

∂2U

∂z2
= 0, (21)

where P′ = v′+β−v0

2αβ
and K ′ = D−τv′2

2αβ
.

To find a physically meaningful solution of Eq. (21), U (z)
must remain bounded for large values of z. For this, U (z)
represents the wave form with the property that it tends
asymptotically to constant values u1 as z → −∞ and u2 as
z → ∞. We assume that u1 > u2. A direct integration of
Eq. (21) gives

∂U

∂z
= 1

2K ′ (U 2 − 2P′U − 2Q′), (22)

where Q′ is the constant of integration. If u1 and u2 are two
roots of the quadratic equation (U 2 − 2P′U − 2Q′) = 0, then
the constants P′ and Q′ can be obtained as

P′ = v′ + β − v0

2αβ
= 1

2
(u1 + u2), (23)

which yields

v′ = β[α(u1 + u2) − 1] + v0 (24)

and

Q′ = − 1
2 u1u2. (25)

Proceeding exactly as before, we obtain

U (z) = 1

2
(u1 + u2) − 1

2
(u1 − u2) tanh

[ z

4δ′
]
, (26)

where the shock thickness is given by

δ′ = K ′

u1 − u2
= ρ(D − τv′2)

2DT ∇T (u1 − u2)
. (27)

The above analysis shows that the wave speed v′ [Eq. (24)]
remains unaffected by the presence of a finite relaxation
time τ of the flux. However, it is apparent that the shape
of the wave form is not only affected by the mass diffusion
coefficient D but also by an additional contribution τv′2
due to the finite relaxation time τ of the flux such that
(D − τv′2) behaves as effective kinematic viscosity. To show
how a small but finite relaxation time of the diffusive flux
modifies the shape of the traveling wave, we plot the wave
profile [U (z)] given in Eq. (26) as a function of the collective
coordinate z as depicted in Fig. 5 for different values of
τ . Subsequently, we observe that the balance between the
steepening effect of the nonlinear convective term due to
thermodiffusion as well as the smoothening effect of mass
diffusion is modified by the presence of the relaxation time or
the wave-speed-dependent term τv′2. Moreover, a shock wave
can appear when the mass diffusion coefficient D is exactly
balanced by the product of the finite relaxation time of the
flux and the wave velocity. This can be achieved by suitably
adjusting the values of the applied constant temperature gradi-
ent and the values of the imposed boundary condition (u1, u2).
To get a better insight into the development of shock waves
in colloidal suspensions by adjusting the relevant parameters
to obtain a shock thickness δ′ → 0, we plot a two-parameter
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FIG. 5. A plot of the traveling waves U (z) as a function of col-
lective coordinate z for different values of the finite relaxation time
of flux τ of the dispersing colloidal particles. The other parameters
are v0 = 1.0, α = 1.0, D = 1, DT = 1.0, u1 = 2.0, u2 = 1.0, and
∇T = 1.0. The arrow refers to the direction of propagation.

phase diagram as shown in Fig. 6. We vary the externally
applied temperature gradient ∇T as a function of the sum of
the two boundary conditions such as u1 + u2 (provided u1 >

u2 for a right-moving traveling wave), which gives us more
flexibility to choose the boundary values. The bifurcation
curve can provide the probable choice of parameters to obtain
a transition from a traveling wave to a shock wave in the
present setup. Thus, the occurrence of a shock wave can be
realized in a colloidal mixture without neglecting the mass
diffusion.

Finally, for a better perspective on our theoretical study
of thermodiffusion-induced spatiotemporal instability in a
colloidal suspension in the form of a traveling wave in our
system within workable ranges of experimental constants,
we propose a probable experimental setup as follows. We
can carry out the experiment in a one-dimensional Soret cell
of length L = 50 μm, mimicking a constantly fed unstirred
reactor (CFUR) as used mostly in the study of spatial patterns
and waves in reaction-diffusion systems. The CFUR consists
of a gel layer whose two ends are in contact with CSTR
maintained at two different temperatures. This enables us to
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FIG. 6. Plot of externally applied constant thermal gradient vs
boundary condition in the limit when shock thickness is zero. The
other parameters are v0 = 1.0, α = 1.0, D = 1, DT = 1.0, τ = 0.25.

have a horizontal gradient of temperature across the Soret
cell consisting of the colloidal suspension. We can maintain
a temperature difference of 25 K between the two ends of the
Soret cell, thus generating a gradient of 0.5 K μm−1. If the
thermal diffusion coefficient DT is ∼10 μm2 K−1 s−1, then
the velocity obtained might be ∼5 μm s−1 in the case of a
simple colloid with v0 = 0 μm s−1 [15,16]. The value of the
transition layer thickness δ can be obtained as ∼3 μm. The
wavefront propagation can be measured by a camera and other
necessary devices.

IV. CONCLUDING REMARKS

In conclusion, we have shown that the thermal diffusion
equation for a constant thermal gradient in a self-propelled
colloidal system can be solved exactly, which appears as a
traveling wave or moving front. The velocity of the traveling
wave depends on the applied temperature gradient, the ther-
mal diffusion coefficient, the imposed boundary condition,
and the self-propulsion velocity of the colloidal particles. By
adjusting any of the above-mentioned parameters, one can
control the velocity as well as the shape of the traveling wave.
We have discussed the cases of both positive and negative
thermal diffusion coefficients of self-propelling colloids. We
have shown that, in the case of colloids having a positive self-
propulsion velocity, a directional reversal of a moving front
can occur with an increase of the applied constant temperature
gradient if the colloidal particles move toward the hot end as
a response to the applied temperature gradient. Moreover, a
condition might occur when the concentration profile shows
a wavelike inhomogeneity in space but is stationary with
respect to time for a certain value of the applied constant
temperature gradient. We furthermore extended our study by
taking care of the finite inertia of the dispersing species,
which at a microscopic level corresponds to the model of a
correlated random walk. We have shown that while the wave
speed remains unaffected by the presence of a finite inertia
of the dispersing colloidal particles, the shock thickness gets
significantly modified by it. Our result shows that the trav-
eling wave solution reduces to a shock wave when the mass
diffusion coefficient is exactly balanced by the product of the
finite relaxation time of the flux and the square of the wave
velocity. This provides a fundamental insight into developing
a shock wave by treating mass diffusion and thermal diffusion
on an equal footing by tuning the velocity of the traveling
wave. Since the present work does not consider the effect
of temperature and concentration dependence of the Soret
coefficient of colloids, a reasonable extension of the current
work would be a detailed investigation of these features to
uncover complex spatiotemporal phenomena in one or higher
dimensions.
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