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Computational study of transient shear banding in soft jammed solids
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We have designed three-dimensional numerical simulations of a soft spheres model, with size polidispersity
and in athermal conditions, to study the transient shear banding that occurs during yielding of jammed soft
solids. We analyze the effects of different types of drag coefficients used in the simulations and compare the
results obtained using Lees-Edwards periodic boundary conditions with the case in which the same model solid
is confined between two walls. The specific damping mechanism and the different boundary conditions indeed
modify the load curves and the velocity profiles in the transient regime. Nevertheless, we find that the presence of
a stress overshoot and of a related transient banding phenomenon, for large enough samples, is a robust feature
for overdamped systems, where their presence do not depend on the specific drag used and on the different
boundary conditions.
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I. INTRODUCTION

Solids whose microscopic constituents are densely packed
into an amorphous assembly and basically insensitive to
thermal fluctuations form an integral part of our everyday
life, with examples ranging from pharmaceutical, cosmetic,
and food products to wet cement. Understanding the flow
properties of such materials is therefore of technological
importance while raising a number of fundamental questions
[1–3]. Under shear deformations, these materials flow only
when the applied shear stress is above a threshold value, the
yield stress. As the imposed strain increases at a fixed shear
rate, they show an initial linear increase in the stress, often
followed by a stress overshoot, beyond which the system
yields before reaching a steady flow state [4–7]. The steady-
state shear stress (σ ) as a function of the applied shear rate
(γ̇ ) provides a constitutive behavior (flow curve) that in most
cases is well described by the Herschel-Bulkley (HB) curve
σ = σY + κγ̇ n, where the yield stress σY , the effective vis-
cosity κ , and the exponent n are in principle material specific
[8,9]. The constitutive behavior under flow is interesting in
itself and has been the subject of many investigations [10–16],
but here we are interested instead in the transient behavior of
the material before it reaches the steady-state flow, where it
maintains features of both its solid and fluid response. Before
reaching the steady flowing state, in fact, jammed soft solids
often display flow instabilities which manifest in terms of
strong spatial inhomogeneities in the flow profile even when
the material is homogeneously driven, a phenomenon often
referred to as shear localization or shear banding.

Shear banding in complex fluids like polymer solutions and
wormlike micelles has been extensively studied, and in many
cases its origin is understood in terms of flow alignment of the
microstructure [17] or flow-induced crystallization [18]. The
theoretical approaches used typically couple the flow fields
with the microstructure [3,17,19–21]. In jammed and soft
glassy materials, these phenomena are less understood and the

subject of intense investigations [3,5,6,13,22–28]. The ques-
tions of interest overlap with the physics of jamming [2,12,29]
and the rheology of soft matter [13,22,23,26], granular assem-
blies [30–36], or glasses [7,11,37]. The possible association
of flow inhomogeneities to underlying nonequilibrium phase
transitions is increasingly debated [38–43], and a good under-
standing of their microscopic origin is fundamentally lacking,
especially when the shear banding is observed as a transient
feature that does not persist in steady state [5–7,24].

Microscopic computer simulations can be effective in
bringing new insight, but most of the existing studies have
been performed in two dimensions and in the quasistatic limit
(i.e., zero shear rate) while experiments are always performed
at finite shear rates and nearly always in three dimensions.
Together with mesoscale simulations based on elasto-plastic
models [13,16], most of the existing microscopic simulation
studies have focused on the part of the phenomenon that can
be rationalized in terms of the emergence of local plastic rear-
rangements in an elastic background [11]. That is, they do not
capture the coupling of the microscopic dynamics to the im-
posed deformation rate. Recent works, instead, have pointed
precisely to the crucial role of the rate-dependent dynam-
ics, calling for dedicated numerical investigations [5,24,44].
Computational studies with finite deformation rates can be
very sensitive to the specific treatment of viscous forces close
to jamming [45], but, for shear banding detected in jammed
dense suspensions [46–48], there is little clarity on which
results may depend on the microscopic dissipation or the
boundary conditions used.

To be able to address such questions, we have devised a
numerical study using three-dimensional (3D) microscopic
simulations and finite deformation rates. In this paper we
analyze the outcomes for the shear start-up response under
varying shearing protocols and boundary conditions, with
the goal to extract the robust features that do not depend
on the specifics of the numerical simulations. We study a
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jammed suspension (at volume fraction φ � 0.7) of polydis-
perse spheres with soft repulsive interactions, i.e., a deeply
jammed soft amorphous solid. We find that the shear start-up
is characterized by a stress overshoot and formation of a
transient band, which eventually disappears upon reaching
the steady state. We extensively test whether such findings
depend on different implementations of the viscous drag due
to the background solvent or on different types of boundary
conditions. Our study indicates that the stress overshoot and
the shear banding during the shear start-up are robust features
emerging from the microscopic physics of our model material,
they do not qualitatively change with the different shearing
protocols used here and are mainly controlled by the sample
age that we can change through the preparation protocol.

