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Activity effects on the nonlinear mechanical properties of fire-ant aggregations
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Individual fire ants are inherently active as they are living organisms that convert stored chemical energy
into motion. However, each individual ant is not equally disposed to motion at any given time. In an active
aggregation, most of the constituent ants are active, and vice versa for an inactive aggregation. Here we look at the
role activity plays on the nonlinear mechanical behavior of the aggregation through large amplitude oscillatory
shear measurements. We find that the level of viscous nonlinearity can be decreased by increasing the activity or
by increasing the volume fraction. In contrast, the level of elastic nonlinearity is not affected by either activity or
volume fraction. We interpret this in terms of a transient network with equal rates of linking and unlinking but
with varying number of linking and unlinking events.
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I. INTRODUCTION

Active matter, in general, is comprised of particles that are
each out of equilibrium. All biological systems are active,
since living particles constantly convert chemical energy into
kinetic energy. Hence, many-particle biological systems, in-
cluding tissues, flocks of birds, or schools of fish, are all active
systems; the principles and theories developed in the active-
matter field can then help understand their properties and
behavior. Likewise, one can use biological systems to study
active matter; this is particularly appealing at high densities,
since many biological systems are dense by construction,
while much of today’s synthetic active matter still remains
most applicable under relatively dilute conditions.

Ants, despite their inherent biological complexity, can
be thought of as granular-size, active particles. They move
and can exist at high densities. Furthermore, they display
emergent collective behavior: the properties of ant collec-
tives results from many-body effects, which, albeit in the
classical-mechanical realm, are often hard to anticipate based
on the behavior and activity of individual ants. While single
ants are more likely to be continually active, once there
are enough ants together, some become considerably less
active while others remain completely inactive [1–3]. The
level of activity of single ants in the colony is thus not
homogeneous. Furthermore, it is time dependent. Single ants
undergo many sleep cycles per day [4], and the ant colony as
a whole experiences day and night, seasonal, and short term
cycles [5–7]. The spatiotemporal dynamics of ant collectives
allow some species to perform large-scale collective motion
and build structures [7–9]. Army ants are capable of milling
and establish temporary nests and bridges using themselves as
the building blocks [10–12].

Fire ants, Solenopsis invicta, are also able to link their
bodies together in order to form rafts, towers, bridges, and
other macroscopic structures [7,13–17]. We refer to fire ant
collectives as ant aggregations, as they manifest some degree

of cohesiveness; they have, in fact, been compared with cell
aggregates with inherent effective attractions between the
cells [18]. These ant aggregations move on timescales ac-
cessible with rheology and through real-space imaging. They
are dense, they percolate through space at densities similar to
those inside spontaneously formed rafts, and can be packed to
very high numbers. Ant aggregations are thus ideal systems
with which to study the role of activity in dense active matter.

We have previously looked at the material properties of
fire ant aggregations [19,20]. We saw that at ant-raft densities
these aggregations exhibit two distinct behaviors. On the one
hand, they can equally be solidlike and liquidlike, with com-
parable shear elastic and viscous moduli within the frequency-
ranged probed in the experiments. On the other hand, they
can be predominantly solidlike, with a nearly frequency-
independent shear elastic modulus that is significantly larger
than the shear viscous modulus. Interestingly, the aggregation
switched between these two mechanical responses sponta-
neously, further affecting the value of the normal force exerted
on the upper tool used in the rheology experiments, which we
succeeded in relating to the number of active ants in the ag-
gregation. Furthermore, when forced to flow, the aggregation
exhibits a shear thinning behavior that compared well with
what was observed for dead-ant aggregations, indicating that
forcing the aggregation to flow suppresses the role of activity.

In this paper, we extend our studies of ant aggregations into
the oscillatory nonlinear regime. We will separate inactive and
active behavior by exploiting the spontaneous activity cycles
previously observed [20]. We will start by reviewing how to
characterize the mechanical nonlinear response, distinguish-
ing between intracycle and intercycle behavior. We will then
present results for small amplitude oscillatory shear, where we
know that activity plays an important role, and increase the
strain amplitude into the nonlinear regime to see if and how
activity plays a role in the nonlinear mechanics of the system.
Our experiments are some of the first to address the nonlinear
mechanical properties of dense active matter.
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FIG. 1. (a) Strain sweeps for live ants at φeff = 1.1 (black squares), 2.2 (red circles), and 3.3 (blue triangles). (b) Normal force data from
the strain sweep in (a) at φeff = 1.1. (c) Strain sweep for dead ants at φeff = 1.1. In (a) and (c), closed symbols represent G′, open symbols
represent G′′. All strain sweeps were performed at ω = 1 rad/s.

