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Polymers in shear flow are ubiquitous and we study their motion in a viscoelastic fluid under shear. Employing
Hookean dumbbells as representative, we find that the center-of-mass motion follows: 〈x2

c (t )〉 ∼ γ̇ 2tα+2,
generalizing the earlier result: 〈x2

c (t )〉 ∼ γ̇ 2t3(α = 1). Here 0 < α < 1 is the coefficient defining the power-law
decay of noise correlations in the viscoelastic media. Motion of the relative coordinate, on the other hand, is
quite intriguing in that 〈x2

r (t )〉 ∼ tβ with β = 2(1 − α), for small α. This implies nonexistence of the steady state,
making it inappropriate for addressing tumbling dynamics. We remedy this pathology by introducing a nonlinear
spring with FENE-LJ interaction and study tumbling dynamics of the dumbbell. We find that the tumbling
frequency exhibits a nonmonotonic behavior as a function of shear rate for various degrees of subdiffusion. We
also find that this result is robust against variations in the extension of the spring. We briefly discuss the case of
polymers.
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I. INTRODUCTION

Viscoelastic fluids under shear are ubiquitous, especially
in biological systems, and aid in transport of biomolecules in
vivo. Viscoelasticity, as the name suggests, is the property of a
material comprising of both viscous and elastic behavior [1].
Almost all materials with biological or engineering interests
are viscoelastic to some degree [2]. The elastic component
of the material tends to bring it back to its original con-
figuration when put under stress [3]. As a result, motion in
viscoelastic media is generally slower, i.e., the mean-square
displacement 〈x2(t )〉 ∼ tα [4], with 0 < α < 1, consequent of
the antipersistent correlations in successive displacements [5].
Viscoelastic subdiffusion frequently arises in motion in bio-
logical domains, e.g., motion in crowded fluids [6], cytoplasm
of living cells [7], locus of a chromosome in eukaryotes [8],
etc.

Even though a useful representative of system dynamics,
a single-particle description is not fully appropriate when it
comes to investigating systems with internal degrees of free-
dom, e.g., polymers. In addition, polymers constitute the basic
building blocks of the macromolecules like DNA and proteins.
Hence, it becomes natural to investigate the dynamical aspects
of a polymer in viscoelastic media. However, most of the
polymer transport in vivo takes place in viscoelastic fluids
under shear, wherein they not only move but also tumble
along, i.e., an end-to-end rotation. The phenomena of polymer
tumbling is well understood for the case of viscous shear
flows [9,10]. And arises when the relaxation time of the
polymer is larger than the timescale of flow deformation [11],
with characteristic tumbling time varying sublinearly with the
flow rate [12,13]. However, a majority of studies involving
tumbling do not cover the practically important case of shear
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flows arising in viscoelastic media, e.g., polymer plastics and
most of the biological materials [14].

These observations raise an interesting question: What are
the dynamical characteristics of a polymer in a viscoelastic
fluid under shear? This is a question of immense practical
significance, which we answer in the present work employing
a dumbbell which is the simplest form of a polymer. For the
two masses connected by a harmonic spring, we show both
analytically and numerically that the separation grows without
bounds. This implies toward the nonexistence of steady state
and essentially means that tumbling cannot be addressed using
a linear system. We remedy this pathology by introducing a
finitely extensible nonlinear elastic spring with repulsive part
of the Lennard-Jones interaction (FENE-LJ) [15,16]. Thus,
allowing us to address tumbling.

II. GENERALIZED LANGEVIN EQUATION IN
SHEAR FLOWS

The generalized Langevin equation (GLE) [17] describing
the motion of a dumbbell in a viscoelastic material under shear
reads:∫ t

0
dt ′η(t − t ′)(ṙi − γ̇ yii)(t ′) = −∇iV (|ri − r j |) + ξi(t ),

(1)

where ri ≡ (xi, yi, zi ), with i = 1, 2 and i �= j denote the two
particles, and γ̇ is the shear rate applied to the viscoelastic
fluid. The noise vectors ξ1 and ξ2 are Gaussian random vari-
ables with correlation matrices: 〈ξi(t )ξT

j (t ′)〉 = δi jkBT η(|t −
t ′|)I3, consistent with the fluctuation dissipation relation [18],
where I3 denotes the 3 × 3 identity matrix. For the case of
harmonically interacting dumbbells we choose V (|ri − r j |) =
1
2ω2

0(ri − r j )2, which is a Rouse polymer of size N = 2 [19].
The term inside the integral in Eq. (1) is the memory

kernel representing time-dependent friction. Consequently,
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the present state depends on the entire history. Physically, the
GLE renders itself derivable in terms of mechanical equations
for a particle interacting with a thermal bath, in terms of the
spectral density of the bath oscillators [20,21]. To address the
problem at hand, we employ a power-law decaying form for
the memory kernel: η(t ) = ηαt−α/	(1 − α), with 0 < α < 1
[22]. The advantage of this form of memory kernel is that it
captures both the viscous and elastic limits for extreme values
of the coefficient α. In other words, limα↘0 η(t ) = η (purely
elastic) and limα↗1 η(t ) = 2ηδ(t ) (purely viscous), where η

represents the friction coefficient for either elastic medium or
viscous medium [23]. The derivation for the viscous case is
provided in Appendix A. With this form of memory kernel,
the GLE results in subdiffusive motion at all times [23,24],
though it is expected that diffusion emerges at long times in
any realistic scenario. More on that later.

