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Signatures of brain criticality unveiled by maximum entropy analysis across cortical states
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It has recently been reported that statistical signatures of brain criticality, obtained from distributions of
neuronal avalanches, can depend on the cortical state. We revisit these claims with a completely different and
independent approach, employing a maximum entropy model to test whether signatures of criticality appear in
urethane-anesthetized rats. To account for the spontaneous variation of cortical states, we parse the time series
and perform the maximum entropy analysis as a function of the variability of the population spiking activity. To
compare data sets with different numbers of neurons, we define a normalized distance to criticality that takes into
account the peak and width of the specific heat curve. We found a universal collapse of the normalized distance
to criticality dependence on the cortical state, on an animal by animal basis. This indicates a universal dynamics
and a critical point at an intermediate value of spiking variability.

DOI: 10.1103/PhysRevE.102.012408

I. INTRODUCTION

Since Beggs and Plenz first reported neuronal avalanches
in cortical slices [1], the critical brain hypothesis has gained
support in experimental data and become an important
paradigm in understanding brain dynamics [2–5]. According
to this hypothesis, the computational advantages of a brain
poised at or near a second-order phase transition are optimal
transmission capacity [6], largest repertoire [4,7], and maxi-
mum dynamic range [8–10], among others.

In their seminal work, Beggs and Plens have shown that
the distribution of avalanche sizes in cultured slices of rat
brain followed a power law with exponent 3/2. This exponent
coincides with the one found for a critical branching process
(or any other model in the mean-field directed percolation
universality class) [1,9]. This was just one of several scale-
invariant phenomena expected to occur at a critical point.

In the years that followed, however, the investigation of
neuronal avalanches in less reduced preparations raised some
controversy. On one hand, power-law avalanche size distribu-
tions of spiking activity could be easily found in vivo during
synchronized states [characterized by slow local field po-
tential (LFP) oscillations] under ketamine-xylazine [11] and
isoflurane [12] anesthesia. On the other hand, long-range time
correlations could be observed only during desynchronized
states (characterized by fast LFP oscillations) in freely behav-
ing rats but not under ketamine-xylazine anesthesia [11].

Fontenele et al. have proposed a solution for the controver-
sies between different data sets, by probing criticality across
different cortical states [13]. It is well known that the degree of
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synchronization in the brain varies with the behavioral state.
In slow wave sleep, for instance, cortical LFP activity has
low frequency and high amplitude, which corresponds to a
synchronized state with high spiking variability. In an awake
and attentive animal, cortical LFP has high frequency and
low amplitude [14], corresponding to a desynchronized state
with low spiking variability. Fontenele et al. have identified
consistent markers of a phase transition at an intermediate
level of spiking variability, where both avalanches and time
correlations consistently satisfy more stringent scaling rela-
tions [13,15,16].

Here we investigate whether a similarly spike-variability-
dependent analysis of neuronal data would reveal signatures
of criticality under a completely different approach. We fo-
cus on maximum entropy models [17], which consist of a
methodology of extracting the desired statistics from limited
data with a minimum of plausible assumptions. Bialek and
collaborators have shown that maximum entropy models are
an effective and parsimonious way of reconstructing higher-
order statistics in neuronal dynamics, based on single-neuron
firing rates and pairwise correlations [18]. Later, other works
have proposed that signatures of criticality could be unveiled
in retinal data using the divergence of a generalized spe-
cific heat of the maximum entropy model built from the
data [19,20].

Specifically, we use a maximum entropy model which is
based on the firing rate of the network in different time steps
[20] to study criticality across cortical states in urethane-
anesthetized rats. As done previously, here a cortical state
will be characterized by a proxy, namely, the coefficient of
variation (CV) of the population firing rate [13,21–24]. We
divide the time series according to CV values and apply the
maximum entropy method for each division, analyzing the
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family of specific heat curves as the urethanized brain drifts
from more synchronous to less synchronous states.

II. METHODS

A. Data acquisition

The data used in this analysis are taken from two exper-
imental setups. As has been described previously [13], three
Long-Evans rats, male, 250–360 g, 3–4 mo old (five Wistar-
Han rats, male, 350–500 g, 3–6 mo old, Charles River) were
used in the recordings. Animals were anaesthetized with 1.58
g/kg (1.44 g/kg) of fresh urethane, diluted at 20% in saline,
in three injections (i.p.), 15 min apart.