The paper is organized as follows. In Sec. II we discuss
the model system and the sample preparation protocol as well
as the rheological and structural characterization of the initial
sample configurations. In Sec. III we discuss the shearing
protocols followed in our work for performing finite shear rate
simulations. Sections IV and V contain the results comparing
the transient rheological properties obtained from different
protocols. At the end, in Sec. VI we present conclusions and
discussion.

II. MODEL AND SAMPLE PREPARATION

The 3D model for soft amorphous material we investigate
is composed of a non-Brownian suspension of soft repulsive
particles interacting via a truncated and shifted Lennard-Jones
potential [49], given by U (r) = 4ε[(ai j/ri j )12 − (ai j/ri j )6] +
ε, for ri j � 21/6ai j , else U (ri j ) = 0. Here ε is the unit energy
in the simulations, ri j being the center-to-center distance
between the particle i and j, and ai j = 0.5(ai + a j ), with ai

and a j being the diameter of particles i and j, respectively.
The diameters of the particles are drawn from a Gaussian
distribution with variance of 10%, whose mean is used as
unit length a. All the simulations are performed at a volume
fraction φ ≈ 70%, consisting of 105 (97 556) particles (unless
otherwise mentioned). Albeit simple, this type of model has
been successfully used for numerical simulations of soft solids
in various contexts and proven to capture the fundamental
physics of their behavior under deformation [7,15,27,37,47].
Rheological studies in the literature using Hertzian or har-
monic interactions [27,50] or other types of soft potentials
[7,50] show that the details of the interaction potentials have
little impact on the results obtained at these volume fractions.

We prepare the numerical samples to be sheared using the
following procedure. An initial FCC crystal at the chosen vol-
ume fraction of 0.70 (with lx = ly = lz = 42.18a) is melted
at T = 5.0ε/kB and equilibrated at the same temperature us-
ing NVT molecular dynamics (MD) for �5 × 104 MD steps,
with a MD time step of �t = 0.001τ0 (where τ0 =

√
ma2/ε is

the unit of time and m is the unit mass). After making sure that
there is no signature of crystallinity in the equilibrated sample
by measuring the bond orientational order parameter Q6 [51],
the melt is subjected to a systematic temperature quench.
From the initial temperature of T = 5.0ε/kB we decrease the
system temperature by �T , after which we let the system
relax at the temperature T − �T for 104 MD steps. We repeat
this procedure several times, until T = 0.001ε/kB is reached.

FIG. 1. (a) Pressure computed as a function of temperature for
samples quenched at that temperature with different cooling rates.
(b) The inherent structure energy as a function of temperature for
different cooling rates: Deeper basins of the potential energy land-
scape are accessed with decreasing cooling rate.

By changing the �T we control the cooling rate 	. The sam-
ples discussed here have been prepared for 	 corresponding
to 5 × 10−2, 5 × 10−3, 5 × 10−4ε/(kBτ0). After the system
reaches T = 0.001ε/kB, we perform an energy minimization
using the conjugate gradient (CG) method to take the system
to the zero temperature limit. For the fastest quench rate case,
we minimize the energy directly from the equilibrium liquid
state at T = 5.0ε/kB using CG. Following the above described
protocol we prepare five independent samples at each cooling
rate (except for the lowest one, where we have three samples).
The initial configurations so obtained are subjected to shear
deformation at a finite shear rate. Before studying the shear
start-up behavior we carefully analyze various properties of
the initial sample configurations.

In Fig. 1(a) we show the pressure measured as a function of
the temperature as the sample is quenched at a chosen cooling
rate 	. The pressure dependence on the temperature does
not change with 	 until T = 3.0ε/kB, which in our model
corresponds to the onset of glassy dynamics. Below such an
onset temperature, the pressure achieved through our cooling
protocol decreases with decreasing 	. In Fig. 1(b) we plot
the energy of the closest local minimum accessible to the
system, obtained through CG, as a function of T . One can
clearly see that, upon decreasing 	, we access deeper local
minima (or inherent structures) of the total potential energy
[52–55] below the onset temperature. We next characterize
the mechanical and structural properties of these inherent
structure configurations obtained from different 	.

In most amorphous materials, solid properties do
not emerge from strictly random packings because the
microscopic (interparticle) forces at play during solidification
introduce correlations and mechanical heterogeneities [56].
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Our preparation protocol uses the cooling rate to include
history-dependent processes that develop during solidifica-
tion. In this respect, our approach is different from what is
done in simulation studies of granular assemblies where the
samples are specifically prepared to be as close as possible
to the onset of jamming [31,34,57,58] or rapidly quenched
through CG [59,60]. We are far beyond jamming and system-
atically change the cooling rate to investigate how structural
correlations and mechanical heterogeneities, developed upon
cooling, change the linear response of the materials as well as
the rate-dependent yielding. Recent studies that have started
to explore more aged samples in the context of ultra-stable or
ultra-aged glasses may have a similar scope [61].

