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A bredge (bridge-edge) in a network is an edge whose deletion would split the network component on
which it resides into two separate components. Bredges are vulnerable links that play an important role in
network collapse processes, which may result from node or link failures, attacks, or epidemics. Therefore, the
abundance and properties of bredges affect the resilience of the network to these collapse scenarios. We present
analytical results for the statistical properties of bredges in configuration model networks. Using a generating
function approach based on the cavity method, we calculate the probability P̂(e ∈ B) that a random edge e in a
configuration model network with degree distribution P(k) is a bredge (B). We also calculate the joint degree
distribution P̂(k, k′|B) of the end-nodes i and i′ of a random bredge. We examine the distinct properties of bredges
on the giant component (GC) and on the finite tree components (FC) of the network. On the finite components all
the edges are bredges and there are no degree-degree correlations. We calculate the probability P̂(e ∈ B|GC) that
a random edge on the giant component is a bredge. We also calculate the joint degree distribution P̂(k, k′|B, GC)
of the end-nodes of bredges and the joint degree distribution P̂(k, k′|NB, GC) of the end-nodes of nonbredge
edges on the giant component. Surprisingly, it is found that the degrees k and k′ of the end-nodes of bredges are
correlated, while the degrees of the end-nodes of nonbredge edges are uncorrelated. We thus conclude that all the
degree-degree correlations on the giant component are concentrated on the bredges. We calculate the covariance
�(B, GC) of the joint degree distribution of end-nodes of bredges and show it is negative, namely bredges tend
to connect high degree nodes to low degree nodes. We apply this analysis to ensembles of configuration model
networks with degree distributions that follow a Poisson distribution (Erdős-Rényi networks), an exponential
distribution and a power-law distribution (scale-free networks). The implications of these results are discussed
in the context of common attack scenarios and network dismantling processes.
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I. INTRODUCTION

Network models provide a useful conceptual framework
for the study of a large variety of systems and processes in
science, technology, and society [1–5]. These models consist
of nodes and edges, where the nodes represent physical ob-
jects, while the edges represent the interactions between them.
Unlike regular lattices in which all the nodes have the same
coordination number, network models are characterized by a
degree distribution P(k). The backbone of a network often
consists of high degree nodes or hubs, which connect the
different branches and maintain the integrity of the network.
In some applications, such as communication networks, it is
crucial that the network will consist of a single connected
component. However, mathematical models also produce net-
works that combine a giant component and isolated finite
components, as well as fragmented networks that consist only
of isolated finite components [6].

Networks are often exposed to the loss of nodes and edges,
which may severely affect their functionality. Such losses may
occur due to inadvertent node or edge failures, propagation
of epidemics or deliberate attacks. Starting from a single
connected component, as nodes or edges are deleted they may
lead to the separation of network fragments from the giant
component. As a result, the size of the giant component de-
creases until it completely disintegrates. The ultimate failure,

when the network fragments into isolated finite components
was studied extensively using percolation theory [7–10].

A major factor in the sensitivity of networks to node or
edge deletion processes is the fact that the deletion of a
single node or a single edge may separate a whole fragment
from the giant component. This fragmentation process greatly
accelerates the disintegration of the network. Using iterative
search algorithms one can identify the nodes whose deletion
would break the component on which they reside into two
or more components [11–13]. Such nodes, called articulation
points (APs), were recently studied in the context of network
resilience and optimized attack strategies [14]. Using similar
methods one can also identify the edges whose deletion would
break the component on which they reside into two separate
components [15,16]. Such edges are called bridge-edges or
cut-edges [17]. Here we use the term bredges, which provides
a shorthand for bridge-edges, and avoids a potential confusion
with many other technical terms involving the word “bridge.”
Moreover, the word “bredge” was used in ancient English as a
synonym to the word “bridge” [18]. In fact, an edge that does
not participate in any cycle is a bredge (B). Thus, in network
components that exhibit a tree structure, such as the finite tree
components of configuration model networks, all the edges
are bredges.

In Fig. 1(a) we present a schematic illustration of a bredge
e (marked by a thick line) in a tree network and its end-nodes
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FIG. 1. Schematic illustration of bredges and their surrounding
network components: (a) A bredge e (marked by a thick line) in a
finite tree component. Deletion of the bredge e would split the tree
component into two separate tree components. The end-node i will
reside on one of the tree components and the end-node i′ will reside
on the other tree component; (b) a bredge e (thick line) where one
of its end nodes, i′, resides on a cycle. Deletion of the bredge would
split the network into two separate components; (c) here the edge
e, marked by a thick line, is not a bredge because the end nodes
of this edge are connected by another path. As a result, on deletion
of the marked edge its two end nodes remain on the same network
component.

i and i′ (full circles). Deletion of the bredge would split the
network into two separate tree components. In Fig. 1(b) we
show a bredge e (thick line), where one of its end-nodes, i′,
resides on a cycle. Deletion of the bredge would split the
network into two separate components. The component that
includes the end-node i′ represents the giant component of
the reduced network from which e is removed, while the
component that includes the end-node i represents the finite
tree component that is detached from the giant component on
deletion of e. The edge e marked by a thick line in Fig. 1(c)
is not a bredge because its end-nodes are connected by a path
that does not go through e. As a result, on deletion of e its
end-nodes i and i′ remain on the same network component.
Since the paths connecting the end-nodes of an edge e may be
long, the determination of whether e is a bredge or not cannot
be done locally and requires access to the large-scale structure
of the whole network [11,12].

In practice, the functionality of most networks relies on the
integrity of their giant components. Therefore, it is particu-
larly important to study the properties of bredges and APs
that reside on the giant component. These bredges and APs
are vulnerable spots in the structure of a network, because the
deletion of a single bredge may detach an entire tree branch
from the giant component while the deletion of a single AP
may detach one or several tree branches. This vulnerability
is exploited in network attack strategies, which generate new
bredges and APs via decycling processes and then attack them
to dismantle the network [14,19–22]. While bredges and APs
make the network vulnerable to attacks, they are advantageous

in fighting epidemics. In particular, maintaining isolation
between nodes connected by bredges prevents the spreading
of epidemics between the network components connected by
these bredges. Similarly, in communication networks the party
in possession of an AP or a bredge may control, screen, block
or alter the communication between the network components
connected by the AP or the bredge.

