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Epidemic spreading in heterogeneous networks has attracted great interest in recent years. To capture the
significant effect of residence of individuals on epidemic spreading, we consider herein a simple susceptible-
infected-susceptible model with random waiting time in heterogeneous networks. We provide the analytical
dynamical expressions for the time evolution for infected individuals and find a fractional memory effect of
power-law waiting time on anomalous epidemic spreading. This work provides new quantitative insights in
describing contagion processes and could help model other spreading phenomena in social and technological
networks.
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I. INTRODUCTION

The spread of epidemic is a vital question for human sur-
vival and social development, and how to model the epidemic
process has attracted widespread and lasting attention [1–3].
The spreading of a disease generally depends on the biological
properties of the disease, fighting the disease and medical
treatments, interactions and contact of individuals, transport
fluxes and human movements, the residence duration of travel,
and so on [3–5]. Classical models of epidemic spreading, such
as the susceptible-infected-susceptible (SIS) and susceptible-
infected-recovered (SIR) models, etc., which take into account
the impact of transition and reaction processes in a homo-
geneous mixing approximation, provide a basic modeling
approach to the spreading of epidemic processes [6].

In further consideration of the effects of the migrations
and diffusion of individuals and the contact pattern structure,
Vespignani et al. [4,7,8] study the behavior of epidemic
spreading and diffusion defined on networks with hetero-
geneous topology and propose the particle-network frame-
work and the generalized reaction-diffusion processes and
metapopulation models in heterogeneous networks under the
assumption that the diffusion of particles (or individuals) does
not depend on their random residence times in nodes.

As we all know, the residence duration has a crucial
influence on the infection of individuals in the spreading
of a disease, and it should also be considered in epidemic
spreading. However, until now few works have approached
this factor in modeling contagion phenomena [9–15]. Without
considering the transition and reaction processes, Fedotov and
Stage [5,16] have studied the anomalous cumulative inertia
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in human behavior and found an anomalous effect of random
residence time on the diffusion in scale-free networks. Mo-
tivated by their research, we shall herein consider the effect
of the random residence time on reaction-diffusion processes
in heterogeneous networks and introduce a fairly general and
suited method to describe the dynamical epidemic processes
that integrate the migration and residence of individuals, the
reaction activity, and the complex features and heterogeneities
of networks. Moreover, we show the coupling relations be-
tween reaction and diffusion terms and find the strong mem-
ory effect of the power-law waiting time on anomalous epi-
demic spreading in complex networks. This epidemiological
framework can also help model the spreading of information,
cultural norms, and pollution control in complex networks.

II. ANOMALOUS DIFFUSION DYNAMICS
IN THE PARTICLE-NETWORK FRAMEWORK

We start by recalling the heterogeneous networks using
the particle-network framework in which each particle (or
individual) can diffuse along the edges, connecting notes with
a diffusion coefficient [3,7]. A representation of the system is
provided by quantities defined in terms of degree k:

Nk (t ) = 1

Vk

∑
i

ρi,k (t ), (1)

where Vk is the number of nodes with degree k, ρi,k (t ) is the
nonnegative integer number of particles in the node i with
degree k, and the sums run over the set of nodes having
degree equal to k. The degree-block variable Nk (t ) represents
the average number of particles in nodes with degree k. It is
assumed that the particles with similar degree are statistically
equivalent.
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In order to gain further insight into the spreading prop-
erties of the heterogeneous networks in the particle-network
framework we assume that when the particle enters into a
node i with degree k of the network it need some waiting
time t , drawn from ψ (t ), before it moves out the node
i [14,16]. Let N−

k (t ) = 1
Vk

∑
i ρ

−
i,k (t ) represent the mean loss

flux diffusing away the node with degree k at time t and
N+

k (t ) = 1
Vk

∑
i ρ

+
i,k (t ) be the mean gain flux diffusing into the

node of degree k at t . Here the symbols ρ−
i,k (t ) and ρ+

i,k (t )
respectively denote the integer numbers of particles leaving
and arriving at the node i with degree k at time t . Then the
variation in time of the particle subpopulation Nk (t ) in each
degree block k can be written as

dNk

dt
= N+

k (t ) − N−
k (t ). (2)

Note that the gain flux of degree k comes from each neighbor
and equals the average over all possible degrees k′ of the
flux out of the node on the edge, according to the conditional
probability P(k′|k) that an edge belonging to a node of degree
k is connecting to a node of degree k′ [3,17]. So N+

k (t ) can be
read as

N+
k (t ) = k

∑
k′

N−
k′ (t )

1

k′ P(k′|k). (3)

Furthermore, considering that the loss flux of the node with
degree k is from those particles that were originally at this
node at t = 0 and wait until time t to leave and those particles
that arrived this node at an earlier time t ′ and wait until time t
to leave, one can write the loss flux N−

k (t ) as

N−
k (t ) = Nk (0)ψ (t ) +

∫ t

0
N+

k (t ′)ψ (t − t ′) dt ′, (4)

where Nk (0) is initial average number of nodes with degree k.
From Eq. (2), we have

N+
k (t ) = dNk

dt
+ N−

k (t ). (5)

Substituting (5) into (4) yields

N−
k (t ) = Nk (0)ψ (t ) +

∫ t

0

[
dNk (t ′)

dt ′ + N−
k (t ′)

]
ψ (t − t ′) dt ′.