A. Center-of-mass motion for linear spring

Absence of any external force on the dumbbell allows us
to separate its dynamics into the motion of center of mass and
motion about the center of mass. The coordinate of the center
of mass (xc, yc, zc) ≡ rc = r1+r2

2 evolves as:∫ t

0
dt ′η(t − t ′)(ẋc − γ̇ yc)(t ′) = ξcx(t ), (2a)

∫ t

0
dt ′η(t − t ′)ẏc(t ′) = ξcy(t ), (2b)

∫ t

0
dt ′η(t − t ′)żc(t ′) = ξcr (t ), (2c)

where (xc, yc, zc) = (0, 0, 0) at t = 0 and ξc(t ) = [ξ1(t ) +
ξ2(t )]/2 is Gaussian noise with mean zero and correlation:
〈ξc(t )ξT

c (t ′)〉 = 1
2 kBT η(|t − t ′|)I3. It is evident looking at

Eq. (2) that the center of mass moves like a free particle in
shear flow. Interestingly, the y (and z) components of motion
do not feel the effect of shear flow, with the well-known two-
point correlation: 〈y(t1)y(t2)〉= kBT

2ηα	(1+α) [t
α
1 + tα

2 − |t1 − t2|α]
[4]. The x component of motion is, however, affected by
the presence of shear flow which is directed along the x
axis. Invoking the Laplace transform of Eq. (2) allows us to
decouple the convolution of the memory kernel η and local
velocity. As a result, the time evolution of the x coordinate of
the center of mass evolves as:

xc(t ) = γ̇

∫ t

0
dt ′yc(t ′) +

∫ t

0
dt ′g(t − t ′)ξcx(t ′), (3)

where g̃(s) = 1/sη̃(s), is the Laplace transform of g. This al-
lows us to calculate the two point correlation the x component
of motion:

〈xc(t1)xc(t2)〉

= γ̇ 2
∫ t1

0

∫ t2

0
dt ′dt ′′〈yc(t ′)yc(t ′′)〉

+
∫ t1

0

∫ t2

0
dt ′dt ′′g(t1 − t ′)g(t2 − t ′′)〈ξcx(t ′)ξcx(t ′′)〉,

(4)

where the cross terms vanish due to the independence of the
noise components along x and y direction. With the integrand
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FIG. 1. Mean-square displacement of the center-of-mass motion
xc along the shear flow direction for varying α, with respective line
fits. Parameter values for numerical calculation are: γ̇ = 1, ηα = 1
and kBT/2 = 1.

of the first term going as tα and g(t ) ∼ tα−1, it follows that the
two-point correlation increases as a power law in time, with
exponent reading α + 2 for the first term and α for the second
term. As a consequence, the mean-square displacement for the
center-of-mass motion along the shear flow reads:

〈
x2

c (t )
〉 = γ̇ 2kBT

ηα

α + 1

	(α + 3)
tα+2 + kBT

ηα

tα

	(α + 1)
. (5)

This is an interesting result, saying that flow and thermal
contributions to the center-of-mass motion arise separately.
Furthermore, the different qualitative behavior of the two
terms, i.e., exponents of growth in time, for the two terms
implies that there is a crossover taking place. To understand
this in more detail, let us compare the magnitudes of the shear
and thermal contributions: γ̇ 2kBT

ηα

α+1
	(α+3) t

α+2
c = kBT

ηα

tα
c

	(α+1) ⇒
t2
c = α+2

γ̇ 2 , where tc denotes the crossover time. As the degree
of subdiffusion α ∈ (0, 1), the crossover time tc is of the same
order of magnitude for different α. In addition, for t < tc, the
motion is subdiffusive and for t � tc, the fluctuations in the
center-of-mass motion grow faster than ballistic:

〈
x2

c (t )
〉 ≈ γ̇ 2kBT

ηα

α + 1

	(α + 3)
tα+2. (6)

This implies that shear contribution is dominant at large times.
In other words, motion along the flow is shear dominated
and thermal fluctuations play only a subdominant role. It also
generalizes the earlier study on viscous shear flows (α = 1):
〈x2

c (t )〉 = 2
3 γ̇ 2Dt3 [25], with D = kBT/2ηα . Numerical solu-

tion of Eq. (2) provides a confirmation of our analytical results
(cf. Fig. 1). For shear rate unity, i.e., γ̇ = 1, the crossover
time

√
2 � tc �

√
3. This assertion is further corroborated by

the numerical results in Fig. 1, where we see that motion
is subdiffusive at small times, viz. t � 1.6, which is tc for
α = 0.5, chosen as a representative. At longer times, the
subdiffusion crosses over to a faster than ballistic motion. See
Appendix C for details of the algorithm for numerical solution
of Eq. (2) [26].

Interestingly, the stronger than ballistic rise of the mean-
square displacement of the center of mass along shear flow
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is also observed for a particle with finite mass. In other
words, 〈x2

c (t )〉 ∼ tα+2 is robust even when we include inertia
in the Eq. (2). We provide the details of this calculation in
Appendix B.