II. STRAIN SWEEPS

We start by applying an oscillatory strain, γ (t ) =
γ0sin(ωt ), and increasing the strain amplitude γ0 at fixed
frequency ω. This same experiment was discussed in Ref. [19]
as a way of finding the linear regime. A similar experiment is
shown here in Fig. 1(a), along with a strain amplitude sweep
for dead ants, Fig. 1(c). In Fig. 1(a), we show data for different
ant densities, which we parametrize using an effective volume
fraction, φeff = N

V ( π
6 l3), where N is the number of ants, V is

the accessible volume, which equals the sample volume in our
rheology experiments, and l is the average ant length; we find
N from the mass of an aggregation and the mean ant mass,
which we obtain for each ant colony we use, and find the mean
ant length from the corresponding probability distribution.
We find that both the storage, G′, and loss, G′′, moduli are
essentially flat up to certain γ0, above which they decrease
with strain amplitude. The noise observed in the constant,
linear region at φeff = 1.1 mainly results from the proximity
to the minimum torque we can meaningfully measure with
the rheometer, and from the changing activity of the ants,
which is clearly appreciable in the changing normal force
in Fig. 1(b) up to γ0 � 5 × 10−2. Note that the duration of
the strain sweep up to that γ0 is ≈5400 s, which is larger
than the time required for the ant aggregation to experience
an activity cycle [20]. At even higher strain amplitudes, we
find a crossover between the moduli, above which, G′′ > G′;
this is not seen for dead ants, Fig. 1(c). In this regime, the
change in the aggregation activity does not seem to affect the
mechanical response as much as it does in the linear regime
at low γ0; indeed, note that the second peak in the normal
force at γ0 ≈ 10−1 is much less pronounced than the one at
γ0 ≈ 10−2, indicating that at these large strain amplitudes the
system is driven by the applied strain and activity is unable
to affect the measurement in any significant manner [20].
The crossover between G′ and G′′ shifts to higher γ0 with
increasing φeff , see Fig. 1(a), and is often interpreted as a
strain-induced fluidization of the system.

However, both the storage and loss moduli only have
physical meaning in the linear regime. It is only in this region
that they are both to be taken as material properties. Only
here are the applied strain and the resultant stress, albeit being
out-of-phase, single sinusoids. Beyond the linear regime, both
G′ and G′′ are no longer meaningful, as more than a single

sinusoid is, in general, required to describe the measured
stress. To understand the behavior outside the linear regime
we thus need to go beyond G′ and G′′. We will use the
framework laid out by Ewoldt et al. [21], which is based in
proposing two viscous and two elastic nonlinear moduli to
characterize the nonlinear mechanical properties of materials,
emphasizing the distinction between intracycle and intercycle
shear moduli; the intercycle moduli allows comparing the
moduli at different γ0, whereas the intracycle moduli provides
information about the response within one oscillation at fixed
γ0.

III. LARGE AMPLITUDE OSCILLATORY SHEAR

In large amplitude oscillatory shear (LAOS) an oscillatory
strain is applied and the resultant stress is measured. However,
unlike in the linear regime where the stress is also sinusoidal,
for large amplitude oscillatory strains, the stress is no longer
necessarily linear with the applied strain. As such the stress
can no longer be represented by a single sinusoid. In Fig. 2(a)
we see an example of strain and stress. To decompose the
stress into an in-phase component and an out-of-phase compo-
nent, σ = σ ′ + σ ′′, we most commonly use a Fourier series.

FIG. 2. (a) Waveforms of the strain, γ /γ0 = sin(ωt ) (solid
black), and stress σ (t ) = (1/

√
2)sin(ωt ) + (1/

√
2)cos(ωt ) −

(0.2/
√

2)sin(3ωt ) − (0.2/
√

2)cos(3ωt ) (dashed red), normalized
by the maximum stress σ0, plotted versus dimensionless time,
ωt . The level of nonlinearity for this system is e3/e1 = 0.2 and
v3/v1 = −0.2. (b) The stress σ/σ0 plotted versus the strain γ /γ0 for
the waveforms in (a). The thick solid black line is σ ′, the slope of
the blue dashed line is G′

M , and the slope of the red dotted line is
G′

L . (c) The stress σ/σ0 plotted versus the shear rate γ̇ /γ̇0 for the
waveforms in (a). The thick solid black line is σ ′′, the slope of the
blue dashed line is η′

M , and the slope of the red dotted line is η′
L .
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TABLE I. Table for the first Chebyshev functions, Tn, and their
recursion relation.