(6)

Taking the Laplace transform t → s of Eq. (6), we find

N−
k (s) = Nk (s)�(s). (7)

Here N−
k (s) and Nk (s) are respectively the Laplace transforms

of N−
k (t ) and Nk (t ), and �(s) = sψ (s)

1−ψ (s) = ψ (s)
�(s) , where ψ (s)

and �(s) are respectively the Laplace transforms of the prob-
ability density function (PDF) of the waiting time ψ (t ) and
the survival function �(t ) = 1 − ∫ t

0 ψ (t ′) dt ′. Equation (7)
is in agreement with the result by using a different way in
Ref. [16]. We invert (7) into time space and obtain N−

k (t ) =∫ t
0 Nk (t ′)�(t − t ′) dt ′. Substituting this into (3), we finally

derive the equation describing the time evolution of Nk (t ) for

each class of degree k as

dNk (t )

dt
= k

∑
k′

∫ t

0
Nk′ (t ′)�(t − t ′) dt ′ 1

k′ P(k′|k)

−
∫ t

0
Nk (t ′)�(t − t ′) dt ′. (8)

Here �(t ) denotes the inverse Laplace s → t transform of
�(s). Equation (8) explicitly brings the waiting time of
particles in modeling diffusion processes in heterogeneous
networks.

If the waiting time PDF is a power law given by ψ (t ) =
α

t+τ0
( τ0

t+τ0
)α , where 0 < τ0, 0 < α, then in Laplace space one

has ψ (s) ∼ 1 − �(1 − α)τα
0 sα for small τ0, and thus �(s) ∼

1
�(1−α)τα

0
s1−α [16,18]. Hence, in this case Eq. (8) reduces to

dNk (t )

dt
= k

�(1 − α)τα
0

∑
k′

0D1−α
t Nk′ (t )

k′ P(k′|k)

− 0D1−α
t Nk (t )

�(1 − α)τα
0

. (9)

where 0D1−α
t f (t ) is the Riemann-Liouville fractional

derivative operator, equaling in Laplace t → s space to
s1−αL[ f (t )] [19]. Note that because of the effect of the
fractional kinetics operator [5], the average number of
particles with degree k at time t in heterogeneous networks
has a strong memory dependence on the previous spreading.
This anomalous cumulative property has also been found in
the transport of particles on scale-free networks containing
some nodes with heavy-tailed residence times in Ref. [16].
If the heterogeneous networks are uncorrelated networks
obeying P(k′|k) = k′P(k′ )

〈k〉 , where P(k) is a degree distribution
and 〈k〉 is the average degree [3], then Eq. (9) becomes

dNk (t )

dt
= k

0D1−α
t N (t )

�(1 − α)τα
0 〈k〉 − 0D1−α

t Nk (t )

�(1 − α)τα
0

. (10)

Here N (t ) = ∑
k Nk (t )P(k) is the average number of particles

in all nodes in the network, and in nonreactive diffusion
system N (t ) is a constant, that is, N (t ) = N (0) with N (0) be-
ing the initial average number. Taking the Laplace transform
t → s of Eq. (10), we find in nonreactive system

Nk (s) =
Nk (0) + k

�(1−α)τα
0 〈k〉

1
sα N (0)

s + 1
�(1−α)τα

0
s1−α

. (11)

In the above expression Nk (s) represents the Laplace trans-
form of Nk (t ). Inverting Eq. (11) to the time domain s → t ,
we then get the solution of Eq. (10) in terms of one-parameter
and two-parameter Mittag-Leffker functions [20]

Eα (z) =
+∞∑
n=0

zn

�(1 + αn)
, (12)

and

Eα,β (z) =
+∞∑
n=0

zn

�(β + αn)
, (13)
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through

Nk (t ) = Nk (0)Eα

[
− 1

�(1 − α)τα
0

tα

]

+ kN (0)tα

�(1 − α)τα
0 〈k〉Eα,α+1

[
− 1

�(1 − α)τα
0

tα

]
. (14)

Equation (14) shows that the average number of particles
in nodes with degree k in the nonreactive diffusion system
with random waiting time in the heterogeneous networks in
particle-network framework depends not only on the degree k
but also on the anomalous exponent α of the random waiting
time. When α = 1, the solution reduces to

Nk (t ) =
[

Nk (0) − k

〈k〉N (0)

]
e− 1

τ0
t + k

〈k〉N (0), (15)

which depends only on the degree k. In the limit of long time
t → +∞, we recover the usual result [4,16],

Nk (t ) ∼ k

〈k〉N (0), (16)

which is in proportion to the degree k.

III. ANOMALOUS EPIDEMIC SPREADING
WITH RANDOM WAITING TIME

A. The time evolution of the average number of infectious
individuals in nodes with degree k

Furthermore, to address the effect of the waiting times
spent by individuals in epidemic spreading in heterogeneous
networks, we shall study a basic epidemic SIS model gov-
erned by the following set of reactions:

I
μ−→ S, (17)

S + I
β−→ 2I, (18)

where μ and β are transition rates for recovery and infec-
tion, respectively. We assume ρ(t ) individuals diffusing in a
heterogeneous network with V nodes, and each node i with
degree k of the network has a number ρi,k,I (t ) of infectious
and ρi,k,S (t ) of susceptible individuals at time t . One can
see that ρ(t ) = ρ(0) is a constant in SIS reactive system
where ρ(0) is the initial total number of individuals. We
introduce the average numbers of infectious and suscepti-
ble individuals in nodes with degree k at time t , that is,
Ik (t ) = 1

Vk

∑
i ρi,k,I (t ), Sk = 1

Vk

∑
i ρi,k,S (t ), where the sums

are performed over nodes of degree k and Vk is the number
of nodes with degree k. It is clear that Nk (t ) = Ik (t ) + Sk (t )
is the total average number of individuals in nodes with
degree k [3]. Denote the average numbers of infectious and
susceptible individuals in all nodes by I (t ) = ∑

k Ik (t )P(k)
and S(t ) = ∑

k Sk (t )P(k), respectively. Then the sum N (t ) =
I (t ) + S(t ) = ∑

k Nk (t )P(k) =
∑

k Nk (t )Vk

V = ρ(t )
V , which is the

average number of individuals in all nodes is invariable un-
der reactions (17) and (18). We assume that the PDFs of
the residence time at any node are respectively the same
for infectious and susceptible individuals, and the reaction
processes take place only inside the nodes for simplicity (see
Fig. 1). To explicitly describe the time evolution for infectious