B. Relative motion for linear spring

The relative coordinate rr = r1 − r2 evolves as:∫ t

0
dt ′η(t − t ′)(ṙr − γ̇ yr i)(t ′) = −2ω2

0rr + ξr (t ), (7)

and represents a particle moving in a harmonic potential
in a viscoelastic medium under shear, with initial location
at the origin. The noise variable ξr (t ) = ξ1(t ) − ξ2(t ) is an
unbiased colored Gaussian noise with correlation matrix
〈ξr (t )ξT

r (t ′)〉 = 2kBT η(|t − t ′|)I3. As the y (and z) component
does not feel the effect of flow, its dynamics is known exactly
[27,28]:

〈yr (t )yr (t ′)〉 = 2kBT
[
Q(t ) + Q(t ′)

− 2ω2
0Q(t )Q(t ′) − Q(|t − t ′|)], (8)

where Q(t ) = 1
2ω2

0
[1 − Eα (−atα )] [29], a = 2ω2

0
ηα

, and Eα () is
the Mittag-Leffler function [30]. The motion along x direction,
however, feels the effect of both thermal fluctuations and shear
flow, wherein the former is known exactly, and has the form
of Eq. (8): 〈

x2
r (t )

〉
Th = (

kBT/ω2
0

)[
1 − E2

α (−atα )
]
. (9)

The shear contribution to motion in Laplace domain reads
x̃r (s)Sh = γ̇ G̃(s)ỹr (s) with G̃(s) = sα−1

sα+a and allows us to cal-
culate the fluctuations in the relative coordinate:〈

x2
r (t )

〉
Sh

γ̇ 2
=

∫ t

0
dt1G(t − t1)

∫ t

0
dt2G(t − t2)〈yr (t1)yr (t2)〉.

(10)

Now, using the two-point correlation of y and the following
integrals: ∫ t

0
dt1G(t − t1) = tEα,2(−atα ), (11a)

∫ t

0
dt1G(t − t1)Q(t1) = (G ∗ Q)(t ) = R(t )

= atα+1

2ω2
0

E (1)
α,2(−atα ), (11b)

∫ t

0
dt1G(t − t1)

∫ t

0
dt2G(t − t2)Q(|t1 − t2|)

= 2
∫ t

0
dt1G(t1)R(t1), (11c)

we have:〈
x2

r (t )
〉
Sh

2γ̇ 2kBT
= t2

ω2
0

∞∑
0

∞∑
0

l (−atα )k+l

	(αk + 1)	(αl + 2)[α(k + l ) + 2]

+ t2

2ω2
0

[
2atαEα,2(−atα )E (1)

α,2(−atα )

− a2t2α
{
E (1)

α,2(−atα )
}2]

, (12)

where Eα,β () is the two-parameter Mittag-Leffler function
and E (1)

α,β () its derivative [30]. Hence, the fluctuations in the
relative separation of the monomers connected by the linear
spring grow with time as:〈

x2
r (t )

〉 = 〈
x2

r (t )
〉
Th + 〈

x2
r (t )

〉
Sh. (13)

With Eα (−atα ) approaching zero as time grows, the thermal
contribution to 〈x2

r (t )〉 eventually saturates. This, however, is
not the case for the shear contribution. In order to assess the
long-time behavior of 〈x2

r (t )〉Sh, let us make an approximation,
viz. l

α(k+l )+2 ≈ l
2 , which is expected to hold for small values

of α, for the first term in Eq. (12). This results in:

t2

ω2
0

∞∑
0

∞∑
0

l (−atα )k+l

	(αk + 1)	(αl + 2)[α(k + l ) + 2]

≈ t2

ω2
0

∞∑
0

(−atα )k

	(αk + 1)

∞∑
1

l

2

(−atα )l

	(αl + 2)

= −at2+α

2ω2
0

Eα (−atα )E (1)
α,2(−atα )

∼ − t2−2α

2a2ω2
0	(1 − α)	(2 − α)

, (14)

where in the last step we have used the asymptotic forms of
Mittag-Leffler function and its derivative, viz. Eα,β (−atα ) ∼

t−α

a	(β−α) and E (1)
α,β (−atα ) ∼ t−2α

a2	(β−α) for atα � 1 [31]. Using
the asymptotic forms in the second term in Eq. (12) and
adding the long-time contribution from the first, we have:

〈
x2

r (t )
〉
Sh ∼ αγ̇ 2kBT

a2ω2
0	

2(2 − α)
t2−2α. (15)

This implies that the shear contribution to the motion of the
relative coordinate grows without bounds in a superdiffusive
manner (α is small). In addition, even as the thermal contribu-
tion eventually reaches a steady value, the fate of separation
between the two masses is shear dominated, and 〈x2

r (t )〉 ∼ tβ

with β = 2(1 − α) (for small α). For arbitrary values of α,
such a closed form expression is not possible, and we solve
Eq. (7) numerically to assess the behavior of fluctuations in
the separation of the two masses. We show the results for
〈x2

r (t )〉 in Fig. 2(a) for different values of α. For the entire
range of α ∈ (0, 1), Fig. 2(b) shows that the fluctuations in
the relative coordinate go from superdiffusive to diffusive to
subdiffusive as α grows from 0 to 1. The deviation from the
straight line behavior is also evident, implying toward the
failure of the approximation made to decouple the series in
Eq. (12). The result in Fig. 2(b) also implies that the relative
separation between the monomers of the Hookean spring does
not achieve a steady state.