T0 1
T1 x
T2 2x2 − 1
T3 4x3 − 3x
Tn+1(x) 2xTn(x) − Tn−1(x)

Alternatively, we can represent the stress using Chebyshev
functions of the second kind, Tn [21]. Then:

σ ′ = γ0

∑

n odd

G′
n sin(nωt ) = γ0

∑

n odd

enTn(x), (1a)

σ ′′ = γ0

∑

n odd

G′′
n cos(nωt ) = γ̇0

∑

n odd

vnTn(y), (1b)

where x = γ (t )/γ0 and y = γ̇ (t )/γ̇0. Both the Fourier and
Chebyshev series representations produce single valued func-
tions when plotted as a Lissajous curve. We use the x and y
normalization because the Chebyshev decomposition is only
valid over [−1, 1]. The coefficients for the Fourier series are
G′

n and G′′
n , while the coefficients for the Chebyshev series

are en and vn. Hence, in expressions (1a) and (1b), n is the
mode number. The first few Chebyshev functions are shown
in Table I, though as in the case of the Fourier series, only the
odd functions contribute to σ ′ and σ ′′ since the applied strain
is itself sinusoidal and thus an odd function of time.

The practicality of the Chebyshev series is most easily seen
when plotting the stress versus the strain or the shear rate in a
Lissajous form, see Figs. 2(b), 2(c). Here we have normalized
the stress by the maximum stress σ0. In these figures, we
also plot, using solid black lines, the elastic (σ ′) and viscous
(σ ′′) components, respectively. Since T1(x) = x, any deviation
from linear behavior in the stress, where these lines would be
straight lines, is immediately captured by the coefficients for
T3(x), which are either e3 or v3. A positive e3 describes an
increase in stress above linear at the highest strains; this is
in-cycle, or intracycle, strain stiffening, see Fig. 2(b). In-cycle,
or intracycle, strain softening corresponds to negative e3 and a
stress that is lowered at the highest strain. Similarly, when v3

is positive, there is intracycle shear thickening, corresponding
to a stress that increases at high shear rate, and when v3 is
negative, there is intracycle shear thinning, corresponding to
a stress that decreases at high shear rate; this last behavior is
illustrated in Fig. 2(c).

In the linear regime e1 = G′ and v1 = G′′/ω. However,
outside the linear regime, there is not a single slope for the in-
phase component or the out-of-phase component of the stress,
and thus there is no longer a single elastic modulus or a single
viscous modulus. Ewoldt et al. defined four nonlinear moduli,
two each for the elastic and viscous components [21]. The two
elastic moduli are the minimum strain elastic modulus, G′

M ,
and the large strain elastic modulus, G′

L. The modulus G′
M is

the slope of the in-phase stress when the strain is zero. It can
be found from either the Fourier or Chebyshev coefficients:

G′
M = dσ ′

dγ

∣∣∣
γ=0

=
∑

n odd

nG′
n =

∑

n odd

nen(−1)(n−1)/2. (2)

The modulus G′
L is the slope of the line connecting the stress

at the minimum strain to the stress at the maximum strain:

G′
L = σ ′(γ = γ0) − σ ′(γ = −γ0)

2 γ0
=

∑

n odd

G′
n(−1)(n−1)/2

=
∑

n odd

en. (3)

Both G′
M and G′

L are represented by the dashed and dotted
lines, respectively, in Fig. 2(b).

The two viscous moduli are defined in a similar way from
σ ′′ and the shear rate, with a minimum shear rate viscous
modulus, η′

M , and a large shear rate viscous modulus, η′
L:

η′
M = dσ ′′

d γ̇

∣∣∣
γ̇=0

= 1

ω

∑

n odd

nG′′
n =

∑

n odd

nvn(−1)(n−1)/2, (4)

η′
L = σ ′′(γ̇ = γ̇0) − σ ′′(γ̇ = −γ̇0)

2 γ̇0
= 1

ω

∑

n odd

G′′
n (−1)(n−1)/2

=
∑

n odd

vn. (5)

Both η′
M and η′

L are represented by the dashed and dotted lines,
respectively, in Fig. 2(c).