We implanted 32- (64-)channel silicon probes (Buzsaki
-A32/BuzsakiA64sp, Neuronexus), which are composed of
four (six) shanks with eight (10) sites/shank with impedance
of 1–3 Mohm at 1 kHz, in the primary visual cortex of the rats
(V1, Bregma: AP = −7.2, ML = 3.5). Shanks were 200 μm
apart, and the area of each site was 160 μm2, disposed from
the tip in a staggered configuration, 20 μm apart. All data
were sampled at 24 (30) kHz, amplified and digitized in a PZ2
TDT, which transmits to a RZ2 TDT base station (amplified
and digitized in a single head-stage Intan RHD2164). All
recordings were analyzed up to a duration of 3 h.

After recordings, spike sorting was performed using
the Klusta-Team software [25,26] on raw electrophysio-
logical data. Housing, surgical, and recording procedures
were in strict accordance with the CONCEA-MCTI and
were approved by the Federal University of Pernambuco
(UFPE) Committee for Ethics in Animal Experimentation
(23076.030111/2013-95 and 12/2015) and European regula-
tions (European Union Directive 2010/63/EU).

B. Maximum entropy analysis

From the data we extracted the binary spiking matrix {si,t }
as follows: we divided the time series into windows of length
�t (20–50 ms). If neuron i has spiked at least once in a time
window t , then si,t = 1 (otherwise, it is zero). In Appendix D
(Fig. 9) we show that the results are robust with respect to the
value of �t .

Since we want to address the differences in dynamical
regimes observed in different cortical states, it is natural to
employ a variant of the maximum entropy formalism that
takes into account the dynamical nature of the spike trains.
Following Mora et al. [20], a Boltzmann-like distribution is
defined,

Pβ (si,t }) = 1

Z (β )
exp[−βE ({si,t })], (1)

where Z (β ) is the normalization constant, E is the “energy”
of the spike trains, and β ≡ 1/T , a control parameter, is
equivalent to an inverse temperature T and it is set to 1 to
describe the observed spike statistics. The idea of the method
is to maximize the entropy

Hβ = −
∑
{si,t }

P({si,t }) log P({si,t }) (2)

subject to observable constraints in the data [17,18].

Being interested only in global phenomena and not in
individual interaction between neurons, Mora et al. proposed
a maximum entropy model where the energy function de-
pends only on the population firing rates and transitions
between consecutive firing rates [20]. In this way, the joint
probability distributions of Kt ≡ ∑N

i=1 si,t at two different
times Pu(Kt , Kt+u) are constrained, and the energy function is
defined as

E = −
L∑
t

h(Kt ) −
L∑
t

v∑
u=1

Ju(Kt , Kt+u), (3)

where N is the number of neurons, L is the number of time
bins, and v � 1 is the temporal range of model.

The fitting of the model consists in solving the inverse
problem of finding h(K ) and Ju(K, K ′) such that Pu,model pre-
dicted by the model corresponds to Pu,data obtained from the
data. While Pu,data is directly estimated from the spike trains,
Pu,model is calculated via the technique of transfer matrices
(see Ref. [20] for details). The model learning is performed
by an iterative process based on the difference between the
probabilities predicted from the model and the probabilities
from the data:

h(Kt ) ← h(Kt ) + ε[Pdata (Kt ) − Pmodel(Kt )], (4)

Ju(Kt , Kt+u) ← Ju(Kt , Kt+u) + ε[Pu,data (Kt , Kt+u)

− Pu,model(Kt , Kt+u)], (5)

which is equivalent to a gradient descent on the log-likelihood
[20]. Choosing a small enough value of ε ensures the conver-
gence of h(K ) and Ju(Kt , Kt+u).

Once Pβ is determined, the specific heat can be calculated
as a function of β:

c(β ) = β2

NL
〈δE2〉β, (6)

where δE ≡ E − 〈E〉β is the fluctuation from the mean energy
and its average is taken under Pβ [20]. Note that Pβ maximizes
the entropy given the data only for β = 1. By allowing T
to vary, a family of probability distributions is traversed,
and a peak of c that tends towards T = 1 as N increases is
interpreted as a signature that the system is critical [19,20].