Node j

Node i

Di use

Infected individual
Susceptible individual

Wait and React

i

j

FIG. 1. Epidemic SIS model with random waiting time in hetero-
geneous networks. An infected or susceptible individual waits at the
node i with degree k1 for some time τ when it may react according to
Eqs. (17) and (18), and then it moves away to one of neighbor node
j with degree k2 along an edge, after which the process is renewed.

individuals, we write a balance description as:

dIk (t )

dt
= I+

k (t ) − I−
k (t ) − μIk (t ) + β�k (t ), (19)

where I+
k (t ) represents the average number of new arriving

infections at the node of degree k from elsewhere at time
t , and I−

k (t ) is the loss flux of infections diffusing away
from the node of degree k at t . The term μIk (t ) denotes the
number of the infectious individuals in nodes with degree
k which recovers from the disease and returns to the pool
of susceptible individuals. The last term on the right-hand
side denotes the added infected individuals by the interaction
kernel �k (t ) which is a function of Ik (t ) and Sk (t ). In the
usual case of a mass-action law for the force of infection, one
has �k (t ) = Ik (t )Sk (t )

Nk (t ) . And if each susceptible individual may
react with all of the infectious individuals in the same node,
then �k (t ) = Ik (t )Sk (t ) [3,4]. Here the diffusing gain flux of
infected individuals of degree k can also be written by the lost
flux of other nodes with degree k′ as:

I+
k (t ) = k

∑
k′

I−
k′ (t )

1

k′ P(k′|k). (20)

We note that the individuals siting on a node with degree k
may keep infected for a waiting time before it diffuses into a
neighboring node [3]. We assume that the reactive and new
infected individuals will have new waiting time [for example,
the infected individual may have new plan of stagnation after
the reaction (18)]. This yields

I−
k (t ) = Ik (0)�R1

k (t, 0)ψI (t )

+
∫ t

0
[I+

k (t ′) + 2β�k (t ′)]�R1
k (t, t ′)ψI (t − t ′) dt ′,

(21)

where �
R1
k (t, t ′) = e− ∫ t

t ′ [μ+β
�k (τ )
Ik (τ ) ]dτ denotes the probability

for the infected individuals to keep infected without defeating
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disease or infecting new infections in the time interval [t ′, t]
for t ′ � 0, and the symbol ψI (t ) represents the waiting time
PDF for the infected individual staying at a node for time t
and then moving out to the other node. The right-hand side is
a sum of outgoing infected individuals that were originally at
the nodes with degree k at t = 0 being sustained and without
infecting other susceptible individuals until time t to leave,
those infected individuals that arrived from their neighbors
of any degree k′ and produced after the infecting process
S + I → 2I in their nodes of degree k at an earlier time t ′ > 0
wait without reacting until time t to leave. The first term on
the right-hand side is the influence of the initial state.

Note that Eq. (21) can be rewritten as

I−
k (t )

�
R1
k (t, 0)

= Ik (0)ψ (t ) +
∫ t

0
[I+

k (t ′)

+ 2β�k (t ′)]
1

�
R1
k (t ′, 0)

ψ (t − t ′) dt ′, (22)

where we used the relation �
R1
k (t, 0) =

�
R1
k (t ′, 0)�R1

k (t, t ′) [21]. Combining Eqs. (19) and (22)
yields

I−
k (t )

�
R1
k (t, 0)

= Ik (0)ψI (t ) +
∫ t

0

[
dIk (t ′)

dt ′ + I−
k (t ′) + μIk (t ′)

+ β�k (t ′)
]

1

�
R1
k (t ′, 0)

ψI (t − t ′) dt ′. (23)

By taking the Laplace transform and using the property
L( df (t )

dt ) = sL[ f (t )] − f (0), we find

L

[
I−
k (t )

�
R1
k (t, 0)

]
= sψI (s)

1 − ψI (s)
L

[
Ik (t )

�
R1
k (t, 0)

]

= �I (s)L

[
Ik (t )

�
R1
k R(t, 0)

]
, (24)

Here ψI (s) is the Laplace t → s transform of ψI (t ), and
�I (s) = sψI (s)

1−ψI (s) = ψI (s)
�I (s) , where �I (s) is the Laplace transform

of the survival function �I (t ) = 1 − ∫ t
0 ψI (t ′) dt ′. We invert

the above Eq. (24) to time space and obtain

I−
k (t ) =

∫ t

0
�I (t − t ′)Ik (t ′)�R1

k (t, t ′) dt ′, (25)

where �I (t ) denotes the inverse Laplace s → t transform of
�I (s). From Eqs. (19) and (20), one gets

dIk (t )

dt
= k

∑
k′

I−
k′ (t )

1

k′ P(k′|k) − I−
k (t ) − μIk (t ) + β�k (t ).

(26)

Inserting Eq. (25) into Eq. (26), we finally obtain the time
evolution of Ik (t ) for infected individuals in any given

degree as

dIk (t )

dt
= k

∑
k′

∫ t

0
�I (t − t ′)Ik′ (t ′)�R1

k′ (t, t ′) dt ′ 1

k′ P(k′|k)

−
∫ t

0
�I (t − t ′)Ik (t ′)�R1

k (t, t ′) dt ′

−μIk (t ) + β�k (t ). (27)

This master equation shows the complex dependence of epi-
demic spreading on the heterogeneous networks, the spent
time for each individual and chemical reactions in the loca-
tion. Note that in nonreactive system, i.e., μ = β = 0, the
Eq. (27) becomes Eq. (8) for the simple anomalous diffusion
process in heterogeneous networks. In the case of uncorrelated
networks obeying P(k′|k) = k′P(k′ )

<k>
, Eq. (27) becomes

dIk (t )

dt
= k

〈k〉
∫ t

0
�(t −t ′)

[∑
k′

Ik′ (t ′)�R1
k′ (t, t ′)P(k′)

]
dt ′

−
∫ t

0
�I (t −t ′)Ik (t ′)�R1

k (t, t ′) dt ′−μIk (t )+β�k (t ).