We also define the level of nonlinearity by comparing G′
M

to G′
L and η′

M to η′
L. In the linear regime, G′

M = G′
L = G′ and

η′
M = η′

L = G′′/ω. Outside of the linear regime, if G′
L > G′

M ,
the stress has increased above linear at large strains and so
there is intracycle strain stiffening. Intracycle strain softening
corresponds to G′

L < G′
M . The level of elastic nonlinearity, S,

is defined as:

S = G′
L − G′

M

G′
L

= 4e3 + . . .

e1 + e3 + . . .
∼ e3

e1
. (6)

It is zero in the linear regime, and positive or negative for
intracycle strain stiffening or strain softening materials, re-
spectively. If we expand the moduli in terms of the Chebyshev
coefficients, we can see that S is essentially determined by
e3/e1, since e3 is always less than e1. The sign of e3 then
directly determines whether the material intracycle strain
stiffens or strain softens.

For the viscous moduli, η′
L > η′

M implies intracycle shear
thickening, since at large shear rates the stress is higher than
linear, and η′

L < η′
M implies intracycle shear thinning. The

level of viscous nonlinearity is: T = (η′
L − η′

M )/η′
L. It is zero

in the linear regime, positive for intracycle shear thickening
materials, and negative for intracycle shear thinning materi-
als. It is also proportional to v3/v1, given that v3 � v1. We
then see that the level of nonlinearity as well as the type is
characterized by e3/e1 and v3/v1, to leading order, since e1

and v1 are always positive. Either S and T or e3/e1 and v3/v1

can be used to quantify the level of nonlinearity in a system.
Another interesting feature of the nonlinear moduli is that

the moduli are not required to be positive. If this happens,
it is more likely to happen in the minimum strain moduli,
since G′

M ∼ e1 − 3e3 whereas G′
L ∼ e1 + e3. The same is true

for the minimum shear rate moduli. For example, G′
M would

be negative when the slope of the in-phase stress is negative
around γ = 0. This would also appear as a self-intersection in
the out-of-phase Lissajous curve at high shear rate. A negative
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modulus indicates that the material is unloading stress faster
than it is accumulating it. This is a long-time effect and would
not appear on the first oscillation since it is impossible to
unload stress that has not been loaded yet.

We find the coefficients in the series expansion by fitting
a sum of sines to the waveforms or fitting to Chebyshev
functions. In practice, this is done by taking a fast Fourier
transform (FFT) of the stress waveform, which gives the
weights of the sine fit and then calculating the Chebyshev
coefficients. Fast Fourier transforms are a class of algorithms
that compute the Fourier transform of a discrete set of points
n, using a number of points of order O(n log n), which are
significantly less than the O(n2) points required when com-
puting the Fourier transform directly. The rheometer records
257 points for each waveform, with the last point overlapping
with the first. This means that there are 256 points in a full
cycle, with constant time step. The number of points is also
a power of 2, which is convenient but not required for the
FFT algorithm. This also sets the maximum number of Fourier
or Chebyshev modes that we can use to 128, as the Nyquist
frequency ωNyquist = Np/2 [21], with Np = 256 the number
of sampling points. In practice, however, we never need this
many. First, since we only care about odd modes because
the stress is assumed to be odd [21,22], and second because
the first few modes contribute the most to the shape; the
majority of experiments are captured using the first two odd
modes. We use the first 11 odd modes out of a possible 64
modes to determine the nonlinear moduli and to calculate the
Chebyshev coefficients.

IV. ANT LISSAJOUS RECONSTRUCTIONS

We illustrate this reconstruction for an ant aggregation at
φeff = 1.6 for two representative strain amplitudes: γ0 = 0.01
and γ0 = 1. Their waveforms and reconstructions are shown
in Figs. 3(a), 3(b) and 3(d), 3(e). The absolute value of the
relative contributions of each mode number for the stress
waveforms are shown in Figs. 3(c) and 3(f). The relative
weight is found by normalizing with respect to the first mode;
we plot the absolute values, since the contributions can be
negative, and use a semilog scale to emphasize the importance
of only the first few modes. From the coefficients we can then
calculate the nonlinear moduli as well as the in-phase and
out-of-phase stress components, σ ′ and σ ′′. The moduli and
the stress components are shown in Fig. 4, overlaid over the
Lissajous curves for the example waveforms in Figs. 3(a),
3(b) and 3(d), 3(e).