A. Linear viscoelastic response of the initial configurations

In order to characterize the mechanical properties of the
initial configurations, we compute the complex modulus by
performing small-amplitude oscillatory shear. By applying a
shear strain γ (t ) = γ0 sin(ωt ), for a strain amplitude of γ0 =
1%, we monitor the stress response for varying frequencies
ω [62]. We monitor the energy and pressure evolution during
the oscillatory shear cycles, and once the system reaches a
saturation in these quantities as a function of the number of
cycles, we extract the linear visco-elastic moduli (respectively
storage and loss) using

G′(ω, γ0) = ω

γ0π

∫ t0+2π/ω

t0

σxy(t ) sin(ωt ) dt, (1)

G′′(ω, γ0) = ω

γ0π

∫ t0+2π/ω

t0

σxy(t ) cos(ωt ) dt . (2)

In Fig. 2 we show G′ (ω, γ0 = 0.01) and G′′ (ω, γ0 =
0.01) as a function of the applied frequency ω for the initial
configuration prepared at a cooling rate 	 = 5 × 10−4ε/kBτ0.
The data show that the sample is solid, with G′ � G′′ at low
frequencies, and the zero frequency storage modulus can be
extracted by extrapolating the data to ω = 0. When comparing
with typical rheological behavior close to the jamming transi-
tion [63], the data indicate that the materials prepared using
the protocol described above are well beyond the rigidity
threshold and that a large number of excess neighbors (with
respect to the minimum number required by the isostaticity
condition) must contribute to their modulus. We compute the
zero frequency storage modulus for samples prepared with
different 	, as shown in the inset of Fig. 2. The arrow in the
inset of Fig. 2 corresponds to the fastest cooling rate, where
a liquid configuration is directly subjected to CG minimiza-
tion. With decreasing the cooling rate 	, the configurations
in deeper local minima of the potential energy landscape,
as identified in Fig. 1(b), clearly correspond to solids with
higher mechanical strength, similar to the results obtained in
Ref. [61].

B. Structural analysis

In order to gain insight into the microscopic structural un-
derpinnings, we analyze the structure of the samples by con-
structing a 3D radical Voronoi tesselation with the VORO++
open source software library [64] and compute the Voronoi

FIG. 2. The complex moduli (elastic, G′, and plasti, G′′) com-
puted as a function of frequency for an initial configuration prepared
at a cooling rate 	 = 5 × 10−4. Inset: The zero frequency storage
modulus G′ as a function of cooling rate 	. The G′ increases with
decreasing the cooling rate. The arrow indicates the value computed
for the infinitely fast cooling rate, obtained from the CG minimiza-
tion of a high-T configuration.

polyhedra. This method is well suited for our samples made
of polydisperse spheres. For samples prepared at different
cooling rate 	, we obtain the statistics of various Voronoi
polyhedra (defined by number of faces, edges, and vertices).
If we use the neighbors identified by the Voronoi polyhedra to
define the particle contacts, the data confirm that all samples
are well in the jammed phase. In Fig. 3 we show the fraction
of different polyhedra (which constitute more than 5% of
each sample) as a function of the cooling rate. The data show
that the fraction of Voronoi dodecahedra is clearly affected
by the cooling rate 	, whereas the contribution of the other
polyhedra does not change much. A Voronoi dodecahedron
corresponds to a local packing which is an icosahedron, where
neighboring particles form an icosahedron around a reference
particle. Relatively higher percentages of local icosahedral
packing are expected and widely observed in slowly quenched
supercooled liquids [65], as well as in glasses, with similar
spherically symmetric interactions [66–68].

Having characterized the initial configurations prepared at
various 	, we now analyze the rheological response of these
samples subjecting them to a continuous shear deformation at
a finite rate.

III. SHEARING PROTOCOLS

The samples characterized as described above are sub-
jected to a shear deformation of strain amplitude γ (t ) with
constant imposed rate γ̇ , either using Lees-Edwards boundary
conditions (LEBCs) or using a wall-based (WB) protocol.
Note that in all simulations discussed below [x, y, z] refers,
respectively, to flow, gradient, and vorticity directions. For
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FIG. 3. Fraction of different Voronoi polyhedra in a sample
prepared using different cooling rates. In each initial configuration, a
Voronoi polyhedron is identified from the number of faces, vertices,
and edges, using a Voronoi tesselation analysis. Any polyhedron
species that corresponds to at least 5% of the total is considered.
Open circles correspond to Face (F) = 12, Edges (E) = 30, and
Vertices (V) = 20, a Voronoi dodecahedron, or a particle with
icosahedron neighbors. Likewise, squares (F = 13; E = 33; V =
22), diamonds (F = 14; E = 36; V = 24), up-side triangles (F = 15;
E = 39; V = 26), left-side triangles (F = 16; E = 42; V = 28), and
down-side triangles (F = 17; E = 45; V = 30). The arrow denotes
the data for the infinitely fast cooling rate, obtained from conjugate
gradient minimization.