(28)

We now consider the epidemic spreading under the as-
sumption that the infections on a node of degree k first react
and then diffuse away with a unitary diffusion rate. We find
that in this case the PDF of the waiting time is ψI (t ) =
δ(t ), and the infections for each class of degree k at time
t > 0 are all from the contribution of arriving infections, i.e.,
Ik (t ) = I+

k (t ). Thus, in Eq. (21)
∫ t

0 I+
k (t ′)�R1

k (t − t ′)ψ (t −
t ′) dt ′, which are the arriving infections without reacting, and
diffusing away at the later time t is Ik (t )[1 − μ − β�k (t )

Ik (t ) ].
Besides, the nonreactive initial infections Ik (0) at the nodes
with degree k have been moved away before time t , so we have
Ik (0)�R1

k (t, 0)ψ (t ) = 0. Finally, since the produced infections
2β�k (t ) in the reactive dynamics waits for time 0 and leave
the node of degree k, one gets

∫ t
0 2β�k (t )�R1

k (t − t ′)ψ (t −
t ′) dt ′ = 2β�k (t ). Therefore, Eq. (21) in this case reduces to
I−
k (t ) = Ik (t )[1 − μ + β�k (t )

Ik (t ) ]. Substituting it into Eq. (19) and
combining Eq. (20) we find

dIk (t )

dt
= −Ik (t ) + k

∑
k′

[Ik′ (t )(1 − μ) + β�k′ (t )]
1

k′ P(k′|k),

(29)
which is in agreement with the result in Ref. [4].

We then analyze the special epidemic spreading with expo-
nential waiting time ψI (t ) = λe−λt under the assumption that
reaction and diffusion process take place simultaneously. In
this case one has �I (s) = λ, and thus �I (t ) = λδ(t ) [21,22],
which implies I−

k (t ) = λIk (t ). Then Eq. (27) reduces to

dIk (t )

dt
= kλ

∑
k′

Ik′ (t )
1

k′ P(k′|k) − λIk (t ) − μIk (t ) + β�k (t ),

(30)
which is the continuous-time equation for the spread of the
infection on heterogeneous metapopulations in Ref. [23].

012315-4



ANOMALOUS EPIDEMIC SPREADING IN HETEROGENEOUS … PHYSICAL REVIEW E 102, 012315 (2020)

We now turn to investigate the epidemic spreading for the waiting time PDF ψI (t ) = α
t+τ0

( τ0
t+τ0

)α for 0 < τ0, 0 < α [16,18]. In

this case �I (s) ∼ 1
�(1−α)τα

0
s1−α for small τ0. Inserting it into Eq. (24) and taking the inverse Laplace transform, we obtain I−

k (t ) =
1

�(1−α)τα
0
�

R1
k (t, 0)0D1−α

t [ Ik (t )

�
R1
k (t,0)

], so that the reaction-diffusion equation describing the time evolution for Ik (t ) in heterogeneous

networks can be written as

dIk (t )

dt
= k

�(1 − α)τα
0

∑
k′

�
R1
k′ (t, 0)0D1−α

t

[
Ik′ (t )

�
R1
k′ (t, 0)

]
· 1

k′ P(k′|k)

− 1

�(1 − α)τα
0

�
R1
k (t, 0)0D1−α

t

[
Ik (t )

�
R1
k (t, 0)

]
− μIk (t ) + β�k (t ). (31)

Notice that because of the memory effect of the fractional kinetics operator with the anomalous exponent α [5] the epidemic
spreading with power-law waiting time in heterogeneous networks has a strong memory dependence on the SIS reactions and the
average number of infected individuals at previous times. We call it anomalous epidemic spreading. Note also that in Eq. (31) the
reaction effect �

R1
k (t, 0) which includes the quantity Sk (t ) for susceptible individuals is not simply adding to the diffusion term

but enters into the diffusion operator in the form of �
R1
k (t, 0)0D1−α

t [ Ik (t )

�
R1
k (t,0)

]. This leads to a complex coupling relation between

diffusion and reaction processes and then a dependence of Ik (t ) on the average number of susceptible individuals at previous
times. For uncorrelated networks, Eq. (31) reduces to

dIk (t )

dt
= − 1

�(1 − α)τα
0

�
R1
k (t, 0)0D1−α

t

[
Ik (t )

�
R1
k (t, 0)

]

+ k

�(1 − α)τα
0 〈k〉

∑
k′

�
R1
k′ (t, 0)0D1−α

t

[
Ik′ (t )

�
R1
k′ (t, 0)

]
P(k′) − μIk (t ) + β�k (t ). (32)

It should be mentioned that in Eq. (31) there still exists the
complex relation between fractional diffusion operator 0D1−α

t
and reactive survival probability �

R1
k (t, 0). But by averag-

ing both terms over of Eq. (31) over P(k), we find dI (t )
dt =

−μI (t ) + β�(t ), which is independent of the diffusion. Here
�(t ) = ∑

k �k (t )P(k). It is an expected result since when we
ignore the difference of degrees, the related diffusion between
different degrees is also ignored, and then the variation of
the average number of infected individuals of all nodes only
comes from the reactions.