Nonexistence of the steady state for the motion of the
relative coordinates implies that the system does not feel the
effects of confinement. This means that the zero crossing
times of the relative variable along the shear flow direction
xr = x1 − x2 does not possess a well-defined mean. As tum-
bling is nothing but the zero crossing of the relative variable
xr , lack of a well-defined mean time for the Hookean spring
implies that tumbling cannot be addressed within the domains

012605-3



SINGH, SINGH, AND KUMAR PHYSICAL REVIEW E 102, 012605 (2020)

10-1

100

101

102

103

10-1 100 101 102 103

t

<
x2 r(

t)
>

(a)

t1.6

t0.6

t0.0

α = 0.2
α = 0.5
α = 0.8

0

0.5

1.0

1.5

2.0

0 0.2 0.4 0.6 0.8 1.0
α

β

2(1-α)

(b)

FIG. 2. (a) Mean-square displacement of the relative motion xr

along the shear flow direction for various α, with respective line fits.
(b) Dependence of β on the exponent of subdiffusion α. Parameters
for the numerical calculation are γ̇ = 1, ηα = 1, 2kBT = 1, and
ω0 = 1.

of linear interaction. In other words, the harmonically interact-
ing dumbbell which serves as a starting point for addressing
tumbling in viscous shear flows, e.g., Rouse chains [32,33], is
not appropriate for describing tumbling motion in viscoelastic
medium under shear.

For the Hookean spring, the nonexistence of steady state
in shear flow is attributed to the absence of any terminal
relaxation time in the memory kernel representing noise cor-
relations. Alternatively, the noise correlation here decays as
a power law at all times. In any finite-size system, however,
these power-law decays are expected to be tamed beyond
a certain point in time. The resulting correlation: η(t ) =
ηαt−αe−t/T/	(1 − α), where T is the terminal relaxation
time, signifies that after time T the correlation decays ex-
ponentially. This form of noise correlation is interesting in
its own right, particularly in cases where a crossover from
anomalous to normal diffusion [34] is observed. However, in
the present work we are interested mainly in subdiffusion, and
hence we restrict ourselves to power-law decay forms of noise
correlation.

Furthermore, a harmonic spring which does not put a hard
cutoff on maximal allowed separation between the monomers
is rather an idealization, more like a beautiful construct to
derive exact results rigorously. Hence, a more realistic system
which exhibits a steady state is better suited to address tum-
bling in subdiffusive media. We get about this by replacing the

linear spring by a nonlinear one. Inclusion of nonlinearity in
the spring allows only a finite range of extension, constraining
the system to relax to a steady state. This allows us to study
tumbling in viscoelastic shear flows, staying within the realm
of subdiffusion.

III. GENERALIZED LANGEVIN EQUATION IN SHEAR
FLOWS-NONLINEAR DUMBBELL MODEL

In order to bring in nonlinearity in the problem, we intro-
duce FENE-LJ potential which is more realistic compared to
the harmonic interaction [16]. The interparticle interaction is
a contribution from both repulsive and attractive parts, viz.
V = VLJ + VFENE, wherein

VLJ(r) = 4ε[(σ/r)12 − (σ/r)6], and (16a)

VFENE(r) = −(
kR2

0/2
)

ln[1 − (r/R0)2]. (16b)

As mentioned earlier, we consider only the repulsive part of
VLJ. In above equations, r = |r1 − r2| denotes the separation
between the two monomers, σ their size, ε the strength of
repulsion, R0 the maximum extension, and k the stiffness
constant. The force on particle i due to j is −∇iV (|ri − r j |),
with i, j = 1, 2. The resulting equations of motion read:

r̈i +
∫ t

0
dt ′η(t − t ′)(ṙi − γ̇ yii)(t ′)

= −∇iV (|ri − r j |) + γ̇ ẏii + ξi(t ), (17)

with i, j = 1, 2 and i �= j. We have retained the acceleration
terms for the nonlinear system because of its numerical advan-
tage (avoids root finding analogous to the overdamped case).
The second term on the right-hand side of the above equations,
γ̇ ẏi is the coordinate-dependent contribution originating from
the flow. This term arises due to the local streaming velocity
along with the actual momentum [25,35]. It is to be noted that
this flow-dependent term is absent in the overdamped limit.
This is because in the overdamped limit there is no change in
velocity, and hence, the acceleration term which results in γ̇ ẏi

for underdamped limit is absent in the overdamped limit. In
addition, the motion of center of mass along the flow direction
for underdamped limit, which behaves like a free particle with
inertia, follows 〈x2

c (t )〉 ∼ tα+2 (see Appendix B). Unlike the
harmonic spring, the nonlinear spring achieves a steady state
due the FENE-LJ potential which keeps the bond length in
the interval (σ, R0). This is evident from the behavior of the
mean-square displacement 〈x2

r (t )〉 of the relative separation
between the two masses connected by the nonlinear spring (cf.
Fig. 3). Following Refs. [35,36], we use ε = 1, σ = 1, R0 =
1.5σ , k = 30ε/σ 2, kBT = 1.2ε, and ηα = 7.5 in numerical
solution of Eq. (17). We measure energy in units of ε and
distance in units of σ .

The above results also imply that the nonlinear spring
relaxes to a steady state in which the particles oscillate about
a mean position. However, the approach to the steady state is
nontrivial due to the slow relaxation. This is seen in Fig. 4,
where we show the autocorrelation of the relative coordinate,
i.e., C(t ) = limt ′→∞ 〈xr (t ′ )xr (t ′+t )〉

〈x2
r (t ′ )〉 in the absence of shear flow.