LEBCs we start from a cubic simulation box. The number of
particles N = 97 556, and the box dimensions are lx = ly =
lz = 42.18a. For the WB protocol, the top wall is moved at
chosen velocity associated with the applied shear rate, while
the bottom wall is kept fixed. We confine the sample in the y
direction by freezing two layers of particles at the simulation
box boundary. ly is the width of the box in the y direction
for the confined samples. In this case lx = lz = 42.1798a,
ly = 37.18a, and N = 85 992. All shear rates are measured in
units of τ−1

0 .
For the LEBC we solve the equations of motion in two

different ways. In the first way, which in the following is
called LEBC1, we use the following dissipative particles
dynamics (DPD) equations of motion [69]:

m
d2�ri

dt2
= −ζDPD

∑
j( �=i)

ω(ri j )(r̂i j · �vi j )r̂i j − �∇�riU, (3)

where m is the mass of the particle and the first term in the
right-hand side (RHS) is the damping force, which depends
on the damping coefficient ζDPD. The relative velocity �vi j =
�v j − �vi is computed over a cutoff distance ri j � 2.5ai j , with
the weight factor ω(ri j ) = 1. These choices for the cutoff
distance and the weight factor are consistent with other studies
in the literature for similar systems [29,69–71]. In the viscous

damping we have considered only the radial contribution of
the relative velocities, since the particles are pointlike and
the main sources of change in the velocity are the interpar-
ticle forces which are purely radial [72]. Nevertheless, the
tangential contribution to the damping forces can also be
included as [(r̂i j · �vi j )r̂i j ) + (�vi j − (r̂i j · �vi j )r̂i j] [45]. In most
of this work we have used the formulation with only the radial
contribution, but in one of the following sections we briefly
discuss the effect of including the transverse term, which has
also been investigated recently in Ref. [73]. The second term
in the RHS is the conservative force due to the interactions
between particles.

In the second way, which we indicate as LEBC2, we solve
equations of motion where the solvent drag is Stokes-like and
depends only on the particle velocity relative to a background,
affine flow [46,74–76], as in a free-draining approximation,
given by

m
d2�ri

dt2
= −ζSD

(
d�ri

dt
− γ̇ yi�ex

)
− �∇�riU, (4)

where again m is the particle mass and the first term in the
RHS is the damping force, which depends on the damping
coefficient ζSD. Hence the drag force is proportional to the
difference between the particle’s velocity d�ri/dt and an affine
background velocity, dictated by imposed shear rate, given
by γ̇ yi�ex. The second term in the RHS is the force due to
the interactions between particles. While one concern with
this second approach is that it does not strictly conserve
momentum (i.e., it is not Galileian-invariant) [70,77], its use
can still be justified in systems where most of the stress in-
duced through the imposed deformation is due to interparticle
interactions and the contribution of the solvent is a minor
correction. This type of drag term allows for simpler and faster
simulations, with no need to adjust additional parameters such
as the cutoff or the form of the weight factor in the DPD
one. We will show in the following that this free-draining
approximation may work well in the case of deeply jammed
systems such as those of interest here.

For the WB shear deformation tests, we follow the proce-
dure of Varnik and co-workers in Ref. [4]. Two walls confine
the samples along the direction ŷ, at a relative distance ly:
one wall moves at a velocity �v = vwall

x x̂ = γ̇ lyx̂, while the
other is kept fixed. The particles that form the wall are
completely frozen during the evolution of the system, but the
interactions between the wall and the sample particles are
the same as in the sample. For the WB shear deformation
we use only the DPD approach as in Eq. (3). In fact, if the
drag coefficient is directly proportional to the particle velocity
as in Eq. (4), in the WB simulations the particles near the
moving wall feel more drag than the ones away from it. As
a consequence, for large samples the time needed for particles
near to the nonmoving wall to sense the deformation is quite
long (i.e., quite larger than the sound speed in the system).
This behavior could be mistaken for a shear banding, but
it is only a numerical artifact due to the use of Eq. (4) in
this geometry and disappears using the DPD equation (3)
instead.

Finally, both Eqs. (3) and (4) include the particle inertia
since this allows us to use the same efficient and precise
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algorithms devised for MD [78]. Nevertheless we can effec-
tively study the dynamics in the overdamped limit regime by
suitably adjusting the damping coefficients ζSD and ζDPD. As
a measure of the extent of damping, we can define an inertial
quality factor Q = τdamp/τvib, that measures the ratio be-
tween the timescale over which the inertial motion is damped
τdamp = m/ζ , due to the solvent drag, and the timescale τvib =√

ma2/ε over which a particle of mass m and diameter a is
accelerated by the force ε/a. For a fully overdamped system
Q → 0. It has been shown that for the athermal conditions
considered here, and for similar types of interactions, Q ≈ 1
well approximates the overdamped regime [69,79]. Hence
here we focus on Q ≈ 1 and show also that the results we
obtained do not vary significantly by decreasing Q or varying
it around 1. As stated above, the shear rates in the following
are always expressed in units τ−1

0 ≡ τ−1
vib .