B. The time evolution of the average number of susceptible
individuals in nodes with degree k

Analogously, we can describe the time evolution for the
average number of susceptible individuals in nodes with de-
gree k. Let S+

k (t ) and S−
k (t ) be the gain flux and the loss

flux of susceptible individuals at the nodes of degree k at x at

time t , �
R2
k (t, t ′) = e−β

∫ t
t ′

�k (τ )
Sk (τ ) dτ denote the probability for the

susceptible individuals to keep healthy without being infected
in the time interval [t ′, t], and ψS (t ) represent the waiting time
PDF for the susceptible individual staying at the node with
degree k for time t and then moving out to the other node. We
can now write the following balance equations for the time
evolution of Sk (t ):

dSk (t )

dt
= S+

k (t ) − S−
k (t ) + μIk (t ) − β�k (t ), (33)

S+
k (t ) = k

∑
k′

S−
k′ (t )

1

k′ P(k′|k), (34)

S−
k (t ) = Sk (0)�R2

k (t, 0)ψS (t )

+
∫ t

0
[S+

k (t ′)+μIk (t ′)]�R2
k (t, t ′)ψS (t −t ′) dt ′. (35)

Similarly to the derivation approach of Eq. (27), from above
three equations the dynamical equation for the time evolution
of Sk (t ) can be obtained as follows:

dSk (t )

dt
= k

∑
k′

∫ t

0
�S (t − t ′)Sk′ (t ′)�R2

k′ (t, t ′) dt ′ 1

k′ P(k′|k)

−
∫ t

0
�S (t − t ′)Sk (t ′)�R2

k (t, t ′) dt ′

+μIk (t ) − β�k (t ). (36)

Here �S (t ) is the inverse Laplace s → t transform of �S (s) =
sψS (s)

1−ψS (s) = ψS (s)
�S (s) , where ψS (s) and �S (s) are the Laplace t → s

transforms of the waiting time PDF ψS (t ) and the survival
function �S (t ) = 1 − ∫ t

0 ψS (t ′) dt ′ for susceptible individu-
als, respectively. The above dynamical equation (36) shows
the complex coupling relation among epidemic process, ran-
dom waiting time, and topological fluctuations of network.

By combining Eqs. (27) and (36), we find that

dNk (t )

dt
= k

∑
k′

∫ t

0

[
�I (t − t ′)Ik′ (t ′)�R1

k′ (t, t ′) dt ′

+�S (t − t ′)Sk′ (t ′)�R2
k′ (t, t ′) dt ′] 1

k′ P(k′|k)

−
∫ t

0
�I (t − t ′)Ik (t ′)�R1

k (t, t ′) dt ′

−
∫ t

0
�S (t − t ′)Sk (t ′)�R2

k (t, t ′) dt ′. (37)

Note that this equation is not in agreement with Eq. (8),
which describes the time evolution of the sum of the average
numbers of infectious and susceptible individuals for each
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class of degree k, even in the case ψI (t ) = ψS (t ). This is
because of the assumption that the reactive and produced
infected and susceptible individuals have new residence times

no matter how long they have stayed there before. For exam-
ple, they may be treated at hospitals in isolation at some later
time.

When we substitute power-law waiting time ψS (t ) = α
t+τ0

( τ0
t+τ0

)α with 0 < τ0, 0 < α into Eq. (36), we then get the fractional
dynamical equation for Sk (t ) in heterogeneous networks:

dSk (t )

dt
= k

�(1 − α)τα
0

∑
k′

�
R2
k′ (t, 0)0D1−α

t

[
Sk′ (t )

�
R2
k′ (t, 0)

]
· 1

k′ P(k′|k)

− 1

�(1 − α)τα
0

�
R2
k (t, 0)0D1−α

t

[
Sk (t )

�
R2
k (t, 0)

]
+ μIk (t ) − β�k (t ). (38)

One can see that in this case Sk (t ) depends on the previous
memories of infected reactions and the mean numbers of
susceptible individuals for all degrees before.

IV. EPIDEMIC THRESHOLDS FOR ANOMALOUS
EPIDEMIC SPREADING IN UNCORRELATED NETWORKS

A. Epidemic thresholds for type I

We now consider some possibilities of the epidemic thresh-
old in anomalous epidemic spreading in uncorrelated net-
works regarding the waiting time PDFs ψI (t ) and ψS (t ) and
the interaction kernel �k (t ). We first consider type I, where
each susceptible individual may react with all of the infectious
individuals in the same node, namely, �k (t ) = Ik (t )Sk (t ). For
ψI (t ) = δ(t ) and ψS (t ) = τ0

(t+τ0 )2 , which means the infections
on a node of degree k first react and then diffuse away with
a diffusion rate DI = 1, and the waiting time for susceptible
individual has power-law behavior with the exponent α = 1,
one has in the stationary state Ik (t ) = k

<k>
I (t ) [4]. And when

α = 1, under the assumption of no correlations, the dynamical
equation (38) reduces to

dSk (t )

dt
= k

τ0〈k〉S(t ) − 1

τ0
Sk (t ) + μIk (t ) − βIk (t )Sk (t ).

(39)

In the stationary state Eq. (39) becomes

0 = − 1

τ0
Sk (t ) + k

τ0〈k〉S(t ) + μIk (t ) − βIk (t )Sk (t ). (40)

Substituting the value of Ik (t ) = k
〈k〉 I (t ) and S(t ) = N (t ) −

I (t ) into Eq. (40), we obtain

Sk (t ) =
k

τ0〈k〉 [N (t ) − I (t )] + μ k
〈k〉 I (t )

1
τ0

+ β k
〈k〉 I (t )

. (41)

Thus,

I (t ) = N (t ) −
∑

k

Sk (t )P(k)

= N (t ) −
∑

k

k
τ0〈k〉 [N (t ) − I (t )] + μ k

〈k〉 I (t )
1
τ0

+ β k
〈k〉I (t )

· P(k). (42)

We can write this equation in the form I (t ) = f [I (t )], and the
solution exists if the first derivative of f [I (t )] greater than 1

when I (t ) = 0 [4]. Then we find

f ′[I (t )]|I (t )=0 = 1 − μτ0 + 〈k2〉
〈k〉2

· N (t )βτ0, (43)

so the condition for the presence of an active phase is

N (t ) >
μ

β

〈k2〉
〈k〉2

, (44)

in agreement with the condition for epidemic spreading with-
out considering the waiting time for DI = 1 and 0 < DS � 1,
where Ds is the constant diffusion coefficient for susceptible
individuals (see Ref. [4]). This is an expected result since
in the epidemic normal spreading with power-law waiting
time with the exponent α = 1, the susceptible individual may
diffuse or wait at each time step, and the corresponding mean
diffusion probability Ds satisfies 0 < DS � 1. In the limit
V → ∞, the condition (44) becomes N (t ) > 0 [4].