There is an intricate connection between bredges and APs.
On the one hand, each one of the end-nodes i and i′ of a
bredge e is either an AP (if its degree satisfies k � 2) or
a leaf node (if its degree is k = 1). On the other hand, if
a node i of degree k � 2 is an AP, then at least one of
its k edges must be a bredge. Moreover, in the case of a
node i of degree k = 2, both edges of i are bredges. The
statistical properties of APs in configuration model networks
were studied in a recent paper [23]. The probability P(i ∈ AP)
that a random node i in a configuration model network with
degree distribution P(k) is an AP was calculated. Moreover,
closed form expressions were obtained for the conditional
probability P(i ∈ AP|k) that a random node of a given degree
k is an AP and for the conditional degree distribution P(k|AP).
An important property of an AP is the articulation rank r,
which is the number of components that are added to the
network on deletion of the AP. For each node in the network
the articulation rank satisfies 0 � r � k, where k is the degree
of the node. The articulation rank of a node which is not an
AP is r = 0, while the articulation ranks of APs satisfy r � 1.
In fact, the articulation rank of an AP is the number of bredges
connected to it. The distribution P(r) of articulation ranks was
also calculated in Ref. [23].

In this paper we present analytical results for the statistical
properties of bredges in configuration model networks. In
order to quantify the abundance of bredges, we calculate the
probability P̂(e ∈ B), that a random edge e in a configuration
model network with degree distribution P(k) is a bredge. To
characterize the statistical properties of bredges, we derive
a closed form expression for the joint degree distribution
P̂(k, k′|B) of the end-nodes i and i′ of a random bredge.
We also examine the distinct properties of bredges on the
giant component (GC) and on the finite tree components (FC)
of the network. On the finite components all the edges are
bredges, namely P̂(e ∈ B|FC) = 1. We calculate the proba-
bility P̂(e ∈ B|GC) that a random edge that resides on the
giant component is a bredge and the joint degree distribution
P̂(k, k′|B, GC) between the end-nodes of bredges on the giant
component. It is found that the degrees k and k′ of the end-
nodes of a bredge that resides on the giant component are
correlated. This is in contrast to the end-nodes of random
edges in the network and to the end-nodes of nonbredge
(NB) edges on the giant component, which exhibit no degree-
degree correlations. We thus conclude that all the degree-
degree correlations on the giant component are concen-
trated on the bredges. We calculate the covariance �(B, GC)
and show that it is negative, which means that bredges on
the giant component tend to connect high degree nodes
to low degree nodes. We apply these results to ensembles
of configuration model networks with degree distributions
that follow a Poisson distribution (Erdős-Rényi networks),
an exponential distribution and a power-law distribution
(scale-free networks).

012314-2



STATISTICAL ANALYSIS OF EDGES AND BREDGES IN … PHYSICAL REVIEW E 102, 012314 (2020)

The paper is organized as follows. In Sec. II we describe
the configuration model network and its construction. In
Sec. III we present the generating functions of the degree
distribution. In Sec. IV we present a statistical analysis of
nodes on the giant component and on the finite components.
In Sec. V we present a statistical analysis of edges on the
giant and finite components. In Sec. VI we present a detailed
statistical analysis of bredges. In Sec. VII we apply these
results to configuration model networks with a Poisson degree
distribution [Erdős-Rényi (ER) networks], exponential degree
distribution and power-law degree distribution (scale-free net-
works). The results are discussed in Sec. VIII and summarized
in Sec. IX.

II. THE CONFIGURATION MODEL

The configuration model is an ensemble of uncorrelated
random networks whose degree sequences are drawn from
a given degree distribution P(k). The first moment (mean
degree) and the second moment of P(k) are denoted by 〈Kn〉,
where n = 1 and 2, respectively, while the variance is given by
V [K] = 〈K2〉 − 〈K〉2. The support of the degree distribution
of random networks is often bounded from below by kmin � 1
such that P(k) = 0 for 0 � k � kmin − 1, with nonzero values
of P(k) only for k � kmin. For example, the commonly used
choice of kmin = 1 eliminates the possibility of isolated nodes
in the network. Choosing kmin = 2 also eliminates the leaf
nodes. One may also control the upper bound by imposing
k � kmax. This may be important in the case of finite net-
works with heavy-tail degree distributions such as power-law
distributions. The configuration model network ensemble is
a maximum entropy ensemble under the condition that the
degree distribution P(k) is imposed [24–26]. Here we focus
on the case of undirected networks.

To generate a network instance drawn from an ensemble
of configuration model networks of N nodes, with a given
degree distribution P(k), one draws the degrees of the N
nodes independently from P(k). This gives rise to a degree
sequence of the form k1, k2, . . . , kN . For the discussion below
it is convenient to list the degree sequence in a decreasing
order of the form k1 � k2 � · · · � kN . It turns out that not
every possible degree sequence is graphic, namely admissible
as a degree sequence of a network. Therefore, before trying
to construct a network with a given degree sequence, one
should first confirm the graphicality of the degree sequence.
To be graphic, a degree sequence must satisfy two conditions.
The first condition is that the sum of the degrees is an
even number, namely

∑
i ki = 2L, where L is an integer that

represents the number of edges in the network. The second
condition is expressed by the Erdős-Gallai theorem, which
states that an ordered sequence of the form k1 � k2 � · · · �
kN that satisfies the first condition is graphic if and only if
the condition

n∑
i=1

ki � n(n − 1) +
N∑

i=n+1

min(ki, n) (1)

holds for all values of n in the range 1 � n � N − 1 [27,28].
A convenient way to construct a configuration model

network is to prepare the N nodes such that each node i

is connected to ki half edges or stubs [2]. At each step of
the construction, one connects a random pair of stubs that
belong to two different nodes i and j that are not already
connected, forming an edge between them. This procedure is
repeated until all the stubs are exhausted. The process may get
stuck before completion in case that all the remaining stubs
belong to the same node or to pairs of nodes that are already
connected. In such case one needs to perform some random
reconnections in order to complete the construction.

In the dense-network limit, configuration model networks
consist of a single connected component, while in the dilute-
network limit they consist of many finite tree components. At
intermediate densities they exhibit a coexistence between a
giant component, which is extensive in the network size, and
many nonextensive finite tree components. Some commonly
studied configuration model networks can be described in
terms of single parameter families of degree distributions. A
particularly convenient choice of the parameter is the mean
degree c = 〈K〉. In this case, the degree distribution can
be expressed by P(k) = Pc(k), such that small values of c
correspond to the dilute network limit while large values of
c correspond to the dense network limit. At some value c0,
referred to as the percolation threshold, there is a percolation
transition below which the network consists of finite tree
components and above which a giant component emerges.
The percolation transition is a second-order phase transition,
whose order parameter is the fraction g of nodes that reside
on the giant component. Below the transition, where c < c0,
the order parameter is g = 0, while for c > c0 the function
g = g(c) gradually increases.