All simulations have been performed using LAMMPS
molecular dynamics package [80], with modifications to the
source code to incorporate continuous polydisperse inter-
actions, since we use a distribution of particle sizes and
the interaction shape depends on the particle diameters. In
Fig. 4 we show a rendering of samples prepared at 	 = 5 ×
10−4ε/(kBτ0) and sheared at γ̇ = 10−4τ−1

0 (the snapshots are
both taken at γ = 0.12, during the stress decay) using LEBC1
and WB protocols with Q = 1. We use the color scheme to
show the velocities of the particles, which vary between 0 a/τ0

(white) and 0.005 a/τ0 (black).
In the following section we present a comparative study of

the rheological response starting from the load curves, using
the two different boundary conditions and the two different
equations of motion introduced above.

IV. LOAD CURVES AND FLOW PROFILES: COMPARISON
OF THE DIFFERENT SHEARING PROTOCOLS

We begin with the rheological data obtained for a sample
prepared at cooling rate 	 = 5 · 10−4ε/(kBτ0), i.e., a well-
annealed sample, and for a sample obtained by directly min-
imizing the energy of the high-temperature fluid with CG,
i.e., a poorly annealed sample. Both samples are sheared at
γ̇ = 10−4τ−1

0 and γ̇ = 10−2τ−1
0 , using the different protocols

discussed above. All data in this section correspond to the
overdamped limit, with the inertial quality factor Q = 1. Since
all the simulations are performed in athermal conditions, the
shear stress is computed from the virial stress tensor σαβ =
1
V

∑
i

∑
j>i rα

i j f β
i j , where V(= lx × ly × lz) is the volume of

the system, ri j represents the distance between particle i and
j, and fi j is the force on the particle i due to particle j
and α, β ∈ x, y, z. We indicate the shear component of the
stress σxx with σ , and the virial pressure is obtained as
P = 1

3 (σxx + σyy + σzz ). The first normal stress difference is
computed as σ11 = σxx − σyy.

In Fig. 5 we show load curves, i.e., the shear stress σ versus
applied strain γ , for the three different protocols (LEBC1,
LEBC2, and WB) and for the two different samples (the
well-annealed one and the poorly annealed one mentioned
above), sheared at γ̇ = 10−4τ−1

0 , a relatively low shear rate,
and γ̇ = 10−2τ−1

0 , a higher shear rate. At low shear rate, all
the protocols show comparable load curves. For the well-

FIG. 4. Simulation rendering of samples prepared at 	 = 5 ×
10−4ε/(kBτ0 and sheared at γ̇ 10−4τ−1

0 using LEBC1 (top) and WB
(bottom) protocol. We use the hot color gradient scheme based on
the velocities of the particles, which vary between 0 a/τ0 (white)
and 0.005 a/τ0 (black). In the WB protocol the top wall (dark blue
particles) is moved at a velocity given by the applied shear rate, while
the bottom wall (maroon particles) is kept fixed.

annealed sample, independent of the protocol used, we find
that the initial linear regime is followed by a stress overshoot
before reaching a steady-state value [see Fig. 5(a)]. The
height of the overshoot depends on the age of the sample
(as discussed in Sec. VI), and the samples obtained with the
highest possible cooling rate, i.e., by rapidly quenching the
liquid configuration via CG, do not show any overshoot [see
Fig. 5(c)]. Consistent with the discussion in Sec. II A, the
response of these poorly annealed samples is more similar to
what is typically observed in granular systems [58].

At higher shear rates [see Figs. 5(b) and 5(d)], the load
curves confirm the overall tendency that better aged samples
have a more pronounced overshoot, and that the decay of the
stress from the overshoot becomes steeper with the age [38].
The load curves also show, however, that at a higher shear rate
the dependence on the shear protocol is much more promi-
nent. In particular, when comparing LEBC1 and WB at a high
rate, we note that the difference in the boundary conditions
does not seem to affect the value of the stress overshoot or
that of the steady-state value, which instead clearly change
with changing the damping mechanism (LEBC1 vs LEBC2).
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FIG. 5. Load curves obtained at shear rate γ̇ = 10−4τ−1
0 [left panels, (a) and (c)] and at γ̇ = 10−2τ−1

0 [right panels, (b) and (d)] for initial
configurations prepared at slow cooling rate (top panels) and at an infinitely fast cooling rate (bottom panels). The data are from the LEBC1,
LEBC2, and WB protocols.

Comparing the values of shear stresses between the left and
right panels in the figure, the dependence of the data obtained
for LEBC2 on the shear rate seems to be weaker, in this range
of shear rates. These results overall suggest that the protocol
LEBC2 (that uses the Stokes drag) allows for relatively less
stress accumulation upon increasing the shear rate. They also
suggest that the choice of the dissipation mechanism may
be more crucial when investigating the banding phenomenon
at higher rates. We also note that, approaching the steady
state, the stress fluctuations are larger in the case of LEBC2
compared to LEBC1 and WB.