We see good agreement between the strain and stress and
reconstructions using only the first mode in the linear regime,
Figs. 3(a), 3(b) and 4(a), 4(b). However, only using a single
mode certainly does not fit the stress response outside of the
linear regime, Fig. 3(e). Considering the first 11 modes gives
a good fit of the stress.

Looking at the Lissajous curves both in the linear and
nonlinear regimes gives us several criteria for determining
if a point is reasonable and removing outliers from the data
set. This allows us to use points that are really close to or
at the torque limit of the rheometer and to neglect points
that are below the torque limit automatically. From the shape
we can determine that the moduli are not negative for ant

FIG. 3. (a)–(c) Oscillatory measurement in the linear regime
for a live aggregation at φeff = 1.6, ω = 10 rad/s, and γ0 = 0.01.
(a) Normalized strain vs phase angle. The dashed line is a fit
to γ = γ0sin(ωt ). (b) Normalized stress vs phase angle for the
same measurement. The dashed line is a reconstruction from the
first Chebyshev coefficient. (c) The magnitude of the Chebyshev
coefficients normalized with the first coefficient. (d)–(f) Oscillatory
measurement outside the linear regime for a live aggregation at
φeff = 1.6, ω = 10 rad/s, and γ0 = 1. (d) Normalized strain vs phase
angle. The dashed line is a fit to γ = γ0sin(ωt ). The deviation at high
strain does not affect the calculation of nonlinear moduli since only
the magnitude of γ0 is used. It does, however, affect how the viscous
Lissajous curve looks. (e) Normalized stress vs phase angle for the
same measurement. The line is a reconstruction from the first (solid
blue) and the first 11 (dashed red) coefficients. (f) The magnitude of
the Chebyshev coefficients normalized with the first coefficient. (c),
(f) The closed black squares are the elastic coefficients, en/e1, and
the open red circles are the viscous coefficients, vn/v1.

aggregations. Hence, points in our analysis that have negative
moduli are automatically neglected. We also neglect data
with a level of nonlinearity that significantly differs from the
average. If |(S/4 − e3/e1)| > 1 or |(T/4 − v3/v1)| > 1 we
remove the point.

Using Eq. (6), we can rewrite these inequalities in terms of
e3/e1 or v3/v1. In the first case,
∣∣∣∣
S

4
− e3

e1

∣∣∣∣ =
∣∣∣∣

e3 + ...

e1 + e3 + ...
− e3

e1

∣∣∣∣ ≈
∣∣∣∣

(e3/e1)2

1 + (e3/e1)

∣∣∣∣ > 1. (7)

An equivalent expression can be written in terms of v3/v1.
We will then neglect points whenever e3/e1 and v3/v1 lie
outside of ±(1 + √

5)/2 ≈ ±1.6. This is a reasonable range
since at the highest strain amplitude we have explored, γ0 = 1,
e3/e1 ≈ 0.2, and v3/v1 ≈ −0.25. For example, the data in
Figs. 4(c) and 4(d) is at γ0 = 1, and has e3/e1 = 0.22 and
v3/v1 = −0.15.

Before moving on to the next section, we would like to
comment on the slight deviation in the strain at high strain
amplitude directly after the system has reached the largest
strain, see Fig. 3(d). This is likely due to the nonzero feedback
loop of our stress-controlled rheometer, which is operated in
oscillatory rheology in a strain-controlled mode. Nevertheless,
the observed deviation does not affect the elastic nonlinear
moduli, since the reconstruction is good at the minimum and
the maximum strains, see Fig. 4(c). It does affect, however,
the viscous nonlinear moduli by overestimating η′

L and un-
derestimating η′

M , see Fig. 4(d). This means that at the highest
strain amplitudes the value of v3/v1 or T is in reality smaller in
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FIG. 4. (a)–(b) Lissajous curves for an oscillatory measurement
in the linear regime for a live aggregation at φeff = 1.6, ω = 10 rad/s,
and γ0 = 0.01. The waveforms are shown in Figs. 3(a), 3(b). (a) Elas-
tic Lissajous curve (black circles) and reconstruction (thin black
line). σ ′ (thick black line), the line with slope G′

L (red dotted line),
and the line with slope G′

M (blue dashed line) are all overlapping
lines. (b) Viscous Lissajous curve (black circles) and reconstruction
(thin black line). σ ′′ (thick black line), the line with slope η′