It is evident that C(t ) ∼ 1/tα , decaying as a power law with
exponent α, making the definition of timescale of relaxation
τ0 irrelevant. As a result, the dimensionless shear rate, also
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FIG. 3. Mean-square displacement of relative separation xr of
two particles connected by a nonlinear spring for different values of
α. The parameter values for this graph are ε = 1, σ = 1, R0 = 1.5σ ,
k = 30ε/σ 2, kBT = 1.2ε, and ηα = 7.5. The shear rate γ̇ = 1.

known as the Weissenberg number, defined as Wi = τ0γ̇ ,
cannot be assigned a value. Hence we report our findings in
terms of the shear rate γ̇ only.

IV. DISTRIBUTION OF TUMBLING TIMES

Tumbling time τ is defined as the interval between suc-
cessive zero crossings of the relative coordinate xr = x1 − x2,
taking place along the flow direction. Comparing the cases of
purely viscous and viscoelastic flows, at identical values of
shear rate γ̇ , we find that the distribution of tumbling times
P(τ � t ) exhibit exponentially decaying tails for either case,
as observed from Figs. 5(a) and 5(b). Interestingly, however,
the tumbling events taking place in viscoelastic media are
slower compared to their viscous counterparts. This is not
very surprising in light of the fact that the effect of viscoelas-
ticity is to slow down the end-to-end rotation [37–39]. The
exponentially decaying tails of the tumbling time distribution,
P(τ � t ) ≈ exp(−ντ ), allows us to define the characteristic
tumbling time τtumb = 1/ν.
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One observation which follows immediately from Fig. 5 is
that irrespective of the nature of shear flow, viz. viscous or
viscoelastic, that there is a change in the trend of slope, mea-
suring the characteristic tumbling time ν. This is seen, if we
draw a vertical line parallel to the y axis, then we find that the
probability of tumbling exhibits a nonmonotonic dependence
on the shear rate γ̇ . In the following subsection we shall see
that this property is more pronounced for viscoelastic shear
flows compared to its viscous counterpart.

A. Effect of subdiffusion

We study the effect of subdiffusion on tumbling of dumb-
bells in Fig. 6, wherein we find that the characteristic tum-
bling frequency ν exhibits a nonmonotonic behavior with γ̇

which, even though present in viscous medium, is negligible
compared to its viscoelastic counterparts (cf. the case of

10-6

10-4

10-2

100

10-4 10-3 10-2 10-1 100 101

γ.

ν α=1.0
α=0.7
α=0.6
α=0.5
α=0.4
α=0.3

FIG. 6. Characteristic decay rate ν vs shear rate γ̇ for subdiffu-
sive case for different values of α, including the normal diffusion
case of α = 1 for comparison. For the subdiffusive case, the decay
rate ν achieves a minima around γ̇ ≈ 1, with the depth of the minima
increasing with increasing values of α.
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α = 1). To understand this, let us first look the dependence
of tumbling time on degree of subdiffusion α. As we see
from Eq. (17), the relative coordinate r1 − r2 follows the
motion of a single particle in the potential V = VFENE + VLJ,
and in the absence of shear has its own characteristic time
of zero-crossing (tumbling) 1/ν0, where ν0 is the tumbling
frequency at zero shear rate and is dictated by the parameters
of the potential and the degree of subdiffusion α. As a function
of the subdiffusion coefficient, ν0 is higher for higher α.
This assertion is corroborated by the horizontal part of the
ν vs γ̇ graphs in Fig. 6. The reason behind this observation
becomes clear once we look at the origin of subdiffusion in the
viscoelastic media. As we know, it is the elastic component of
the medium which results in a motion slower than diffusion.
And lower is the value of α, stronger is the elastic compo-
nent, thereby making the negative correlations in successive
displacements stronger for lower α. This reflects in a longer
time for zero crossing for lower α system as compared to its
less subdiffusive counterpart. This implies that lower α results
in lower ν values. Furthermore, the trend that lower α results
in a lower value of ν is also observed in the presence of shear
flow, i.e., γ̇ > 0, consistent with earlier studies on slowing
down of rotation [37–39].

We observe that for very low shear rate up to 10−3, the
tumbling frequency is unaffected by the shear flow. When γ̇

is slightly increased, we see that ν starts to decrease with shear
rate. This behavior is pronounced for the subdiffusive case
(α < 1). This is because when shear rate is small but finite,
it tends to keep the dumbbell aligned along the flow direction
and the memory effect due to elasticity of the medium which
is responsible for antipersistent motion may work as a pos-
itive feedback to the shear flow effect, thereby diminishing
its tendency to rotate freely end to end. For lower α, this
decrease in tumbling frequency becomes more significant.
This decrease in tumbling frequency, i.e., the slowing down
of the tumbling motion with increasing shear rate is found
to be consistent with results of previous study [37–41] due
to the elasticity of the medium. Furthermore, as these studies
have shown, and we also notice here, higher is the elastic com-
ponent of the medium, more is the slowing down of particle
motion.