From the load curves we now turn to the local properties
by analyzing the velocity profiles of our samples, at different
locations along the load curve. The well-aged samples, when
sheared at a low shear rate, display a pronounced shear
banding that is not detected in the samples prepared with CG
and sheared at higher rates. In the wall-driven simulations,
the bands nucleate near the walls. With LEBC, there is no
such bias, and the flowing band can form anywhere in the
system, as long as the system is big enough to accommodate
it, as we indeed observe in the simulations [47]. Figures 6, 7,
and 8 show the velocity profiles, respectively, obtained with
the LEBC1, LEBC2, and WB protocols from the same initial
configurations for γ̇ = 10−4τ−1

0 . For different regimes in the
load curves [Figs. 6(a), 7(a), and 8(a)], we show the associated
velocity profiles in Figs. 6(b), 7(b), and 8(b) (i–ix). The
velocity profiles are computed over a strain window of �γ =
0.02. In spite of some differences in the details of the veloc-
ity profiles, we can recognize the following features for all
the shearing protocols considered. (1) In the linear response
regime of the load curve (i–ii), the velocity profiles show
a homogeneous flow with local shear rates (obtained as the
slope of the velocity profile) similar to the applied shear rate.
(2) In the vicinity of the stress overshoot (iii) a flow instability
develops, as indicated by the deviation from the linear velocity
profile. Following the stress overshoot, the stress decays back,

with dσ/dγ < 0, and in this region we find a back-flow in the
system as the velocity profiles show a negative slope [5,81].
We note that the width of the flowing band seems to be set by
the amount of back-flow in the system (iv). (3) Upon further
shearing, the width of the band grows, and eventually the
whole system flows homogeneously. The shear component of
the stress has a much weaker (although non-negligible) de-
pendence on the strain. The pressure evolution with γ clearly
shows that also the saturation of the normal components of
the stress tensor happens only once the profile returns to be
homogeneous [Figs. 6(c), 7(c), and 8(c)] [19,24].

When analyzing the local packing through the Voronoi
tessellation, we find that the fraction of icosahedrally packed
particles has a similar trend. Figure 6(d) shows, for the LEBC1
protocol, how the fraction of icosahedrally packed particles
evolves with the increasing strain, and the time required for
it to saturate is consistent with the vanishing of the transient
shear banding. The connections between the evolution of the
local packing and that of the shear inhomogeneities, as well
as their dependence on the shear rate, have been thoroughly
investigated in Ref. [47]. We also find that the evolution of
the system during the shear banding, is accompanied by a
positive first normal stress difference (σxx − σyy), indicating
the presence of dilation. The first normal stress difference,
although quite noisy, also seems to grow as the bands de-
velop, and saturate when the flow becomes homogeneous [see
Fig. 6(e)]. When comparing further the different protocols
across Figs. 6–8, we note that in WB the shear bands always
nucleate near the walls and that the time taken to reach an
homogeneous flow state is slightly longer than in LEBC1 and
LEBC2.

We conclude that the features identified above, i.e., the
stress overshoot, the formation and disappearing of the shear
banding, and its correlation with the evolution of the normal
stresses and with the changes in the local packing, are robust
across the different protocols utilized. Hence they are not the
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FIG. 6. (a) The load curve obtained using the LEBC1 (pairwise
dissipation) protocol, for Q = 1, at shear rate γ̇ = 10−4τ−1

0 for
a sample initially prepared at cooling rate 	 = 5 × 10−4ε/(kBτ0 ).
(b) The velocity profile as a function of the coordinate in the gradient
direction at points (i–ix) of the load curve. (c) The variation of
pressure as a function of the strain over the same range of strain as
in the load curve. (d) The first normal stress difference (σxx − σyy)
as a function of the strain for the same sample. (e) The fraction of
icosahedral packing as a function of the strain.

result of numerical artifacts or specific protocol choices. They
are instead inherent of well-aged jammed solids when sheared
at sufficiently low rates.

FIG. 7. (a) The load curve obtained using the LEBC2 protocol
(Stoke-like dissipation), for Q = 1, at shear rate γ̇ = 10−4τ−1

0 for an
initial configuration prepared at cooling rate 	 = 5 × 10−4ε/(kBτ0 ).
(b) The velocity profile as a function of the coordinate in the gradient
direction at points (i–ix) of the load curve. (c) The variation of
pressure as a function of the strain over the same range of strain as
in the load curve. Similar to the results of DPD protocol, the system
shows the feature of transient shear banding as well as the decoupling
between the stress and pressure.

In the next section we discuss the possible depen-
dence of our findings on the value of the drag coefficient
chosen.