In order to handle the dependence of c on the system size,
for each data set N neurons were selected randomly from
the total set of neurons recorded. This was repeated over
20 random selection of units, and the shown result is their
average. To control for the significance of the results, we
also repeat the specific heat calculation for surrogate data, in
which for each neuron the sequence of interspike intervals was
shuffled (Appendix A).

C. CV parsing

To understand how the spiking variability could affect
the maximum entropy analysis, the data are segmented in
windows of duration W = 10 s. For each window j, the
coefficient of variation (CV) of the population firing rate Kt

is calculated:

CV j = σ j

μ j
, (7)
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FIG. 1. (a) Specific heat versus temperature (T ) for an increasing
number of neurons (rat 1, which had 52 neurons recorded), with
�t = 20 ms and v = 2. (b) Variation of critical temperature (T ∗) as
a function of the number of neurons (N) considered to fit the model.

where μ j is the mean and σ j is the standard deviation of Kt

within window j. To have better statistics for the model fitting,
we concatenate 50 windows of similar CVs, calculate their
average 〈CV〉, and run the maximum entropy algorithm to find
the heat capacity as a function of the temperature for different
values of 〈CV〉. Robustness of the results against changes in
W was also verified (Appendix D, Fig. 11). Note that CV
increases monotonically with the average pairwise spiking
correlation (Appendix B, Fig. 7), which is a well-established
marker of cortical states [23].

III. RESULTS

A. Analysis of the time series as a whole

We start our investigation by simply considering the whole
time series of the data sets. Fitting the maximum entropy
model to the data, we obtained curves of specific heat c(T ).
T ∗ is defined as the temperature at which c is maximal.
As we exemplify in Fig. 1(a) for a single rat, the larger
the number N of neurons, the closer T ∗ was to T = 1 and
the larger the value of c(T ∗), suggesting a critical dynamics
[19,20]. These results are consistent across rats, as shown in
Fig. 1(b). When we repeat the analysis for surrogate (shuffled)
data, the specific heat values are much smaller and the peaks

FIG. 2. (a) CV as a function of time for the whole time series
(rat 3) (�t = 50 ms, W = 10 s). The maximum and minimum values
are highlighted with a circle and a square, respectively. (b) Firing
rate Kt corresponding to the maximum (left) and minimum (right)
CV values of the time series (dashed line is an indicator of zero).
(c) Raster plots corresponding to (b), where each line represents a
different neuron and each dot is a spike. Larger (smaller) values of
CV correspond to more (less) synchronized states.

occur for temperatures T ∗
surrogate < 1 [Appendix A, Fig. 6(a)].

This suggests that surrogate data at T = 1 are above the
critical temperature, and therefore in a disordered phase (as
expected).

B. Analysis by spiking variability

These results, however, should be taken with a grain of
salt. Note that the model proposed by Mora et al. assumes
that the data are stationary [20], since the parameters h and
Ju in the energy function of Eq. (3) are time independent. But
the dynamics of the spiking data in urethanized brains, on the
other hand, changes considerably in the timescale of the whole
record (∼2–3 h). A common index to quantify these changes is
the coefficient of variation (CV) of the population firing rate,
which we calculate within windows of duration W . Figure 2(a)
shows the time evolution of CV for a single rat on the scale
of hours, where one observes instances of very high spiking
variability in more synchronized states [CV 	 2, left plots
of Figs. 2(b) and 2(c)], very low spiking variability in more
desynchronized states [CV 	 0.5, right plots of Figs. 2(b) and
2(c)], and pretty much everything in between. As shown in
Appendix C (Fig. 8), each experiment has its own, apparently
unpredictable, evolution of CV(t ).