L (red
dotted line), and the line with slope η′

M (blue dashed line) are
all overlapping lines. (c)–(d) Lissajous curves for an oscillatory
measurement outside the linear regime for a live aggregation at
φeff = 1.6, ω = 10 rad/s, and γ0 = 1. The waveforms are shown
in Figs. 3(d), 3(e). (c) Elastic Lissajous curve (black circles) and
reconstruction (thin black line). σ ′ is the thick black line, G′

L is the
slope of the red dotted line, and G′

M is the slope of the blue dashed
line. (d) Viscous Lissajous curve (black circles) and reconstruction
(thin black line). σ ′′ is the thick black line, η′

L is the slope of the red
dotted line, and η′

M is the slope of the blue dashed line. The deviations
in the strain seen in Fig. 3(d) show up in the elastic Lissajous curve
and are pronounced in the viscous Lissajous curve.

magnitude than what we find from our fits. The placement of
the deviation means that the deviations in strain rate are at the
minimum and maximum values while the deviations in strain
are between the minimum and maximum, thereby causing a
larger effect on T than on S.

A. Binning by activity

We also want to be able to look at the effect the level of
activity has on the level of nonlinearity and the nonlinear
moduli. We have seen in previous work that activity affects
the mechanics of ant aggregations [20]. There we saw that we
could determine the level of activity by looking at the normal
force that the aggregation exerts on the top tool. This was
clearly seen in creep experiments and linear oscillatory rhe-
ology, both of which showed cyclic peaks in the normal force.
An example of such behavior is shown in Fig. 5. Overlaid on
the peaks in the normal force are the cutoffs we use to classify
each measurement as either inactive, active, or transitional.
Active points have high normal force and capture the peaks
of activity. Inactive points have low normal force and capture
the instance of an aggregation when it is predominantly static
and inactive. The middle, transitional section has intermediate

FIG. 5. Normal force as a function of time illustrating the cyclic
changes of the level of activity. The lower blue dotted line is the
upper cutoff limit of what we are classifying as inactive. The upper
red dashed line is the lower cutoff limit of what we are classifying as
active.

normal force and displays properties between what we have
called active and inactive. We will be comparing the active to
the inactive case and using the transitional measurements as a
buffer to separate the two.

Since we need to do long time measurements to obtain
data when the aggregation is active and inactive we will focus
on just a few points all at ω = 1 rad/s. This frequency was
chosen to have high enough torque to be able to measure
at all γ0 while avoiding noise at higher frequencies. We use
different colonies with different captivity times and bin the
data in terms of active or inactive to construct probability
distributions for all properties of interest; the number of
data points used to obtain these distributions is indicated in
Table II.

V. INTRACYCLE RESULTS

At the largest strain amplitude, γ0 = 1, the aggregation is
far from the linear regime. The level of elastic nonlinearity is
around 0.2 and is unaffected by the level of activity, Fig. 6(a).
Positive e3/e1 indicates intracycle strain stiffening corre-
sponding to the increase in stress at high strain in the Lissajous
curve in Fig. 4(c). The elastic modulus G′

L is larger than G′
M

and neither is affected by the level of activity, Figs. 6(b), 6(c).
The level of viscous nonlinearity is around −0.25 and is
unaffected by activity, Fig. 6(d). It is negative indicating
intracycle shear thinning, consistent with the Lissajous curve
in Fig. 4(d). The viscous modulus η′

M is larger than η′
L and

neither is affected by the level of activity, Figs. 6(e), 6(f). We
thus conclude that at strain amplitudes this high, the forcing
effect of the large strain is enough to wash out the effects of

TABLE II. The number of active and inactive points measured at
each effective volume fraction and strain amplitude.

γ0 = 0.01 γ0 = 0.1 γ0 = 1

Active 620 308 2490
φeff = 1.1

Inactive 703 366 800

Active 997 1368 756
φeff = 1.6

Inactive 663 1083 341
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FIG. 6. (a)–(f) Probability distributions for the level of nonlinear-
ity and the nonlinear moduli for a strain amplitude γ0 = 1. Bottom
panels are at φeff = 1.1 and top panels are at φeff = 1.6. Solid black
lines are for active aggregations, and red dashed lines are for inactive
aggregations. Elastic properties are shown in (a)–(c) in terms of
(a) e3/e1, (b) G′

L , and (c) G′
M . Viscous properties are shown in (d)–(f)

in terms of (d) v3/v1, (e) η′
L , and (f) η′

M . All distributions have been
normalized by the number of points in the distribution, see Table II.

activity from the behavior of the system. This is reminiscent
of how dead and live ants flow the same way when forced to
flow during a controlled shear rate experiment [19].