III. THE GENERATING FUNCTIONS OF
THE DEGREE DISTRIBUTION

Consider a configuration model network with a given
degree distribution P(k). To obtain the probability g that a
random node in the network belongs to the giant component,
one needs to first calculate the probability g̃, that a node i
selected via a random edge e belongs to the giant component
of the reduced network, from which the edge e is removed.
The probability g̃ is determined by [1,2]

1 − g̃ = G1(1 − g̃), (2)

where

G1(x) =
∞∑

k=1

xk−1P̃(k) (3)

is the generating function of the distribution

P̃(k) = k

〈K〉P(k), (4)

which is the degree distribution of nodes that are sampled via
random edges. The solution of Eq. (2) is an attractive fixed
point (Sec. 13.8 in Ref. [2]). Using g̃, one can then obtain the
probability g from the equation

g = 1 − G0(1 − g̃), (5)
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where

G0(x) =
∞∑

k=0

xkP(k) (6)

is the generating function of the degree distribution P(k). The
two generating functions are related to each other by G1(x) =
G′

0(x)/G′
0(1), where G′

0(x) is the derivative of G0(x).
From the definitions of G0(x) and G1(x) in Eqs. (6) and (3),

respectively, we find that 0 < G0(x), G1(x) < 1 for 0 < x < 1
and G0(1) = G1(1) = 1 This means that x = 1 is a fixed
point for both generating functions. Therefore, g = g̃ = 0 is
a solution of Eqs. (2) and (5). This solution corresponds to
the case of subcritical networks, in which there is no giant
component. In some networks there are no isolated nodes
(of degree k = 0) and no leaf nodes (of degree k = 1). In
such networks P(0) = 0 and P(1) = 0, while P(k) > 0 only
for k � 2. The generating functions associated with these
networks satisfy G0(0) = 0 and G1(0) = 0. This implies that
in such networks both x = 0 and x = 1 are fixed points of both
G0(x) and G1(x) and there are no other fixed points with 0 <

x < 1. The coexistence of a giant component and nontrivial
finite tree components (that consist of more than a single
node) appears only in case that the degree distributions P(k)
supports a nontrivial solution of Eq. (2), in which 0 < g̃ < 1.
This requires a nonzero probability of leaf-nodes, namely
P(1) > 0, and thus occurs only when kmin = 0 or kmin = 1.
In large configuration model networks in which kmin � 2
and the mean degree satisfies the condition c > 2, the giant
component encompasses the whole network and g = g̃ = 1
[29].

Here we focus on configuration model networks with de-
gree distributions P(k), which are bounded from below by
kmin = 0 or 1. Under suitable conditions, such networks may
exhibit a coexistence between a giant component and finite
tree components. The condition for the existence of a giant
component can be expressed in the form

〈K2〉
〈K〉 − 1 > 1, (7)

which is known as the Molloy-Reed criterion [24,25]. In order
to discuss this condition, consider a node i that is sampled via
a random edge e. The excess degree kex of i is the number of
other edges apart from the edge e, namely kex = k − 1, where
k is the degree of i. In essence, the condition of Eq. (7) states
that a giant component exists if the expectation value of the
excess degree of nodes sampled via a random edge exceeds
1. Thus, the percolation threshold c0 is the value of the mean
degree 〈K〉 at which 〈K2〉 = 2〈K〉.

IV. STATISTICAL ANALYSIS OF NODES

Below we analyze the statistical properties of randomly
sampled nodes in configuration model networks. We calculate
the probability that a random node resides on the giant com-
ponent (and the complementary probability that it resides on
one of the finite components). We also analyze the distinct
statistical properties of the nodes that reside on the giant
component and on the finite components.

(a)

(b)

(c)

FIG. 2. (a) A random node i (empty circle) of degree k in a
configuration model network (left). The probability that i does not
reside on the giant component is equal to the probability that none
of its k neighbors (full circles) resides on the giant component of the
reduced network (right) from which i is removed, together with its
links (dashed lines). (b) A node i (empty circle) of degree k sampled
via a random edge (left), which is marked as a dashed line. We
are interested in the probability that i does not reside on the giant
component of the reduced network from which the sampled edge
(dashed line) is removed. This probability is equal to the probability
that none of its k − 1 remaining neighbors of i resides on the giant
component of the further reduced network (right) from which the
node i is removed together with its links (dashed lines). (c) A random
edge e with end-nodes i and i′ of degrees k and k′, respectively (left).
The probability that e does not reside on the giant component is
equal to the probability that none of its two end-nodes resides on the
giant component of the reduced network from which e is removed.
This probability is equal to the probability that none of the k − 1
remaining neighbors of i and none of the k′ − 1 remaining neighbors
of i′ resides on the giant component of the further reduced network
(right) from which i and i′ are removed together with their links
(dashed lines).

A. The fraction of nodes that reside on the
giant or finite components

The probability that a random node i in a configuration
model network resides on the giant component is [30,31]

P(i ∈ GC) = g, (8)

where g is given by Eq. (5), while the probability that it resides
on one of the finite components is

P(i ∈ FC) = 1 − g. (9)

A node i of a given degree k resides on the giant component
if at least one of its k neighbors resides on the giant component
of the reduced network from which i is removed [Fig. 2(a)].
Using the theoretical framework of the cavity method [32–35],
each neighbor of i can be considered as a node selected via a
random edge. Therefore, the probability that each one of the
neighbors of i resides on the giant component of the reduced
network from which i is removed is given by g̃. Moreover,
due to the locally treelike structure of configuration model
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FIG. 3. Illustration of the four categories of nodes considered in
this paper, presented in the form of a two by two matrix diagram. The
horizontal axis accounts for the two sampling procedures, namely
random node sampling and node sampling via random edges. The
vertical axis accounts for the location of a node in the network,
which can be either on the giant component or on one of the finite
tree components. Each one of the four categories of nodes exhibits
different statistical properties.

networks, the probabilities of different neighbors of i to reside
on the giant component of the reduced network from which
i is removed are independent of each other. Therefore, the
probability that a node i selected randomly from all the nodes
of degree k in the network resides on the giant component, is
given by [30,31]

P(i ∈ GC|k) = 1 − (1 − g̃)k, (10)

where g̃ is given by Eq. (2), while the probability that it resides
on one of the finite tree components is given by

P(i ∈ FC|k) = (1 − g̃)k . (11)

Clearly, the probability of i to reside on the giant com-
ponent is an increasing function of the degree k, while the
probability of i to reside on one of the finite components is a
decreasing function of k.

The different categories of nodes in configuration model
networks, in terms of the sampling procedure and their loca-
tion in the network, are illustrated in Fig. 3 in the form of a two
by two matrix diagram. The horizontal axis accounts for the
two sampling procedures, namely random node sampling and
node sampling via random edges. The vertical axis accounts
for the location of a node in the network, which can be
either on the giant component or on one of the finite tree
components. Each one of the four categories of nodes exhibits
different statistical properties. Such 2 × 2 matrix diagrams are
used extensively in the analysis of decision making processes
and business management [36].