This lack of stationarity on longer timescales suggests
that we are mixing together very different dynamical regimes
when the maximum entropy analysis is applied to the whole
time series. To reconcile the assumed hypothesis of station-
arity of the model and the changes in cortical state in a slow
O(> 10 s) timescale, we consider this analysis by previously
segmenting and aggregating data by CV values, in line with
Fontenele et al. [13]. Once we have selected the epochs of data
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FIG. 3. (a) Specific heat as a function of the temperature for dif-
ferent values of 〈CV〉 of rat 1, N = 52, �t = 50 ms). The definitions
of �T [Eq. (8)], T ∗ and T1/2 are illustrated for 〈CV 〉 = 0.55 (see
text for details). (b) T ∗ versus 〈CV〉 for different rats, where we have
employed the maximal number of neurons in each data set.

parsed by 〈CV〉 that will feed the maximum entropy model,
the fitting is identical to what has been previously described
[20], and for each 〈CV〉 the model fitting is independent from
the others.

To do so, the maximum number of neurons in each data
set is considered. In Fig. 3(a) the dependence of c(T ) with
〈CV〉 is shown for one data set [rat 1; results for surrogate
data are shown in Appendix A, Fig. 6(b)]. As the value of
〈CV〉 increases, the temperatures T ∗ of the specific heat peak
now increase from below T = 1 to above it.

The interpretation of these results can be tricky. Note that
the data are, by definition, described by the model at T = 1.
Whether T = 1 is considered “high” or “low,” i.e., whether
the data correspond respectively to a disordered or an ordered
phase, depends on where the critical temperature T ∗ lies. For
low 〈CV〉 (desynchronized states), T = 1 is higher than T ∗,
suggesting a disordered phase. Accordingly, the high-〈CV〉
(synchronized states) would correspond to an ordered phase.

FIG. 4. (a) Temperature T ∗ of the specific heat peak versus 〈CV〉
for different numbers of neurons (rat 3, �t = 50 ms). Note that
T ∗ approaches T = 1 from below (above) for low (high) 〈CV〉.
(b) Width �T [see Eq. (8) and Fig. 5(a)] of the specific heat curve
versus 〈CV〉 for different numbers of neurons.

Therefore, if we parse the data by spiking variability, the
signatures of criticality do not appear in the whole time series.
As shown in Fig. 3(b), T ∗ coincides with T = 1 only in a
narrow range of 〈CV〉. These results are robust across animals
and suggest a critical point between the desynchronized and
the synchronized extremes, as reported by Fontenele et al.
[13].

Of course, different rats have different numbers of recorded
neurons, and we would like to understand whether those
differences can be controlled for when analyzing the 〈CV〉
dependence of c(T ) curves, such as those of Fig. 3(a).

On the one hand, as we show in Fig. 4(a),T ∗ gets increas-
ingly closer to T = 1 for any value of 〈CV〉 as the number
of neurons increases (while the point with T ∗ 	 1 remains
relatively N-independent). On the other hand, this increasing
proximity between T ∗ and T = 1 should be interpreted with
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caution. Whether T ∗ − 1 is small or large depends on a
comparison with some natural scale of temperature variation
in the problem.

We propose to compare T ∗ − 1 with the width �T of the
bell-shaped c(T ) curve at half height,

�T ≡ T ∗ − T1/2, (8)

where T1/2 is defined by c(T1/2) = c(T ∗)/2, as shown in
Fig. 3(a). Figure 4(b) shows that the c(T ) curves become
sharper as N increases, thus providing a natural scale with
which to compare the results in Fig. 4(a). We thus define a
normalized distance to criticality τ , defined as

τ ≡ T ∗ − 1

�T
. (9)

Differently from the behavior of T ∗ − 1 (Fig. 4), τ as
a function of 〈CV〉 converges quickly to a well-behaved
function even for a fraction of the total number of neurons
[Fig. 5(a)]. Note that both axes of this curve are dimension-
less. Besides, this function τ (〈CV〉) seems to be universal for
this setup, in the sense that it is reproduced by different rats
with different numbers of neurons [Fig. 5(b)]. In particular, for
all rats, τ crosses zero in approximately the same critical value
of 〈CV〉∗ ≈ 1.28 ± 0.08. This crossing is a strong indicator of
universal behavior segregating regimes of low temperatures
(synchronized states) and high temperatures (desynchronized
states).