At γ0 = 0.1 the aggregation intracycle strain stiffens, as
indicated by the positive value of e3/e1, Fig. 7(a) lower panel.
The level of nonlinearity does not change with activity, and
G′

L is larger than G′
M ; neither of them change with activity,

Figs. 7(b), 7(c) lower panels. Similarly to the results obtained
at γ0 = 1, the level of viscous nonlinearity is always negative.
However, in this case, it does change with activity. Increas-
ing activity decreases the level of viscous nonlinearity from
−0.06 ± 0.02 to −0.04 ± 0.01, Fig. 7(d) lower panel. Activ-
ity increases both nonlinear viscous moduli, but it increases
the large strain rate modulus by a larger amount thereby
decreasing the level of nonlinearity, Figs. 7(e), 7(f) lower
panels.

We can think of the change in the level of viscous nonlin-
earity and the lack of change in the level of elastic nonlinearity
in terms of the ant network, and in particular the connections
between the ants. Vernerey et al. proposed that in a transient
network the mechanics would be dependent on the rate of
attachment and detachment in the system [23–25]. From the
elastic behavior, we see that on average the network is un-
changed by activity. In terms of linking and unlinking events
this means that the rate of linking and unlinking must be
similar. The specific links change but, on average, the network
is not different; the number of connections remains unchanged
on average.

To understand the change with activity of the level of
viscous nonlinearity, we consider that in the active case, the
number of linking and unlinking events is larger than in the
inactive case. This causes the level of viscous nonlinearity to
decrease, or in other words, it causes the system to behave in
the active case in a way that is closer to the linear regime.

FIG. 7. (a)–(f) Probability distributions for the level of nonlinear-
ity and the nonlinear moduli for a strain amplitude γ0 = 0.1. Lower
panels are at φeff = 1.1 and upper panels are at φeff = 1.6. Solid
black lines are for active aggregations, and dashed red lines are for
inactive aggregations. Elastic properties are shown in (a-c) in terms
of (a) e3/e1, (b) G′

L , and (c) G′
M . Viscous properties are shown in

(d)–(f) in terms of (d) v3/v1, (e) η′
L , and (f) η′

M . All distributions
have been normalized by the number of points in the distribution, see
Table II.

To test this interpretation of the results, we change the
ant density. The rationale behind this is that increasing φeff

should increase the number of linking and unlinking events,
and hence decrease the level of viscous nonlinearity. The level
of elastic nonlinearity, however, should remain essentially
unchanged, since the ratio of linking to unlinking events
should be the same.

Let us first consider experiments at γ0 = 1. Indeed, we
find that increasing φeff does not change the level of elastic
nonlinearity, see Fig. 6(a) upper panel. In contrast, the elastic
nonlinear moduli increase, see upper panels in Figs. 6(b)
and 6(c), as expected, given that on average the number of
connections increases with φeff . Again, neither the moduli
or e3/e1 are affected by activity. The viscous moduli also
increase in value and also remain unaffected by activity, see
upper panels in Figs. 6(e) and 6(f). The level of viscous
nonlinearity, however, decreases with increasing φeff , see Fig.
6(d), indicating that the number of linking and unlinking
events has indeed increased with the increased density.

Similarly, at γ0 = 0.1, increasing φeff do not change the
level of elastic nonlinearity. In contrast, the moduli does
increase, see Figs. 7(a)–7(c) upper panels. Again, activity has
no effect, indicating that the network structure is unchanged
on average. For the viscous component, however, increasing
φeff decreases the level of nonlinearity and causes the moduli
to increase, Figs. 7(e)–7(f) upper panels.

Our results thus confirms that increasing the number of
linking and unlinking events decreases v3/v1 and that this
can be achieved either through increasing the ant density or
by increasing the activity. Though increasing the activity has
a smaller effect than changing φeff , either can be used as a
tuning parameter to change the dissipation in the system.
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FIG. 8. Nonlinear moduli and the level of nonlinearity for ant aggregations at φeff = 1.1 (closed symbols) and φeff = 1.6 (open symbols).
(a) e3/e1 for active ants (black squares), e3/e1 for inactive ants (red circles), v3/v1 for active ants (green up triangles), v3/v1 for inactive ants
(blue down triangles). (b) G′

L for active ants (black squares), G′
L for inactive ants (red circles), G′

M for active ants (green up triangles), G′
M

for inactive ants (blue down triangles). (c) η′
L for active ants (black squares), η′

L for inactive ants (red circles), η′
M for active ants (green up

triangles), η′
M for inactive ants (blue down triangles).