If the waiting time PDFs for infected individuals is also
a power-law distribution with α = 1, then the dynamical
equation (32) becomes

dIk (t )

dt
= − 1

τ0
Ik (t ) + k

τ0〈k〉 I (t ) − μIk (t ) + βIk (t )Sk (t ).

(45)

In the stationary state Eq. (45) becomes

0 = − 1

τ0
Ik (t ) + k

τ0〈k〉 I (t ) − μIk (t ) + βIk (t )Sk (t ). (46)

Multiplying this equation by P(k) and summing over k yields

I (t ) = β

μ
�(t ) = β

μ

∑
k

Ik (t )Sk (t )P(k). (47)

From Eqs. (40) and (46), we get

N (t ) = 〈k〉
k

Nk (t ). (48)
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Substituting Eq. (48) into Eq. (40), we find

Sk (t ) =
μ + 1

τ0
+ β k

〈k〉N (t ) −
√

[μ + 1
τ0

− β k
〈k〉N (t )]2 + 4β k

〈k〉τ0
I (t )

2β
, (49)

for u + 1
τ0

− β k
〈k〉N (t ) > 0, and

Sk (t ) =
μ + 1

τ0
+ β k

〈k〉N (t ) +
√

[μ + 1
τ0

− β k
〈k〉N (t )]2 + 4β k

〈k〉τ0
I (t )

2β
, (50)

for μ + 1
τ0

− β k
〈k〉N (t ) < 0, such that when I (t ) = 0 one has

S(t ) = N (t ). Taking the similar technology as before, in the
limit of τ0 → 0, we obtain

f ′[I (t )]|I (t )=0 = ∂[N (t ) − ∑
k Sk (t )P(k)]

∂I (t )
|I (t )=0

∼ 1 + β
〈k2〉
〈k〉2

N (t )τ0 − μτ0, (51)

for the above two cases. The condition for the presence of an
active phase is then given by

N (t ) >
μ

β

〈k2〉
〈k〉2

. (52)

B. Epidemic thresholds for type II

We now consider the type II that each individual only
has a finite number of contacts with others where �k (t ) =
Ik (t )Sk (t )

Nk (t ) . For ψI (t ) = δ(t ) and ψS (t ) = τ0
(t+τ0 )2 , we find that in

the stationary state Ik (t ) = k
〈k〉 I (t ) [4] and

0 = − 1

τ0
Sk (t ) + k

τ0〈k〉S(t ) + μIk (t ) − βIk (t )Sk (t )/Nk (t )

(53)

hold. From Eq. (53), we get I (t ) = β

μ
�(t ) =

β

μ

∑
k Ik (t ) Sk (t )

Ik (t )+Sk (t ) P(k). Substituting it into Eq. (53),

one can find a solution Sk (t ) = k
〈k〉S(t ). Inserting this

expression into I (t ) = β

μ
�(t ), we have S(t ) = μ

β
N (t ), and

then I (t ) = (1 − μ

β
)N (t ). Therefore, the threshold value in

this case is the general result β

μ
> 1,which is in agreement

with the result for epidemic spreading in uncorrelated
networks for DI = 1 and 0 < DS � 1 without considering the
waiting time of individuals in Ref. [4].

If the waiting time distribution for infected individuals is
also power law with α = 1, namely, ψI (t ) = τ0

(t+τ0 )2 , then one
has

0 = − 1

τ0
Ik (t ) + k

τ0〈k〉 I (t ) − μIk (t ) + βIk (t )
Sk (t )

Nk (t )
, (54)

in the stationary state. Combing Eqs. (53) and (54), we find
that Eq. (48) still holds. Substituting Eq. (48) into Eq. (53)
yields

Sk (t ) =
μ + 1

τ0
+ β −

√
(μ + 1

τ0
− β )2 + 4β

τ0N (t ) I (t )

2βk
〈k〉N (t )

, (55)

for μ + 1
τ0

− β > 0, and

Sk (t ) =
μ + 1

τ0
+ β +

√(
μ + 1

τ0
− β

)2 + 4β

τ0N (t ) I (t )
2βk

〈k〉N (t )

, (56)

for μ + 1
τ0

− β < 0, such that when I (t ) = 0 we get
S(t ) = N (t ). From I (t ) = N (t ) − ∑

k Sk (t )P(k) = f [I (t )],
and Eqs. (55) and (56), we get f ′[I (t )]|I (t )=0 = 1

1+(μ−β )τ0
.

Thus, we find the usual epidemic threshold β

μ
> 1 satisfying

f ′[I (t )]|I (t )=0 > 1 for τ0 > 0 in this case.
From these results one can see that the power-law residence

time with α = 1 does not change the thresholds for epidemic
spreading in uncorrelated networks without considering the
effect of waiting time. Note that for power-law waiting time
with the exponent α = 1 the fractional derivative operator in
Eqs. (32) and (39) disappears, and then the average numbers
Ik (t ) and Sk (t ) have no memory of the previous evolution and
only depend on the average waiting time τ0. Such epidemic
spreading with random waiting time for anomalous exponent
α = 1 can be seen as epidemic normal spreading.

V. MONTE CARLO SIMULATIONS

Finally, we implement Monte Carlo simulations to verify
the dynamics for anomalous epidemic spreading with power-
law waiting time on scale-free networks. We first generate
a scale-free network using NetworkX 2.1. The algorithm is
defined as follows. (i) A random zipf sequence with the size
of V = 100 nodes for the degree distribution P(k) = k−γ

with the exponent γ = 2.5 (see Fig. 2) is created. (ii) A
random graph of networks is drawn shown in Fig. 3 using
a configuration model where links are randomly assigned to
match the given degree sequence [4].