An important point worth noticing, however, is that the
effect of flow become evident for subdiffusive case even for
smaller values of γ̇ . In other words, decrease in ν is detectable
for α = 0.3 for γ̇ as low as 10−3, while on the other hand, flow
remains ineffective to γ̇ ≈ 0.1 for α = 0.7. This is because for
relative strong subdiffusion, viz. for low values like α = 0.3,
the slow rotating behavior can make it susceptible to the
presence of even weakest of flows, whereas for relatively
weaker subdiffusion, a stronger strength of flow is needed.
Contrary to the behavior at low values of shear rate, for high
shear rate, viz. γ̇ around 10 or so, tumbling occurs more
frequently due to the increase in the rotational component of
shear force dominating the tumbling dynamics. In between the
two regimes, the tumbling frequency ν hits a minima, as we
observe in our numerical calculations. Interestingly, we also
notice that the location of minima is γ̇ ≈ 1, irrespective of the
degree of subdiffusion. This is because the characteristic time
of tumbling 1/ν0, is around the same order for various values
of α (as seen from the horizontal part of the graphs in Fig. 6).

10-5 

10-4 

10-3 

10-2 

10-5 10-3 10-1 101

γ.

ν

N=20, α=0.5

FIG. 7. Tumbling frequency ν as a function of shear rate γ̇ for a
polymer of size N = 20 for the subdiffusive case α = 0.5.

The graphs in Fig. 6 raise an important question regarding
whether the curves of ν vs γ̇ for different α shall merge
into each other at higher shear rates or exhibit different
behavior. For example, it is well known that for high shear
rates, the characteristic frequency ν ∼ γ̇ 0.67 [12,13,42–46],
for normally diffusing dumbbells and polymers. Will the same
relation generalize to the case of subdiffusion, with an α-
dependent exponent μ(α), viz. ν ∼ γ̇ μ(α)? In other words,
shall there emerge different scaling behaviors in the limit of
very large shear rates γ̇ , or will different degrees of subd-
iffusion result in different scaling each? An answer in this
direction could be that when shear rates are very high, then the
characteristic timescale dictated by γ̇ is is the dominant one,
compared to the characteristic timescale of tumbling 1/ν. And
in this regime, it might be the case that tumbling frequency
turns out to be a function of γ̇ only, and the α-dependent
contributions average out in some way. However, we are not
in a position to answer based on our present study, and shall
see through this in a future work.

B. Effect of spring extension

So far we have kept the extension of the nonlinear spring
fixed to R0 = 1.5σ . With the size of the monomers being σ ,
this implies that extension can increase to 50% of its size.
Under this condition, the spring behaves like a rigid rod.
Now, changing the maximal allowed extension R0 does not
significantly affect the location of the minima of the FENE-LJ
potential. This corresponds to the fact that the equilibrium
separation remains almost constant. Furthermore, tumbling is
a property of the end-to-end rotation along the direction of
shear flow. Changing the extension of the nonlinear spring
does not add any direction specific properties. This implies
that increasing the limit of maximal allowed extension of the
spring shall not have an appreciable effect on the characteristic
time of tumbling.

C. Generalization to polymers

As a generalization to the realm of polymers, we extend our
study to a small polymer of size N = 20 in Fig. 7 for athermal
good solvent conditions.
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We find that similar to the case of dumbbells, the ν vs γ̇

curve exhibits a nonmonotonic behavior, with the tumbling
frequency ν reaching a minimal for an intermediate value of
shear rate γ̇ and then rising for higher values of shear rate.
Other details like conformational changes and their statistics
shall be taken up in a future work.

V. CONCLUSION

Viscoelasticity is more of a rule rather than exception, and
motivated by this, we have studied in this paper the transport
and tumbling properties of polymers in a viscoelastic fluid
under shear. Using dumbbells as representative, we provide
analytical results for the motion of center of mass and sep-
aration between the two masses. For the simplest case of
a harmonic spring connecting the two masses, we find that
the mean-square displacement of the center of mass follows:
〈x2

c (t )〉 ∼ γ̇ 2tα+2, 0 < α < 1, generalizing the earlier result:
〈x2

c (t )〉 ∼ γ̇ 2t3(α = 1). On the other hand, fluctuations in
the relative coordinate also grow monotonically with time,
with 〈x2

r (t )〉 ∼ tβ , where β = 2(1 − α) to α ≈ 0.25 and ap-
proaches 0 as α approaches unity. Consequently, the system of
two masses connected by a harmonic spring does not achieve
a steady state. In other words, the extensively studied Rouse
polymer is inappropriate to address the dynamics of polymers
in viscoelastic medium under shear. We remedy this pathology
by introducing a nonlinear spring in the form of FENE-LJ
interaction which restricts the separation of the two masses
to a maximum allowed limit. Employing the nonlinearity in
the system we address tumbling of dumbbells and find that
the effect of viscoelasticity in medium is to slow down the
tumbling behavior. We find that the tumbling frequency ν ex-
hibits a nonmonotonic behavior as a function of shear rate γ̇ ,
with the location of minima around γ̇ ≈ 1. We also find that
the tumbling frequency of the dumbbells remains unaffected
by the extension allowed in the nonlinear spring, making it a
robust feature of the system. We hope that our work motivates
further studies along this direction, particularly the effect of
hydrodynamic interactions on tumbling aspects.
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APPENDIX A: VISCOUS LIMIT OF THE POWER-LAW
MEMORY KERNEL

The friction kernel for the generalized Langevin equation
describing motion in the viscoelastic medium reads: η(t ) =
ηα|t |−α/	(1 − α). Let there exist ε > 0, then

lim
ε→0

lim
α↗1

∫ ε

−ε

dt η(t ) = 2ηα lim
ε↘0

lim
α↗1

∫ ε

0
dt

t−α

	(1 − α)

= 2ηα lim
ε↘0

lim
α↗1

∫ ε

0
dt

1

	(1 − α)

t1−α

1 − α

∣∣∣∣
ε

0

= 2η, (A1)

where we have used ηα = η in the last line. As the integral
of the memory kernel in a neighborhood of t = 0 equates to
unity, and at other times goes to zero due to divergence in the
	 function in the denominator, it implies that limα↗1 η(t ) =
2ηδ(t ).