B. The degree distributions of nodes on
the giant or finite components

The microstructure of the giant component of configuration
model networks was recently studied [30,31]. It was shown
that the degree distribution, conditioned on the giant compo-
nent, is given by

P(k|GC) = 1 − (1 − g̃)k

g
P(k), (12)

while the degree distribution conditioned on the finite compo-
nents is given by

P(k|FC) = (1 − g̃)k

1 − g
P(k), (13)

where k � kmin. In the analysis below we focus on degree
distributions whose support is bounded from below by either
kmin = 0 or kmin = 1, which enable the coexistence between
the giant component and the finite tree components. The
derivations apply to both cases. The specific value of kmin is
not specified in each equation, but it is implicitly assumed that
in the case of kmin = 1 the probability P(0) = 0.

As expected, Eq. (12) satisfies P(0|GC) = 0 even for
kmin = 0, namely there are no isolated nodes on the gi-
ant component. Isolated nodes are considered as finite tree
components of size s = 1. The probability that a random
node on the finite components is an isolated node is given
by P(0|FC) = P(0)/(1 − g), namely the fraction of isolated
nodes on the finite components is higher than in the whole
network. Regarding leaf nodes of degree k = 1, their fraction
on the giant component, given by P(1|GC) = (g̃/g)P(1), is
higher than in the whole network in case that g < g̃ and
lower in case that g > g̃. Since g > g̃[1 − P(0)] the former
case may occur only in networks that include isolated nodes,
in which P(0) > 0 [23]. Since in the coexistence phase,
where 0 < g, g̃ < 1, the probabilities g and g̃ satisfy the
condition [23]

(1 − g̃)2

1 − g
< 1, (14)

the fraction of nodes of degrees k � 2 on the finite tree
components is lower than in the whole network. The condition
of Eq. (14) can also be expressed in the form

(2 − g̃)g̃

g
> 1. (15)

Note that the numerator on the left-hand side of Eq. (15)
satisfies

(2 − g̃)g̃ < 1. (16)

To show this we define h̃ = 1 − g̃ and obtain (2 − g̃)g̃ =
1 − h̃2 < 1. The degree distribution of the whole network is
recovered by

P(k) = P(k|GC)P(i ∈ GC) + P(k|FC)P(i ∈ FC), (17)

where P(i ∈ GC) and P(i ∈ FC) are given by Eqs. (8) and (9),
respectively.

The giant component of a configuration model network
consists of a 2-core which is decorated by tree branches. The
2-core (2-CORE) is a connected component, such that each
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node on the 2-core has links to at least two other nodes that
reside on the 2-core [37–40]. Moreover, each node on the
2-core of a configuration model network resides on at least
one cycle. The nodes on the tree branches belong to the 1-core
of the giant component but not to the 2-core. This is expressed
by i ∈ GC ∩ 2-CORE, where X represents the complementary
set of X and X ∩ Y is the intersection of X and Y . The degree
distribution of the nodes on the 2-core of the giant component
is given by

P(k|2-CORE) = 1 − (1 − g̃)k − kg̃(1 − g̃)k−1

g − g̃(1 − g̃)〈K〉 P(k), (18)

while the degree distribution of the nodes on the tree branches
of the giant component is given by

P(k|GC ∩ 2-CORE) = (1 − g̃)k−2P̃(k). (19)

The probability that a random node on the giant component
resides on the 2-core is given by

P(i ∈ 2-CORE|GC) = 1 − g̃(1 − g̃)

g
〈K〉, (20)

while the probability that it resides on one of the tree
branches is given by

P(i ∈ 2-CORE|GC) = g̃(1 − g̃)

g
〈K〉. (21)

C. The mean degrees of nodes on the giant or finite components

The mean degree of the nodes that reside on the giant
component is given by E[K|GC] = ∑

k kP(k|GC). Inserting
P(k|GC) from Eq. (12) and carrying out the summation, we
obtain

E[K|GC] = (2 − g̃)g̃

g
〈K〉. (22)

Using Eq. (15) we conclude that E[K|GC] > 〈K〉, namely
the mean degree of the nodes that reside on the giant compo-
nent is larger than the mean degree of the whole network.

The mean degree of the nodes that reside on the finite
tree components is denoted by E[K|FC]. Using P(k|FC) from
Eq. (13), we obtain

E[K|FC] = (1 − g̃)2

1 − g
〈K〉. (23)

Using Eq. (14) we conclude that the mean degree of the
nodes that reside on the finite tree components is smaller than
the mean degree of the whole network, namely E[k|FC] <

〈K〉. The mean degree of the whole network is recovered by

〈K〉 = E[K|GC]P(i ∈ GC) + E[K|FC]P(i ∈ FC), (24)

where P(i ∈ GC) and P(i ∈ FC) are given by Eqs. (8) and (9),
respectively.

D. The variance of the degree distributions on
the giant or finite components

The second moment of the degree distribution P(k|GC) of
the nodes that reside on the giant component is given by

E[K2|GC] = 1

g
{〈K2〉 − (1 − g̃)2[1 + G′

1(1 − g̃)]〈K〉}, (25)

where G′
1(x) is the derivative of G1(x). Since the fixed point of

Eq. (2) is a stable fixed point, the derivative satisfies G′
1(1 −

g̃) < 1. Writing G′
1(1 − g̃) explicitly, in the form

G′
1(1 − g̃) = 1

〈K〉
∞∑

k=2

k(k − 1)(1 − g̃)k−2P(k), (26)

we find that it satisfies

G′
1(1 − g̃) < min

{ 〈K2〉
〈K〉 − 1, 1

}
. (27)

Inserting this result into Eq. (25) and using Eq. (15), it
is found that in the coexistence phase, where 0 < g, g̃ < 1,
E[K2|GC] > 〈K2〉. In the dilute network regime of 0 < g̃ �
1, just above the percolation transition, one can expand the
right-hand side of Eq. (26) to first order in g̃ and obtain

G′
1(1 − g̃) 	 〈K2〉

〈K〉 − 1 −
( 〈K3〉

〈K〉 − 3
〈K2〉
〈K〉 + 2

)
g̃ + O(g̃2).

(28)
The variance of P(k|GC) is given by

V [K|GC] = 1

g
{〈K2〉 − (1 − g̃)2[1 + G′

1(1 − g̃)]〈K〉}

− [(2 − g̃)g̃]2

g2
〈K〉2. (29)

While both the first and second moments of P(k|GC) are
larger than the corresponding moments of P(k), the variance
V [K|GC] may be either larger or smaller than V [K], depend-
ing on the specific properties of the degree distribution.