Naturally, the next natural step would be to extend this
analysis to nonanesthetized animals. These recordings, how-
ever, are more difficult to obtain and more susceptible to noise.
We used publicly available cortical recordings of mice [27].
The results of this analysis are shown in Fig. 5(b) and suggest
that, as CV increases, |τ | of freely behaving mice decreases
(following a similar trend to data of anesthetized rats) but
stops short of reaching the critical point. There is, however,
a serious limitation in the interpretation of these results, or
at least in the direct comparison with the anaesthetized rat
data. While rats were implanted with six-shank silicon probes
recording around the same cortical layer, mice data were
recorded with a single-shank probe which recorded across
cortical layers. It is unclear at this point how much this dif-
ference could influence the results, and interpretations should
carefully take this into account. In our view, therefore, the
question whether or not the awake cortex is critical remains
under debate.

IV. CONCLUSION

In conclusion, we have applied the maximum entropy
approach of Mora et al., which takes into account the dy-
namical aspects of networks activity, to cortical spiking data
of urethane-anesthetized rats. Since spiking variability under-
goes major changes along the hours of the experiments, the
data sets were parsed by 〈CV〉 in an attempt to fulfill, for each
〈CV〉, the stationarity required by the model.

When analyzed in this way, the method reveals signatures
of criticality for a very narrow range of 〈CV〉 values. For
very low (high) 〈CV〉, the system is more desynchronized
(synchronized), which corresponds to a disordered (ordered)
phase, i.e., with T = 1 > T ∗ (T = 1 < T ∗). We introduced

FIG. 5. (a) Normalized distance to criticality τ versus 〈CV〉
quickly converges to a well-behaved function for increasing N (rat 3,
N = 130, �t = 50 ms). (b) τ versus 〈CV〉 for the maximum number
of neurons in each data set. τ crosses zero at approximately the
same value of 〈CV〉 for all rats (see text for details). Results for
nonanesthetized mice (n = 10) are shown with a solid line (average)
and shading (standard deviation).

a normalized distance to criticality τ whose behavior was
universal across rats, consistently crossing zero at the same
critical value 〈CV〉∗. These results are not reproduced by
shuffled data and, as shown in Appendix D, stand robust
against changes in the time bin �t used to calculate firing rates
(Fig. 9), the order v of the model (Fig. 10), and the width W
of the windows employed to calculate CV (Fig. 11).

The critical value 〈CV〉∗ obtained with the maximum en-
tropy approach is compatible (within error bars) with the one
obtained by Fontenele et al. (〈CV〉∗ ≈ 1.4 ± 0.2) via neuronal
avalanche scaling analysis [13]. Despite the completely dif-
ferent nature of these two approaches, both strongly suggest
that a phase transition occurs at an intermediate level of
synchronization for urethane-anesthetized rats.
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FIG. 6. Variation of specific heat for shuffled data of rat 1 (�t =
50 ms). (a) Results for the whole time series with different numbers
of neurons. (b) We illustrate the influence of 〈CV〉 on the specific
heat for a few examples with the maximum number of neurons.
(c) We show a scatter plot of normalized distance to criticality τ

versus 〈CV〉 for all rats, breaking the universal structure shown in
Fig. 11(b). In (b) and (c), the value of CV was calculated for the
original (nonshuffled) time series.
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APPENDIX A: SURROGATE DATA

To test the significance of our results presented in the
main text, we repeated the analysis over surrogate data. To
obtain these series each neuron spike timing was randomized,
keeping the total number of events fixed.

In the whole time series of the shuffled data sets, we verify
that the specific heat remains with small values and its peak
declines when the number of neurons increases, in opposition
to the increase of specific heat of the original spiking series
[compare Fig. 6(a) and Fig. 1(a)]. Also, the specific heat peak
for shuffled data is typically very far from T = 1 [Fig. 6(a)].