APPENDIX B: EFFECT OF INERTIA ON MOTION OF
FREE PARTICLE IN SHEAR FLOW

The equations of motion for a particle moving in a vis-
coelastic medium under shear flow reads:

ẍc(t ) = −
∫ t

0
dt ′η(t − t ′)(ẋc − γ̇ yc)(t ′) + γ̇ ẏc(t ) + ξcx(t ),

(B1a)

ÿc(t ) = −
∫ t

0
dt ′η(t − t ′)ẏc(t ′) + ξcy(t ), (B1b)

wherein we consider motion of only two coordinates, as the
motion along z axis is identical to motion along y axis. In
Laplace domain the equations transform to:

x̃c(s) = γ̇ ỹc(s)

s
+ ξ̃cx(s)

s[s + η̃(s)]
. (B2)

This allows us to calculate the two point position correlation
of the center-of-mass motion along shear direction in Laplace
domain:

〈x̃c(s)x̃c(s′)〉 = γ̇ 2 〈ỹc(s)ỹc(s)〉
ss′ + 〈ξ̃xc(s)ξ̃xc(s′)〉Ĩ (s)Ĩ (s′),

(B3)

where Ĩ (s) = G̃(s)/s and 1/G̃(s) = s + η̃(s). Also, define
J̃ (s) = Ĩ (s)/s, in terms of which the first term of the above
equation can be written as:

〈ỹc(s)ỹc(s′)〉
ss′kBT/2

= J̃ (s)J̃ (s′)
η̃(s) + η̃(s′)

s + s′ ,

= G̃(s) + G̃(s′)
s2s′2(s + s′)

− J̃ (s)J̃ (s′),

= J̃ (s)

ss′2 − J̃ (s)

s2s′ + J̃ (s′)
s2s′ − J̃ (s′)

ss′2

+ J̃ (s)/s2 + J̃ (s′)/s′2

s + s′ − J̃ (s)J̃ (s′). (B4)

And the second term in Eq. (B3) reads:

〈ξ̃xc(s)ξ̃xc(s′)〉Ĩ (s)Ĩ (s)

= kBT

2

[
J̃ (s)

s′ + J̃ (s′)
s

− J̃ (s) + J̃ (s′)
s + s′ − Ĩ (s)Ĩ (s′)

]
. (B5)

Using Eqs. (B4) and (B5) in (B3) and inverting the bivariate
Laplace transform leads us to the two-time correlation of
position in time domain:

〈xc(t )xc(t ′)〉 = 1
2 γ̇ 2kBT [t ′t3E2−α,4(−ηαt2−α )

− t4E2−α,5(−ηαt2−α ) + tt ′3

× E2−α,4(−ηαt ′2−α ) − t ′4E2−α,5(−ηαt ′2−α )

+ |t − t ′|4E2−α,5(−ηα|t − t ′|2−α )]
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+ 1
2 kBT [t2E2−α,3(−ηαt2−α )

+ t ′2E2−α,3(−ηαt ′2−α )

− |t − t ′|2E2−α,3(−ηα|t − t ′|2−α )

− tt ′E2−α,2(−ηαt2−α )E2−α,2(−ηαt ′2−α )].
(B6)

From the above equation it is evident that displacement ex-
hibits an aging behavior [47]. In addition, the presence of
shear also contributes to aging separately. This is an important
observation, because intuitively it is expected that the system
will just run away with the shear. However, the runaway
behavior is not simple, in that the system continues to age as it
proceeds in time. To calculate the mean-square displacement
of the center-of-mass motion along the shear, we use t = t ′,
which takes all the terms involving |t − t ′| to zero, resulting
in:

〈
x2

c (t )
〉

kBT
= γ̇ 2t4

[
E2−α,4(−ηαt2−α ) − E2−α,5(−ηαt2−α )

]

+ 1

2
t2

[
2E2−α,3(−ηαt2−α ) − E2

2−α,2(−ηαt2−α )
]
.

(B7)

Now, for t � 1, Eμ,ν ∼ t−μ/	(ν − μ) [31], which allows us
to write the diffusive limit of the center-of-mass motion along
the shear. Using the asymptotic form of the Mittag-Leffler
function in Eq. (B7) leads us to

〈
x2

c (t )
〉

kBT
∼ γ̇ 2t4

ηα

[
tα−2

	(α + 2)
− tα−2

	(α + 3)

]

+ t2

ηα

[
tα−2

	(α + 1)
− t2α−4

ηα	2(α)

]

∼ γ̇ 2

ηα

[
tα+2

	(α + 2)
− tα+2

	(α + 3)

]

+ 1

ηα

[
tα

	(α + 1)
− t2α−2

ηα	2(α)

]

⇒ 〈
x2

c (t )
〉 ∼ γ̇ 2kBT

ηα

α + 1

	(α + 3)
tα+2, (B8)

at long times. This is identical to the result for overdamped
limit of motion, derived in Sec. II A.