V. DEPENDENCE ON DISSIPATION COEFFICIENT

The contribution of inertial terms to the rheology of
jammed suspensions has been extensively explored in steady
state in Refs. [69,79,82]. Here we address instead how the
stress overshoot and the shear banding during the transient
preceding the steady state is affected by the dissipation co-
efficient. To do this, we consider the LEBC1 protocol and
vary the value of the coefficient ζDPD between 2 (mτ−1

0 ) and
0.01 (mτ−1

0 ). This means that the inertial quality factor Q
defined above varies from 0.5 to 100, i.e., from the case
where the damping time is much shorter than the characteristic
time of the inertial motion (i.e., the overdamped limit) to
a case where it is 100 times longer (underdamped case).
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FIG. 8. (a) The load curve obtained from uniform shearing, using
the WB protocol, at shear rate γ̇ = 10−4τ−1

0 for a initial configuration
prepared at cooling rate 	 = 5 × 10−4ε/(kBτ0 ). (b) The velocity
profile as a function of the coordinate in the gradient direction at
points (i–ix) of the load curve. (c) The variation of pressure as a
function of the strain over the same range of strain as in the load
curve.

In Refs. [69,79] it has been shown that, with a strongly
underdamped dynamics, inertia may qualitatively change the
flow properties of a jammed suspension, with the possibility to
develop even nonmonotonic flow curves. This is not the case
here, where the flow curves remain monotonic, suggesting that
for the whole range of Q considered here the high-density
and the jammed conditions control the material flow rather
than the particle inertia. In Fig. 9(a) we show the load curves
of the same well-annealed sample studied with LEBC1, but
now with different values of the inertial quality factor Q. The
applied shear rate corresponds to 10−4τ−1

0 . The data show that
the initial linear response remains unaffected, and the stress
overshoot seems to slightly decrease with the increasing Q.
The decay after the overshoot becomes increasingly steeper
with increasing Q. If we express the applied shear rate in
terms of Weissenberg number (Wi = ζDPDa2/εγ̇ ), the higher
the quality factor, the lower is Wi. As a consequence, one
could think of the increasing quality factor Q as a way to
reach effectively lower shear rates. One might expect a trivial

scaling of the load curves if the load curve is presented in
terms of σ vs γ /γ̇ , with γ̇ in terms of Weissenberg number.
But since the initial linear response regime is unaffected by
the extent of damping, this scaling does not work. The effect
of the inertial contribution can be more intricate, with inertia
playing a role in increasing the kinetic temperature in the
athermal system and hence leading to a softening of the
system during shearing [69,79].

In Figs. 9(b)–9(e), we show the velocity profiles related to
different Q and computed at a strain γ ≈ 0.2 by averaging
over a strain window �γ = 0.02. In all the cases, as the stress
decays from the overshoot, we observe the formation of shear
bands.

Finally, in the data of Fig. 9(a) we also show the results
obtained in the LEBC1 protocol when including the transverse
contribution to the DPD drag, as discussed in Sec. III, to
demonstrate that such modification changes slightly the value
of the overshoot and the shape of the decay towards the steady
state, but it does not modify the general phenomenology of
formation of shear band observed [see also the profile shown
in Fig. 9(c)].

With the idea to explore further how the specific form of
drag used may change the results obtained, we note that in
LEBC1 another important variable corresponds to the pair-
wise dissipation cutoff used in the DPD drag [Eq. (3)]. For
the results shown so far, we have chosen such a cutoff to be
2.5ai j , as done in Ref. [69]. In Fig. 10(a) we plot together the
load curves obtained for LEBC1 with the DPD cutoff 2.5ai j

and 1.5ai j , along with the results for the LEBC2 protocol. We
observe that the linear response regime is unaffected, and so
is the values of the stress overshoot. The stress decay from
the the overshoot shows instead a dependence on the cutoff
chosen. We observe that the results obtained with the LEBC2
protocol approach those for LEBC1 if the DPD cutoff distance
goes down towards a particle diameter, consistent with the fact
that LEBC2 corresponds to the free-draining approximation.
The related velocity profiles are shown in Figs. 10(b)–10(d)
(these are computed at γ = 0.2 and averaged over �γ =
0.02), indicating that the decay of the overshoot is always
associated to the formation of transient shear bands for both
values of the DPD cutoff.

Finally, we have also analyzed how the difference or sim-
ilarities just described depend on the shear rate. We summa-
rize the outcome of this study in Fig. 11, which shows, for
the well-annealed sample, the difference between the stress
overshoot and the steady-state value of the shear stress as a
function of the shear rate, for different protocols as well as for
two different damping coefficients for LEBC1. The data indi-
cate that changing Q in the range of values explored here does
not significantly affect the results at sufficiently low rates,
whereas one should expect to see significant differences upon
increasing the shear rate. Note that we have expressed the
shear rate in terms of τ−1

0 , instead of using a viscous timescale,
in order to compare different protocols where viscous terms
are handled in different ways. Different protocols show that
the occurrence of the stress overshoot (which is essential for
the formation of shear bands) is robust, and its dependence on
the steady-state stress across different protocols is similar in
the whole range of shear rates (the lines through the data in
the figure are power-law fits).
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FIG. 9. (a) The load curve obtained from uniform shearing using different dissipation constants, at a shear rate γ̇ = 10−4τ−1
0 , for a initial

configuration prepared at 	 = 5 × 10−4ε/(kBτ0 ). Right panels (b)–(e) show the velocity profile computed in a strain window γ ≈ 0.2, averaged
over 2% strain for systems sheared using different dissipation constants. Even in the systems which are relatively underdamped, one finds the
formation of shear bands at the vicinity of decay of stress overshoot. These bands are indeed transient in nature, and the damping coefficient
would have a bearing on the time required to obtain a homogeneous flow.