We then simulate the anomalous epidemic spreading pro-
cess in this scale-free network. In our algorithm we take
the reaction time step size �t = 2 × 10−3 and ignore small
transport fluctuation of the average number of individuals at
each node [24]. The internal clock of every individual at each
node is set to measure the time elapsed since his or her last
movement or reaction. The detailed anomalous diffusion and
reaction processes for the individuals are modeled as follows.

(i) In the initial state ρ(0) − 1 susceptible individuals are
randomly placed at the nodes by uniform distribution, and one
infectious individual is placed at one center node. The random
waiting time t as the internal clock to make next jump for
each individual is chosen from a series of values distributed
according to ψ (t ) = α

t+τ0
( τ0

t+τ0
)α with 0 < τ0, 0 < α [14,25].
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FIG. 2. A random zipf sequence with V = 100 nodes obeying
the power-law degree distribution P(k) = k−2.5.

(ii) At the clock time each individual located in a node with
degree k diffuses into one of the neighboring nodes with the
probability 1

k , after which the internal clock for this individual
is reset by the distribution as before [14].

(iii) For type I each susceptible individual sitting on the
node i turns into an infectious individual with the probability
of 1 − (1 − β�t )ρi , where ρi is the number of infectious
individuals at node i at each reaction time step [4]. Mean-
while, each infectious individual at node i except the new
infected ones becomes susceptible individual with the prob-
ability μ�t . After these reactions the internal clocks for the
new infected and susceptible individuals and the infectious
individuals energizing others at the node i are all renewed.

Figure 4 shows the time evolution of the average numbers
of infectious and susceptible individuals in all nodes in the
time interval [0, 1000] for α = 1 and α = 0.55. One can see
that the average numbers of infected and susceptible individu-
als have been stable for a long time, the epidemic prevalence is

FIG. 3. A scale-free network respecting the degree sequence in
Fig. 2.

(a)

(b)

FIG. 4. The time evolution of the average numbers I (t ) [orange
(light gray)] and S(t ) [blue (dark gray)] in the time interval [0, 1000]
for anomalous epidemic spreading with power-law waiting time
ψ (t ) = α

t+τ0
( τ0

t+τ0
)α with α = 1 (a) and α = 0.55 (b) in heteroge-

neous network of size V = 100. Here τ0 = 0.22, μ = 0.02, and
β = 0.01; the initial total number ρ(0) = 601; and thus the average
number N (t ) = 6.01. One can see that the stationary number for
infectious individuals reduces with small anomalous exponent α of
random waiting time, and the starting time when I (t ) becomes more
than S(t ) in (b) is also retardant.

lower with a smaller exponent for the power-law waiting time,
and the starting time when I (t ) becomes larger than S(t ) is
also retardant for α = 0.55. Figure 5 shows that the stationary
average number I (t ) of infectious individuals in all nodes is a
monotonous increasing function of the total average number
N (t ), and in both cases if the condition that the total average
number N (t ) >

μ

β
<k2>
<k>2 for individuals is satisfied, then the

stationary average number I (t ) > 0. The result recovers the
analytical epidemic threshold condition (52) for the power-
law residence time with α = 1 for individuals in uncorrelated
networks. Besides, by comparing Figs. 5(a) and 5(b), we
also find that the spreading of infectious diseases is slowed
down when α reduces, and the point of intersection where
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(a)

(b)

FIG. 5. The stationary average numbers I (t ) (orange square) and
S(t ) (blue circle) for anomalous epidemic spreading in heteroge-
neous network of size V = 100 with power-law waiting time ψ (t ) =

α

t+τ0
( τ0

t+τ0
)α with α = 1 (a) and α = 0.55 (b) with respect to the total

average number N (t ) for t = 1000, τ0 = 0.22, μ = 0.02, β = 0.01,
and ρ(0) = 101, 201, 301, 401, 501, 601, 701, 801, 901, and 1001.
One can see that I (t ) is monotonous increasing, and in both cases
I (t ) = 0 when N (t ) = 1.01 and I (t ) > 0 [I (t ) = 0.0227 for α = 1
and I (t ) = 0.0074 for α = 0.55] when N (t ) = 2.01. The simulation
for α = 1 verifies the analytical solution for the epidemic threshold
for type I that if N (t ) > μ

β

〈k2〉
〈k〉2 ≈ 1.55, then I (t ) > 0. Notice also

that the epidemic spreading is slowed down when α reduces, and
the abscissa value for the intersection point of two discrete curves
becomes larger with the decrease of exponent.

the average number for infection individuals in all nodes
exceeds that for susceptible individuals delays for smaller
anomalous exponent. These results imply that when α = 0.55
the epidemic spreading in heterogeneous networks is under-
going anomalous delayed spreading. This is an expectable
result since when 0 < α < 1, the average residence time for
individuals 〈T 〉 = ∫ +∞

0 tψ (t ) dt diverges, leading to long-
tailed trapping events [5,16,26], which delays the epidemic
spreading. In Fig. 6 the linear dependent relation between the
average numbers and the degree k for large time is shown.

(a)

(b)

FIG. 6. The stationary average numbers Nk (t ) (green triangle),
Ik (t ) (orange square), and Sk (t ) (blue circle) with respect to degree k
for anomalous epidemic spreading in heterogeneous network of size
V = 100 with power-law waiting time for α = 1 (a) and α = 0.55
(b) when t = 1000. Here ρ(0) = 801, τ0 = 0.22, and the reaction
rates μ = 0.02 and β = 0.01. It is shown that they are all linear-like
in k. Note that such linear relation has also been found in epidemic
spreading in heterogeneous networks without considering the effect
of random waiting time (see Ref. [4]). The linear dependence of
the stationary average number Nk (t ) on the degree k for α = 1 is
in agreement with the analytical result presented in Eq. (48).