The second moment of the degree distribution P(k|FC) of
the nodes that reside on the finite tree components is denoted
by E[K2|FC]. Using P(k|FC) from Eq. (13), we obtain

E[K2|FC] = (1 − g̃)2

1 − g

[
1 + G′

1(1 − g̃)
]〈K〉. (30)

Using Eqs. (14) and (27) one can show that E[K2|FC] <

〈K2〉. The variance of P(k|FC) is denoted by V [K|FC]. Using
the first and second moments from Eqs. (23) and (30), respec-
tively, we obtain

V [K|FC] = (1 − g̃)2

1 − g
〈K〉

{
1 + G′

1(1 − g̃) − (1 − g̃)2

1 − g
〈K〉

}
.

(31)

While both the first and second moments of P(k|FC) are
smaller than the corresponding moments of P(k), the variance
V [K|FC] may be either larger or smaller than V [K], depend-
ing on the specific properties of the degree distribution.

V. STATISTICAL ANALYSIS OF EDGES

Below we analyze the statistical properties of randomly
selected edges in configuration model networks. We calculate
the probability that a random edge resides on the giant com-
ponent (and the complementary probability that it resides on
one of the finite components). We also analyze the distinct
statistical properties of the edges that reside on the giant
component and of those that reside on the finite components.

The different categories of edges in terms of the sampling
procedure and their location in the network are illustrated in
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FIG. 4. Illustration of the four categories of edges considered in
this paper, presented in the form of a two by two matrix diagram. The
horizontal axis accounts for the two sampling procedures, namely
random sampling from all the edges in the network or random
sampling restricted to those edges which are bredges. The vertical
axis accounts for the location of an edge in the network, which can be
either on the giant component or in one of the finite tree components.
Each one of the four categories of edges exhibits different statistical
properties.

Fig. 4. The horizontal axis accounts for the two sampling
procedures, namely random sampling from all the edges in
the network or random sampling restricted to those edges
which are bredges. The vertical axis accounts for the location
of an edge in the network, which can be either on the giant
component or in one of the finite tree components. Each one
of the four categories of edges exhibits different statistical
properties.

A. The fraction of edges that reside on
the giant or finite components

Consider a randomly chosen end-node i of a random
edge e [Fig. 2(b)]. The probability that i resides on the
giant component of the reduced network from which e is
removed is

P̃(i ∈ GC) = g̃, (32)

where g̃ is given by Eq. (2), while the probability that i resides
on one of the finite components of the reduced network is

P̃(i ∈ FC) = 1 − g̃. (33)

Consider a random edge e [Fig. 2(c)]. The probability that
e resides on one of the finite tree components of the network
amounts to the probability that both its end-nodes reside on
finite components of the reduced network from which e is
removed. It is thus given by

P̂(e ∈ FC) = (1 − g̃)2. (34)

Therefore, the complementary probability that a random
edge e resides on the giant component is

P̂(e ∈ GC) = (2 − g̃)g̃. (35)

The degrees of end-nodes satisfy k � 1 even in case that
kmin = 0. The probability that the end-node i of degree k
belongs to the giant component of the reduced network from
which e is removed, is given by

P̃(i ∈ GC|k) = 1 − (1 − g̃)k−1, (36)

while the probability that it belongs to one of the finite
components of the reduced network is

P̃(i ∈ FC|k) = (1 − g̃)k−1, (37)

where k � 1.
Consider a random edge e whose end-nodes i and i′ are of

degrees k � 1 and k′ � 1, respectively. The probability that
such an edge resides on the giant component is given by

P̂(e ∈ GC|k, k′) = 1 − (1 − g̃)k+k′−2, (38)

while the probability that it resides on one of the finite tree
components is

P̂(e ∈ FC|k, k′) = (1 − g̃)k+k′−2. (39)

Interestingly, these probabilities depend only on the sum of
k and k′ rather than on each one of them separately. For k =
k′ = 1 one obtains P̂(e ∈ GC|1, 1) = 0 and P̂(e ∈ FC|1, 1) =
1. This is due to the fact that in this case i and i′ form a dimer,
which is isolated from the rest of the network. As the sum
k + k′ increases, the probability that the edge e resides on
one of the finite components decays exponentially while the
probability that it resides on the giant component converges
toward 1.

B. The marginal degree distributions of end-nodes

The degree distribution of the end-nodes of random edges
is given by Eq. (4), where k � 1. The degree distribution
of the end-nodes of random edges that reside on the giant
component is given by

P̃(k|GC) = k

E[K|GC]
P(k|GC). (40)

Inserting P(k|GC) from Eq. (12) and E[K|GC] from
Eq. (22), we obtain

P̃(k|GC) = 1 − (1 − g̃)k

(2 − g̃)g̃
P̃(k), (41)

where k � 1. From Eq. (41) one finds that the fraction of
end-nodes of degree k = 1 on the giant component, given by
P̃(1|GC) = P̃(1)/(2 − g̃), is lower than in the whole network.
Interestingly, the fraction of end-nodes of degree k = 2 on
the giant component, given by P̃(2|GC) = P̃(2), is identical
to their fraction in the whole network. For k � 3 it is found
that P̃(k|GC) > P̃(k), namely nodes of degrees k � 3 are
more probable on the giant component compared to the whole
network. In the limit of k → ∞ P̃(k|GC) → P̃(k)/[(2 − g̃)g̃],
where (2 − g̃)g̃ < 1 [Eq. (16)]. The degree distribution of the
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end-nodes of random edges that reside on the finite compo-
nents is given by

P̃(k|FC) = k

E[K|FC]
P(k|FC). (42)

Inserting P(k|FC) from Eq. (13) and E[K|FC] from
Eq. (23), we obtain

P̃(k|FC) = (1 − g̃)k−2P̃(k), (43)

where k � 1. The degree distribution P̃(k) of the end-nodes
of random edges in the network is recovered by

P̃(k) = P̃(k|GC)P̂(e ∈ GC) + P̃(k|FC)P̂(e ∈ FC), (44)

where P̃(k|GC) is given by Eq. (41), P̃(k|FC) is given by
Eq. (43), P̂(e ∈ GC) is given by Eq. (35), and P̂(e ∈ FC) is
given by Eq. (34).

From Eq. (43) one finds that the fraction of end-nodes of
degree k = 1 on the finite components, given by P̃(1|FC) =
P̃(1)/(1 − g̃), is higher than in the whole network. The frac-
tion of end-nodes of degree k = 2 on the finite components
is identical to their fraction in the whole network. For any
value of k � 3 the fraction of end-nodes of degree k on
the finite components is lower than in the whole network.
The “phase separation” between the giant component and the
finite components may thus be considered as a distillation
process, in which high-degree nodes tend to concentrate on
the giant component while low-degree nodes end up in the
finite components.