VI. INTERCYCLE EFFECTS OF STRAIN AMPLITUDE
AND EFFECTIVE VOLUME FRACTION

We can now combine data for different γ0 to address
what is happening intercycle when changing the applied
strain amplitude and the effective volume fraction. At low
strain amplitudes, γ0 ≈ 10−2, the levels of both elastic and
viscous nonlinearity are around zero though the mean elastic
nonlinearity is slightly positive and the mean viscous non-
linearity is slightly negative, Fig. 8(a). Lower values of γ0

seem to be needed to be in the strict linear regime; these
are, however, not accessible due to the low torque of the
samples in such conditions. As γ0 increases, the standard
deviation of the elastic nonlinearity distribution considerably
decreases, indicating that at these strain amplitudes the elas-
tic nonlinearity is always positive. Similarly, the standard
deviation of the viscous nonlinearity distribution also con-
siderably decreases; the viscous nonlinearity is thus always
negative. Increasing activity slightly decreases the level of
nonlinearity.

At γ0 ≈ 1 the aggregation intracycle strain stiffens, as seen
from the positive e3/e1 values, and intracycle shear thins, seen
from the negative v3/v1 values, Fig. 8(a). Activity does not
play a significant role.

Increasing φeff does not change the level of elastic nonlin-
earity at any strain amplitude. The viscous nonlinearity de-
creases with increasing φeff and this change is larger for larger
γ0, Fig. 8(a). There is a change in the viscous nonlinearity with
activity at γ0 ≈ 0.1 but the effect is small compared to φeff .

While the system intracycle shear thins and strain stiff-
ens we can now also look at the intercycle behavior. Ant
aggregations intercycle strain soften, which is seen from the
decreasing magnitude of the elastic moduli in Fig. 8(b). They
intercycle shear thin, as seen from the decreasing magnitude
of the viscous moduli, Fig. 8(c), and consistent with controlled
shear experiment [19].

Our results for the nonlinear shear moduli are consistent
with the strain amplitude sweeps shown in Fig. 1, and the
storage and loss moduli obtained there by assuming a linear
response. This is likely due to not having reached a strongly
nonlinear regime in our experiments. If we had, not even
qualitative information could be extracted from the values

of G′ and G′′. The description in terms of G′
L, G′

M , η′
L, and

η′
M is thus not only correct, but required in the nonlinear

regime to, at the very least, assess whether an even qualitative
interpretation of G′ and G′′ is possible.

VII. CONCLUSIONS

Ant aggregations intercycle strain soften and shear thin
with increasing strain amplitude. Within one cycle however,
at higher strain amplitudes, they strain stiffen and shear thin.

The level of elastic nonlinearity shows intracycle strain
stiffening irrespective of activity or effective volume fraction.
The nonlinear moduli, however, are affected by φeff ; they
increase with effective volume fraction, consistent with hav-
ing a larger number density of ants and thus with having a
larger number of ant connections per unit volume. The level
of elastic nonlinearity is based on the overall structure of
the network, which does not seem to change likely due to
the rates of linking and unlinking events between ants being
comparable. Neither activity nor effective volume fraction
within the range probed in our experiments affects the level
of elastic nonlinearity.

The level of viscous nonlinearity shows intracycle shear
thinning and is affected by both the activity and the effective
volume fraction. It decreases with increasing activity or in-
creasing effective volume fraction. The dissipation rate and
hence the viscous nature of the aggregation is affected by the
number of linking and unlinking events that take place inside
the system. This increases with activity and with effective
volume fraction, which results in a lower level of viscous
nonlinearity.

Overall, our results show that the nonlinear mechanics of
the system can be tuned with activity. On average the structure
itself is not changing, as reflected by the constant level of elas-
tic nonlinearity, but the dissipation does change with activity.
In real life, having elastic properties unaffected by activity
could prove useful in maintaining the integrity of ant rafts
and towers [15]. In contrast, having internal dynamics, which
dissipate energy, results in restructuring and distribution of
loads between ants; this results in no single ant having to
remain for long times at a given location within the structure
subjected to, for example, the weight of the ants on top of it.
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Overall, our results indicate that two systems with the same
average structure can exhibit different mechanical properties
as a result of ant density and activity.
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