Repeating the maximum entropy analysis as a function
of the cortical state (〈CV〉) for surrogate data, we verify

FIG. 7. Pairwise spiking correlation (symbols are averages over
pairs of 138 neurons; error bars are standard deviations) as a function
of CV for a single urethane-anesthetized rat.
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FIG. 8. Time series of CV for different recordings (�t = 50 ms,
W = 10 s).

that there is no specific trend in the behavior of the specific
heat [Fig. 6(b), in comparison to Fig. 3(a)]. To emphasize
the inconsistency of the shuffled data behavior, we show in
Fig. 6(c) the surrogate analysis of τ for all data sets. This
plot shows that the universal trend in Fig. 3(b) disappears
when the data are randomized. It is important to mention that
in Figs. 6(b) and 6(c) the values of CV were calculated on
the original time series (before shuffling). The CV for the
shuffled time series is flat, with an average 0.35 and standard
deviation 0.08.

APPENDIX B: RELATION BETWEEN CV
AND PAIRWISE CORRELATIONS

Cortical states at the scale of spikes are characterized by
the distribution of pairwise spiking correlations: desynchro-
nized states have a pairwise correlation distributed around a
near-zero mean, whereas synchronized states have positive
correlations on average [23]. In Fig. 7 we show the average
and standard deviation of pairwise spiking correlations of
a single animal along the whole range of CV values. The
monotonic (almost linear) dependence reinforces CV as a
convenient proxy for cortical states.

We quantified pairwise spiking correlations based on spike
trains of single-unit activity. Initially, for each cell i we obtain

FIG. 9. Robustness of the behavior of normalized distance to
criticality (τ ) versus 〈CV〉, considering different time bins (�t) for
calculating firing rates (W = 10 s and v = 2).

a spike count time series ri at millisecond resolution (�t =
1 ms). Subsequently, in order to specify the timescale on
which the spiking correlation is calculated, we convolved each
time series ri with a kernel h:

ni(t ) = hs1,s2 (t ) ∗ ri(t ), (B1)

where h is a Mexican-hat kernel obtained by the difference
between two zero-mean Gaussians with standard deviations
s1 = 100 ms and s2 = 400 ms [22]. The spiking correlation
coefficient ρi j between two units i and j is then given by

ρi j = Cov
(
ni, n j

)
√

Var(ni )Var
(
n j

) , (B2)

where Var and Cov are the variance and covariance, respec-
tively.

APPENDIX C: CV TIME SERIES

In Fig. 8 we show CV time series of the ∼3-h-long con-
tinuous recordings for different rats. It can be seen that, for
all rats, there are variations from low to high values of CV.
This illustrates that, on a timescale of hours, we can have
important changes in the cortical states even for anesthetized
preparations [21].

APPENDIX D: ROBUSTNESS OF THE RESULTS

To further probe the robustness of our results, we also re-
peated our analysis with different timescales for discretization
of the neural firing and parsing the cortical states.

1. Time resolution for the firing rates

The first temporal parameter we have modified was the
resolution, �t , used in the calculation of the firing rates. In
Fig. 9 different values are selected for �t , and maximum
entropy analysis is done with variation of 〈CV〉. On the one
hand, �t must be large enough to ensure that the firing rate
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FIG. 10. Robustness of the behavior of the normalized distance
to criticality (τ ) as a function of 〈CV〉 for different values of the
model order (v). We show results from three typical rats using v = 2
and v = 3 (�t = 50 ms and W = 10 s).

of the population is well characterized. On the other hand,
it should not be so large that it averages away important
population dynamics. Also, if �t is too large, many spikes
would be counted as a single one. Any analysis using �t on
the order of tens of milliseconds satisfies these constraints.
Figure 9 shows that all curves collapse, and, therefore, results
do not depend on a fine-tuned time window.

2. Model order v

Another parameter of the model is its temporal order v,
which defines how many time steps are considered for the

FIG. 11. Universal behavior of normalized distance to criticality
(τ ) versus 〈CV〉 for different timescales used for calculating CV (v =
2 and �t = 50 ms).

model dynamics [see Eq. (3)]. We show in Fig. 10 (with data
from three randomly selected rats) that the curves τ (〈CV〉) for
model orders v = 2 and 3 are very similar.

3. Time resolution for defining a cortical state

We have also explored different values for the timescale
used to define a cortical state. In the results shown in the main
text, a time window of W = 10 s was used for calculating
CV. Figure 11 shows that changing this parameter in the
analysis does not affect the results for the normalized distance
to criticality.
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