C. The mean degrees of end-nodes

The mean degree of end-nodes of random edges is denoted
by Ẽ[K]. Using P̃(k) from Eq. (4), we obtain

Ẽ[K] = 〈K2〉
〈K〉 . (45)

The mean degree of end-nodes of random edges that reside
on the finite tree components is denoted by Ẽ[K|FC]. Using
P̃(k|FC) from Eq. (43), we obtain

Ẽ[K|FC] = 1 + G′
1(1 − g̃), (46)

where G′
1(x) is the derivative of G1(x). Interestingly, this

implies that G′
1(1 − g̃) can be interpreted as the mean excess

degree Ẽ[Kex|FC] = Ẽ[K|FC] − 1 of end-nodes of edges that
reside on the finite components. In general, the mean excess
degree of nodes sampled via random edges is analogous to
the basic reproduction ratio R0 of infectious diseases [41] and
to the neutron multiplication factor of nuclear chain reactions
[42]. Using Eq. (27) it is found that Ẽ[K|FC] < Ẽ[K].

The mean degree of end-nodes of random edges that re-
side on the giant component is denoted by Ẽ[K|GC]. Using
P̃(k|GC) from Eq. (41), we obtain

Ẽ[K|GC] = 1

(2 − g̃)g̃

{ 〈K2〉
〈K〉 − (1 − g̃)2[1 + G′

1(1 − g̃)]

}
.

(47)

Using Eq. (27) it is found that Ẽ[K|GC] > Ẽ[K]. Note that
in heavy-tail degree distributions the mean degree Ẽ[K|GC] of
the end-nodes that reside on the giant component may diverge

even under conditions in which 〈K〉 is finite. This is due to
the fact that in such distributions the second moment 〈K2〉
that appears on the right-hand side of Eq. (47) may diverge,
leading to the divergence of Ẽ[K|GC]. The mean degree Ẽ[K]
can be recovered by

Ẽ[K] = Ẽ[K|GC]P̂(e ∈ GC) + Ẽ[K|FC]P̂(e ∈ FC). (48)

D. The variance of the degree distribution of end-nodes

The second moment of the degree distribution P̃(k) of the
end-nodes of random edges is denoted by Ẽ[K2]. Using P̃(k)
from Eq. (4), we obtain

Ẽ[K2] = 〈K3〉
〈K〉 . (49)

The variance of P̃(k) is denoted by Ṽ [K]. Using the first
moment Ẽ[K] from Eq. (45) and the second moment Ẽ[K2]
from Eq. (49), we obtain

Ṽ [K] = 〈K3〉
〈K〉 − 〈K2〉2

〈K〉2
. (50)

The second moment of the degree distribution P̃(k|FC)
of end-nodes of random edges that reside on the finite tree
components is denoted by Ẽ[K2|FC]. Using P̃(k|FC) from
Eq. (43), we obtain

Ẽ[K2|FC] = (1 − g̃)G′′
1 (1 − g̃) + 3G′

1(1 − g̃) + 1, (51)

where G′′
1 (x) is the second derivative of G1(x). Writing

G′′
1 (1 − g̃) explicitly in the form

G′′
1 (1 − g̃) = 1

〈K〉
∞∑

k=3

k(k − 1)(k − 2)(1 − g̃)k−3P(k), (52)

we find that it satisfies

G′′
1 (1 − g̃) � 〈K3〉

〈K〉 − 3
〈K2〉
〈K〉 + 2, (53)

where equality is obtained for g̃ = 0. Combining this result
with Eq. (27), it is found that in the coexistence phase,
where 0 < g, g̃ < 1, the second moment satisfies Ẽ[K2|FC] <

Ẽ[K2]. In the dilute network regime of 0 < g̃ � 1, just above
the percolation transition, one can expand the right-hand side
of Eq. (52) to first order in g̃ and obtain

G′′
1 (1 − g̃) 	 〈K3〉

〈K〉 − 3
〈K2〉
〈K〉 + 2

−
( 〈K4〉

〈K〉 − 6
〈K3〉
〈K〉 + 11

〈K2〉
〈K〉 − 6

)
g̃ + O(g̃2).

(54)

Using Eq. (53) it is found that Ẽ[K2|FC] < Ẽ[K2].
The variance of the degree distribution P̃(k|FC) of the

end-nodes that reside on the finite components is denoted by
Ṽ [K|FC]. Using the first and second moments from Eqs. (46)
and (51), respectively, we obtain

Ṽ [K|FC] = (1 − g̃)G′′
1 (1 − g̃) + G′

1(1 − g̃)[1 − G′
1(1 − g̃)].

(55)
While both the first and second moments of P̃(k|FC) are

smaller than the corresponding moments of P̃(k), the variance
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Ṽ [K|FC] may be either larger or smaller than Ṽ [K], depend-
ing on the specific properties of the degree distribution.

The second moment of the degree distribution P̃(k|GC) of
the end-nodes that reside on the giant component is denoted
by Ẽ[K2|GC]. Using P̃(k|GC) from Eq. (41), we obtain

Ẽ[K2|GC] = 1

(2 − g̃)g̃

{ 〈K3〉
〈K〉 − (1 − g̃)2[(1 − g̃)

× G′′
1 (1 − g̃) + 3G′

1(1 − g̃) + 1]

}
. (56)

Using Eq. (53) it is found that Ẽ[K2|GC] > Ẽ[K2]. The
variance of the degree distribution P̃(k|GC) of the end-nodes
that reside on the giant component is denoted by Ṽ [K|GC].
Using the first and second moments from Eqs. (47) and (56),
respectively, we obtain

Ṽ [K|GC] = 1

(2 − g̃)g̃

{ 〈K3〉
〈K〉 − (1 − g̃)2[(1 − g̃)G′′

1 (1 − g̃)

+ 3G′
1(1 − g̃) + 1]

}

− 1

[(2 − g̃)g̃]2

{ 〈K2〉
〈K〉 −(1 − g̃)[1+G′

1(1 − g̃)]

}2

.

(57)

While both the first and second moments of P̃(k|GC) are
larger than the corresponding moments of P̃(k), the variance
Ṽ [K|GC] may be either larger or smaller than Ṽ [K], depend-
ing on the specific properties of the degree distribution. The
variance Ṽ [K|GC] is used below as a normalization factor
for the covariance of the joint degree distribution of edges
that reside on the giant component, which yields the Pearson
correlation coefficient.