VI. CONCLUSION

In summary, we introduce the random waiting time in
standard epidemic SIS model in heterogeneous networks to
capture the effect of detention period of individuals on the
spread of an emerging disease and derive the generalized
dynamical equations (27) and (36) for the time evolution of
the mean numbers of infected and susceptible individuals. As
examples, for the power-law waiting time, Eqs. (27) and (36),
respectively, reduce to Eqs. (31) and (38), which include the
coupled relation between fractional diffusion operator and
reaction survival probability. This implies that the epidemic
spreading in this case is anomalous and has a strong memory
on the previous epidemic behaviors. These quantitative results
will have a significant impact on the studying of epidemiology
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and also provide a suited theoretical approach for modeling
other spreading phenomena in heterogeneous networks in
biology, sociology, and technology.

ACKNOWLEDGMENTS

The authors thank the anonymous referees for their valu-
able and significant suggestions leading to the improvement

of the work. This work was supported by the Open Fund
of State Key Laboratory of Oil and Gas Reservoir Geology
and Exploitation (Chengdu University of Technology), China
(Grant No. PLC2020025), the Open Fund of Geomathematics
Key Laboratory of Sichuan Province, China (Grant No. sc-
sxdz2018yb05), and the National Natural Science Foundation
of China (Grant No. 11626047).

[1] D. Bernoulli, Hist. l’Acad. Roy. Sci. (Paris) Mem. Math. Phys.
1 (1760).

[2] S. Bikhchandani, D. Hirshleifer, and I. Welch, J. Polit. Econ.
100, 992 (1992).

[3] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A.
Vespignani, Rev. Mod. Phys. 87, 925 (2015).

[4] V. Colizza, R. Pastor-Satorras, and A. Vespignani, Nat. Phys. 3,
276 (2007).

[5] H. Stage and S. Fedotov, arXiv:1806.00613v1 [physics.soc-ph]
(2018).

[6] R. M. Anderson and R. M. May, Infectious Diseases of Humans
(Oxford University Press, Oxford, 1992).

[7] A. Vespignani, Nat. Phys. 8, 32 (2012).
[8] V. Colizza and A. Vespignani, J. Theor. Biol. 251, 450 (2008).
[9] V. Belik, T. Geisel, and D. Brockmann, Phys. Rev. X 1, 011001

(2011).
[10] C. Poletto, M. Tizzoni, and V. Colizza, J. Theor. Biol. 338, 41

(2013).
[11] M. Rosvall, A. V. Esquivel, A. Lancichinetti, J. D. West, and R.

Lambiotte, Nat. Commun. 5, 4630 (2014).
[12] E. Cator, R. van de Bovenkamp, and P. Van Mieghem, Phys.

Rev. E 87, 062816 (2013).
[13] B. Karrer and M. E. J. Newman, Phys. Rev. E 82, 016101

(2010).
[14] S. J. Ni, and W. G. Weng, Phys. Rev. E 79, 016111

(2009).

[15] C. N. Angstmann, B. I. Henry, and A. V. McGann, Bull. Math.
Biol. 78, 468 (2016).

[16] S. Fedotov and H. Stage, Phys. Rev. Lett. 118, 098301 (2017).
[17] R. Pastor-Satorras and A. Vespignani, Phys. Rev. Lett. 86, 3200

(2001).
[18] B. Singer and S. Spilerman, Sociol. Methodol. 5, 356 (1973-

1974).
[19] K. S. Miller and R. Ross, An Introduction to the Fractional

Calculus and Fractional Differential Equations (Wiley, New
York, 1993).

[20] T. Sandev, A. V. Chechkin, N. Korabel, H. Kantz, I. M. Sokolov,
and R. Metzler, Phys. Rev. E 92, 042117 (2015).

[21] C. N. Angstmann, I. C. Donnelly, and B. I. Henry, Math. Model.
Nat. Phenom. 8, 17 (2013).

[22] I. M. Sokolov, M. G. W. Schmidt, and F. Sagués, Phys. Rev. E
73, 031102 (2006).

[23] J. Saldaña, Phys. Rev. E 78, 012902 (2008).
[24] D. Campos and V. Méndez, Phys. Rev. E 80, 021133

(2009).
[25] H. H. Schmidt-Martens, D. Froemberg, I. M. Sokolov, and F.

Sagués, Phys. Rev. E 79, 041135 (2009).
[26] R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000).

Correction: Equations (6) and (23) and the inline equation
appearing before Eq. (24) contained errors and have been
fixed.

012315-10

https://gallica.bnf.fr/ark:/12148/bpt6k3558n/f220.image.r=daniel%20bernoulli
https://doi.org/10.1086/261849
https://doi.org/10.1103/RevModPhys.87.925
https://doi.org/10.1038/nphys560
http://arxiv.org/abs/arXiv:1806.00613v1
https://doi.org/10.1038/nphys2160
https://doi.org/10.1016/j.jtbi.2007.11.028
https://doi.org/10.1103/PhysRevX.1.011001
https://doi.org/10.1016/j.jtbi.2013.08.032
https://doi.org/10.1038/ncomms5630
https://doi.org/10.1103/PhysRevE.87.062816
https://doi.org/10.1103/PhysRevE.82.016101
https://doi.org/10.1103/PhysRevE.79.016111
https://doi.org/10.1007/s11538-016-0151-7
https://doi.org/10.1103/PhysRevLett.118.098301
https://doi.org/10.1103/PhysRevLett.86.3200
https://doi.org/10.2307/270841
https://doi.org/10.1103/PhysRevE.92.042117
https://doi.org/10.1051/mmnp/20138202
https://doi.org/10.1103/PhysRevE.73.031102
https://doi.org/10.1103/PhysRevE.78.012902
https://doi.org/10.1103/PhysRevE.80.021133
https://doi.org/10.1103/PhysRevE.79.041135
https://doi.org/10.1016/S0370-1573(00)00070-3