APPENDIX C: EMBEDDING FOR OVERDAMPED
MOTION IN SHEAR FLOW

For simplicity, we discuss the concept for a single particle
moving in the x-y plane in a viscoelastic fluid experiencing
shear along the x axis. The generalized Langevin equation
describing the overdamped dynamics reads:

∫ t

0
dt ′η(t − t ′)(ẋ − γ̇ y)(t ′) = −V ′

x (x, y) + ξx(t ), (C1a)

∫ t

0
dt ′η(t − t ′)ẏ(t ′) = −V ′

y (x, y) + ξy(t ), (C1b)

where ξx,y(t ) are Gaussian random variables with correlations

〈ξx(t )ξy(t ′)〉 = δxykBT η(|t − t ′|). (C2)

The friction kernel is a power-law decaying function of time:
η(t ) = ηαt−α/	(1 − α) with 0 < α < 1. In order to solve
Eq. (D1), we employ the technique of Markovian embed-
ding. We follow the review by Goychuk [26] and outline the
methodology here for motion in shear flow. As only the x
coordinate involves a contribution from shear flow, we focus
only on motion along the x direction. Define ui = −ki(x −
γ̇

∫ t
0 dt ′y(t ′) − xi ), where xi are auxiliary variables following

ηiẋi = kiui +
√

2ηikBT ξi(t ), (C3)

with ki = Cα (b)ηανα
0 /[bα(i−1)	(1 − α)] and ηi = Cα (b)

ηανα−1
0 b(1−α)(i−1)/	(1 − α) (cf. Eq. (23) in Ref. [26]). The

numbers ki and ηi define the Ornstein-Uhlenbeck processes,

ζ̇i,x (t ) = −νiζi,x(t ) +
√

2kiνikBT ξi,x(t ), (C4)

and are useful in approximating the power-law decay form
with a sum of exponentials as η(t ) = ∑

i kie−νit , where νi =
ki/ηi. The idea of representing power-law decay with such a
form is fairly old [48]. The equivalence of Eqs. (C1) and (C3)
is easily shown, thus providing a way to numerically solve the
former.

APPENDIX D: MARKOVIAN EMBEDDING FOR
UNDERDAMPED MOTION IN SHEAR FLOW

The generalized Langevin equation describing the dynam-
ics of an underdamped particle in the x − y plane with a shear
flow along x axis reads:

ẍ +
∫ t

0
dt ′η(t − t ′)(ẋ − γ̇ y)(t ′) = −V ′

x (x, y) + γ̇ ẏ + ξx(t ),

(D1a)

ÿ +
∫ t

0
dt ′η(t − t ′)ẏ(t ′) = −V ′

y (x, y) + ξy(t ), (D1b)

where the symbols retain their usual meaning. The Markovian
embedded form for the above equation in terms of auxiliary
variables {ui,x}N

i=1 and {ui,y}N
i=1 is

ẋ = vx, (D2a)

v̇x = −V ′
x (x, y) + γ̇ ẏ +

N∑
i=1

ui,x (t ), (D2b)

u̇i,x = −ki(vx − γ̇ y) − νiui,x +
√

2νikikBT ξi,x(t ), (D2c)

ẏ = vy, (D2d)

v̇y = −V ′
y (x, y) +

N∑
i=1

ui,y(t ), (D2e)

u̇i,y = −kivy − νiui,y +
√

2νikikBT ξi,y(t ), (D2f)
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where ξi,x and ξi,y are Gaussian white noise variables with
mean zero and with correlations: 〈ξi,x(t )ξ j,y(t ′)〉 = δi jδxyδ(t −
t ′). Now, from Eq. (D2c), we have:

ui,x (t ) = −
∫ t

0
dt ′(vx − γ̇ y)(t ′)kie

−νi (t−t ′ )

+
∫ t

0
dt ′√2νikikBT ξi,x(t ′)e−νi (t−t ′ ),

wherein we have used the initial conditions ui,x (0) = 0. Sub-
stituting this in (D2b) we have

v̇x = −V ′
x (x, y) + γ̇ ẏ −

∫ t

0
dt ′(vx − γ̇ y)(t ′)

N∑
i=1

kie
−νi (t−t ′ )

+
N∑

i=1

∫ t

0
dt ′√2νikikBT ξi,x(t ′)e−νi (t−t ′ ),

= −V ′
x (x, y) + γ̇ ẏ

−
∫ t

0
dt ′(vx − γ̇ y)(t ′)η(t − t ′) + ξx(t ),

where to obtain the last step we have used the solution of
Eq. (C4) and ξx(t ) = ∑

i ζi,x(t ). Similar calculations for the y
coordinate show the equivalence of Eq. (D1) to the Markov
embedded form (D2). An important difference to be noted
from the case of embedded form for overdamped motion is
the absence of memory term for the underdamped dynamics.

It is noted that the representation of a power-law decaying
function with a sum of exponentials serves a good approx-
imation to the former only in a finite range [ti, t f ], beyond
which there are exponential cutoffs. For all practical purposes,
like the one considered here, the range [ti, t f ] is sufficient.
Following Ref. [26], we use an N = 16 term exponential
approximation for the power-law decaying memory kernel
employing decade scaling b = 10. Also, the fastest timescale
ν0 = 103.
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Correction: Minor typographical errors were found in Eq. (2)
and in the inline equation appearing in the second complete
sentence after Eq. (2) and have been fixed. The third sentence
before Sec. II B contained a text usage error and has been set
right. A subscript to ν was missing in the expression “time of
tumbling 1/ν” in the penultimate paragraph of Sec. IV A and
has been inserted.
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