E. The joint degree distribution of end-nodes

The joint degree distribution P̂(k, k′) of the end-nodes i and
i′ of a random edge in a configuration model network with
degree distribution P(k) is given by

P̂(k, k′) = P̃(k)P̃(k′), (58)

where P̃(k) is given by Eq. (4). Note that in Eq. (58) the
degrees satisfy k, k′ � 1. The end-nodes i and i′ are con-
sidered as two distinguishable objects. Thus, P̂(k, k′) is the
probability that i is of degree k and i′ is of degree k′. The
probability that i is of degree k′ and i′ is of degree k is given
by P̂(k′, k) = P̂(k, k′). Therefore, the probabilities P̂(k, k′),
k, k′ � 1 constitute a symmetric matrix.

Under conditions that were specified above, configuration
model networks exhibit a coexistence of a giant component
and finite tree components. The set of finite tree components
constitute a subnetwork which is itself a configuration model
network, and is in the subcritical regime [6,43]. Since there
are no degree-degree correlations on the finite components,
the joint degree distribution of pairs of end-nodes of random
edges that reside on the finite components is given by

P̂(k, k′|FC) = P̃(k|FC)P̃(k′|FC), (59)

where k, k′ � 1. Inserting P̃(k|FC) from Eq. (43) into Eq. (59)
we obtain

P̂(k, k′|FC) = (1 − g̃)k+k′−4P̃(k)P̃(k′). (60)

The joint degree distribution P̂(k, k′) can be expressed as
a weighted sum of the joint degree distribution of end-nodes
of edges that reside on the giant component and on the finite
components in the form

P̂(k, k′) = P̂(k, k′|GC)P̂(e ∈ GC) + P̂(k, k′|FC)P̂(e ∈ FC),
(61)

where P̂(e ∈ GC) and P̂(e ∈ FC) are given by Eqs. (35) and
(34), respectively. Extracting P̂(k, k′|GC) from Eq. (61), we
obtain

P̂(k, k′|GC) = P̂(k, k′) − P̂(k, k′|FC)P̂(e ∈ FC)

P̂(e ∈ GC)
. (62)

Note that nodes that reside on the giant component satisfy
k, k′ � 1. Moreover, the giant component does not include
edges for which k = k′ = 1 (dimers), thus P̂(1, 1|GC) = 0.
As a result, the lowest possible degrees of the end-nodes of an
edge that resides on the giant component are (k, k′) = (1, 2)
or (k, k′) = (2, 1). This condition can be expressed in the form
k + k′ � 3, in addition to k, k′ � 1. Inserting the joint degree
distributions P̂(k, k′) and P̂(k, k′|FC) from Eqs. (58) and (60),
respectively, and the probabilities P̂(e ∈ FC) and P̂(e ∈ GC)
from Eqs. (34) and (35), respectively, into Eq. (62), we obtain

P̂(k, k′|GC) = 1 − (1 − g̃)k+k′−2

(2 − g̃)g̃
P̃(k)P̃(k′), (63)

where k, k′ � 1 and k + k′ � 3. Extracting P̃(k) from
Eq. (41), we obtain

P̃(k) = (2 − g̃)g̃

1 − (1 − g̃)k
P̃(k|GC). (64)

Inserting P̃(k) and P̃(k′) from Eq. (64) into Eq. (63), we
obtain

P̂(k, k′|GC) = (2 − g̃)g̃
1 − (1 − g̃)k+k′−2

[1 − (1 − g̃)k][1 − (1 − g̃)k′ ]

× P̃(k|GC)P̃(k′|GC). (65)

Inserting k = k′ = 1 into Eq. (65), we confirm that
P̂(1, 1|GC) = 0. In the opposite limit of k, k′ → ∞, it is
found that P̂(k, k′|GC) → (2 − g̃)g̃P̃(k|GC)P̃(k′|GC). Since
(2 − g̃)g̃ < 1, the probability that both end-nodes of an edge
that resides on the giant component will be of high degree
is suppressed. We thus conclude that the degree-degree cor-
relations between end-nodes of random edges on the giant
component are negative, namely the giant component is dis-
assortative [30,44–48].

F. The covariance of the joint degree distribution
of end-nodes of edges

The covariance of the joint degree distribution of end-
nodes of edges in a configuration model network is
denoted by

� = Ê[KK ′] − Ẽ[K] Ẽ[K ′], (66)
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where

Ê[KK ′] =
∞∑

k=1

∞∑
k′=1

kk′P̂(k, k′), (67)

is the mixed second moment of P̂(k, k′). In configuration
model networks there are no degree-degree correlations and
therefore � = 0. Moreover, the subnetwork that consists of
all the finite tree components is also a configuration model
network. Therefore, the covariance of the joint degree dis-
tribution of end-nodes of edges that reside on the finite tree
components satisfies �(FC) = 0.

The covariance of the joint degree distribution of end-
nodes of edges that reside on the giant component is
given by

�(GC) = Ê[KK ′|GC] − Ẽ[K|GC] Ẽ[K ′|GC], (68)

where

Ê[KK ′|GC] =
∞∑

k=1

∞∑
k′=1

kk′P̂(k, k′|GC) (69)

is the mixed second moment of P̂(k, k′|GC) and the mean
degree Ẽ[K|GC] is given by Eq. (47). Inserting P̂(k, k′|GC)
from Eq. (63) into Eq. (69), carrying out the summations, and
inserting the result into Eq. (68), we obtain

�(GC) = − (1 − g̃)2

[(2 − g̃)g̃]2

[ 〈K2〉
〈K〉 − 1 − G′

1(1 − g̃)

]2

. (70)

It is found that �(GC) < 0, namely the giant component
of a configuration model network is always disassortative

[30,44–48]. This means that on the giant component high
degree nodes tend to connect to low degree nodes and vice
versa.

In the dilute network regime of 0 < g̃ � 1, just above the
percolation transition, the giant component is small but it
exhibits strong degree-degree correlations. Using Eq. (28), it
is found that in this regime

�(GC) 	 −1

4

( 〈K3〉
〈K〉 − 3

〈K2〉
〈K〉 + 2

)2

+ O(g̃2). (71)

In the opposite limit of g̃ → 1−, in which the giant compo-
nent expands to encompass the whole network (apart from any
isolated nodes), �(GC) → 0. More precisely, in the regime
of 1 − g̃ � 1 the covariance of the joint degree distribution
of end-nodes on the giant component decays according to
�(GC) ∼ −(1 − g̃)2. The Pearson correlation coefficient for
pairs of end-nodes of edges that reside on the giant component
is given by

R(GC) = �(GC)

Ṽ [K|GC]
, (72)

where Ṽ [K|GC] is given by Eq. (57). Unlike the covariance
�(GC), the Pearson correlation coefficient is bounded in the
range −1 � R(GC) � 1. It is thus a more suitable measure
for the comparison of the correlations between the degrees
of pairs of end-nodes in different populations of edges and
bredges.