VI. DEPENDENCE ON THE SAMPLE AGE

Having explored different treatments of microscopic vis-
cous forces and the effect of different drag coefficients, we

FIG. 10. (a) The load curve obtained from uniform shearing
with LEBC1, using DPD cutoff Rc = 2.5a and Rc = 1.5a, and with
LEBC2, at a shear rate γ̇ = 10−4τ−1

0 , for an initial configuration
prepared at 	 = 5 × 10−4ε/(kBτ0 ). Bottom panels (c)–(d) show the
velocity profile, corresponding to the same protocols as in the load
curve, computed in a strain window γ ≈ 0.2, and averaged over 2%
strain.

want now to emphasize that, at low shear rates, the tendency
to have flow inhomogeneity upon yielding is determined
mainly by the age of the samples (which determines the stress
overshoot and the decay of the shear stress to steady state),
due to the different degree of frozen-in stresses [56]. The fact
that the stress overshoot depends on the age of the initial
solid has been discussed in other studies [5,7,38,47,83]. In

FIG. 11. The difference between the overshoot stress and steady-
state stress computed from different shearing protocols and plotted as
a function of the shear rate. The lines are power-law fits to the data
points.
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FIG. 12. The load curve for (a) γ̇ = 10−4τ−1
0 and (b) γ̇ =

10−2τ−1
0 computed from samples prepared with different cooling

rate 	 and using LEBC1. (c) The difference in the overshoot stress
and the steady-state stress computed for different sample ages as a
function of the applied shear rate, for LEBC1.

the context of the study reported here, we have summarized
the dependence of the stress overshoot on the shear rate
and on the sample age, in Fig. 12. The data are from the
LEBC1 simulations, but the same trends are obtained with
the different protocols. The figure also shows the difference
between the stress overshoot and the steady-state value of
the shear stress as a function of the shear rate, for different
cooling rates 	, corresponding to different sample ages. The
results clearly indicate how changing the sample age can qual-
itatively change the overshoot and its rate dependence. We
have investigated how the age of the samples also determines

the persistence of the flow inhomogeneities, not only their
presence, in Ref. [47]. We refer the reader to that paper for
further insights.

VII. CONCLUSIONS

We have devised a 3D numerical study of a jammed
suspension of soft spheres, polydisperse in size, under shear.
In particular here we have explored different choices for
imposing the shear deformation and boundary conditions. We
have compared the use of Lees-Edwards boundary conditions
with simulations where the samples are confined within walls.
We have also compared the use of a DPD drag term to the
free-draining approximation (Stokes-like drag). Finally, we
have compared simulations with different degrees of inertia,
quantified through the inertia quality factor Q. The compar-
ison has been done in terms of load curves and velocity
profiles during the transient that leads to the steady-state
flow. In all cases, we find that at low rates the shear stress
develops an overshoot followed by a relatively long decay
(not necessarily gradual) towards the steady-state value. Such
a phenomenon is associated to a transient banding with a part
of the material that is basically stuck, and the rest flowing.
The extended comparison carried on here indicates that these
features (the stress overshoot and the transient shear banding)
are the genuine results of the emerging response of the ma-
terial upon yielding and not the consequences of numerical
artifacts or unphysical choices in the simulations parameters.
When comparing with different approaches currently used,
moreover, we find that at low shear rates and in overdamped
conditions a Stokes-like drag provides results qualitatively
consistent with those of simulations that use a DPD (pairwise)
drag term for the load curves, the velocity profiles, and
the evolution of the pressure towards the steady state [47].
Our study has been performed in athermal conditions and at
volume fractions beyond the jamming transition. Investigating
how numerical results of flow inhomogeneities may depend
on different dissipation mechanisms for finite temperatures or
approaching the jamming transition requires further studies.
At finite temperatures, a similar comparison between different
types of viscous terms in the equation of motions would be
useful, since Stokes-like drag terms or DPD are both appli-
cable, while simulation methods that are specifically suited
for homogeneous flow, such as SLLOD [84], may not be ap-
propriate. Closer to jamming, the statistics of avalanches and
its dependence on different viscous dissipation mechanisms
could provide insights [70,82]. When comparing the different
types of drag terms, we have found that the dependence of the
stress overshoot, and of the velocity profiles, on the shear rate
may be quantitatively different. These findings suggest that
numerical studies of the dynamics of the yielding transition
could provide results that quantitatively depend on the specific
shearing protocol utilized upon increasing the shear rate.
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