VI. STATISTICAL ANALYSIS OF BREDGES

A. The probability that a random edge is a bredge

Consider a random edge e in a configuration model network of N nodes with degree distribution P(k). The probability
P̂(e ∈ B) that e is a bredge is given by [49]

P̂(e ∈ B) = 1 − g̃2, (73)

where g̃ is given by Eq. (2). This is due to the fact that in order that a random edge will not be a bredge, its end-nodes i and
i′ should both belong to the giant component of the reduced network from which the edge e was removed. The probability for
each one of these nodes to belong to the giant component of the reduced network is g̃. Thus, the probability that both of them
belong to the giant component of the reduced network is g̃2. The probability that at least one of them does not belong to the giant
component of the reduced network is thus 1 − g̃2, which leads to Eq. (73). The complementary probability, that a random edge
e is a NB edge is given by P̂(e ∈ NB) = g̃2. Therefore, in the dilute network regime of 0 < g̃ � 1, just above the percolation
transition, almost every edge is a bredge.

Consider a random edge e whose end-nodes i and i′ are of known degrees, k and k′, where k, k′ � 1. In order that the edge
e will not be a bredge, both i and i′ should reside on the giant component of the reduced network from which e is removed.
Therefore, the probability that e is a bredge is given by

P̂(e ∈ B|k, k′) = 1 − [1 − (1 − g̃)k−1][1 − (1 − g̃)k′−1], (74)

where k, k′ � 1. This result can also be expressed in the form

P̂(e ∈ B|k, k′) = (1 − g̃)k−1 + (1 − g̃)k′−1 − (1 − g̃)k+k′−2. (75)

The probability P̂(e ∈ B) that a random edge is a bredge can be expressed in the form

P̂(e ∈ B) =
∞∑

k,k′=1

P̂(e ∈ B|k, k′)P̂(k, k′). (76)
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Inserting the conditional probability P̂(e ∈ B|k, k′) from Eq. (75) into Eq. (76) and carrying out the summation, one recovers
Eq. (73).

The probability P̂(e ∈ B) can be expressed as a sum of two terms, where one term accounts for nodes that reside on the giant
component and the other accounts for nodes that reside on the finite components. It takes the form

P̂(e ∈ B) = P̂(e ∈ B|GC)P̂(e ∈ GC) + P̂(e ∈ B|FC)P̂(e ∈ FC). (77)

Extracting the conditional probability P̂(e ∈ B|GC) that a random edge on the giant component is a bredge, one obtains

P̂(e ∈ B|GC) = P̂(e ∈ B) − P̂(e ∈ B|FC)P̂(e ∈ FC)

P̂(e ∈ GC)
. (78)

Since all the edges on the finite tree components are bredges, P̂(e ∈ B|FC) = 1. Inserting P̂(e ∈ B) from Eq. (73), P̂(e ∈ GC)
from Eq. (35) and P̂(e ∈ FC) from Eq. (34) into Eq. (78), we obtain

P̂(e ∈ B|GC) = 2(1 − g̃)

2 − g̃
. (79)

Therefore, the complementary probability that a random edge on the giant component is not a bredge is given by

P̂(e ∈ NB|GC) = g̃

2 − g̃
. (80)

To calculate the fraction of bredges that belong to the giant component one can use Bayes’ theorem and obtain

P̂(e ∈ GC|B) = P̂(e ∈ B|GC)P̂(e ∈ GC)

P̂(e ∈ B)
. (81)

Inserting P̂(e ∈ B|GC) from Eq. (79), P̂(e ∈ GC) from Eq. (35), and P̂(e ∈ B) from Eq. (73) into Eq. (81), we obtain

P̂(e ∈ GC|B) = 2g̃

1 + g̃
. (82)

Therefore, the fraction of bredges that reside on the finite components is

P̂(e ∈ FC|B) = 1 − g̃

1 + g̃
. (83)

The conditional probability P(e ∈ B|k, k′), given by Eq. (75), can be expressed as a sum of two terms, where one term
accounts for nodes that reside on the giant component and the other accounts for nodes that reside on the finite components. It
takes the form

P̂(e ∈ B|k, k′) = P̂(e ∈ B|GC, k, k′)P̂(e ∈ GC|k, k′) + P̂(e ∈ B|FC, k, k′)P̂(e ∈ FC|k, k′). (84)

The conditional probability P̂(e ∈ GC|k, k′), given by Eq. (38), takes nonzero values only for degrees k, k′ � 1 whose sum
satisfies k + k′ � 3, while P̂(e ∈ FC|k, k′) is given by Eq. (39), where k, k′ � 1. Extracting the conditional probability P̂(e ∈
B|GC, k, k′) from Eq. (84), one obtains

P̂(e ∈ B|GC, k, k′) = P̂(e ∈ B|k, k′) − P̂(e ∈ B|FC, k, k′)P̂(e ∈ FC|k, k′)
P̂(e ∈ GC|k, k′)

. (85)

Since all the edges on the finite tree components are bredges, P̂(e ∈ B|FC, k, k′) = 1, where k, k′ � 1, evaluating the right-
hand side of Eq. (85), we obtain

P̂(e ∈ B|GC, k, k′) = (1 − g̃)k−1 + (1 − g̃)k′−1 − 2(1 − g̃)k+k′−2

1 − (1 − g̃)k+k′−2
, (86)

where k, k′ � 1 and k + k′ � 3. The probability that an edge connecting end-nodes of degrees k and k′ on the giant component
is not a bredge is thus given by

P̂(e ∈ NB|GC, k, k′) = 1 − (1 − g̃)k−1 − (1 − g̃)k′−1 + (1 − g̃)k+k′−2

1 − (1 − g̃)k+k′−2
, (87)

where k, k′ � 1 and k + k′ � 3.
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B. The joint degree distribution of the end-nodes of bredges

The joint degree distribution of the nodes on both sides of a bredge can be expressed in the form

P̂(k, k′|B) = P̂(e ∈ B|k, k′)P̂(k, k′)
P̂(e ∈ B)

. (88)

Inserting P̂(e ∈ B|k, k′) from Eq. (75), P̂(k, k′) from Eq. (58), and P̂(e ∈ B) from Eq. (73) into Eq. (88), we obtain

P̂(k, k′|B) = 1

1 + g̃
[(1 − g̃)k−2 + (1 − g̃)k′−2 − (1 − g̃)k+k′−3]P̃(k)P̃(k′), (89)

where k, k′ � 1. Below we consider the joint degree distributions P̂(k, k′|B, GC) and P̂(k, k′|B, FC) of the end-nodes of random
bredges on the giant component and on the finite components, respectively. Since all the edges on the finite components
are bredges, the joint degree distribution of the end nodes of random bredges that reside on the finite components satisfies
P̂(k, k′|B, FC) = P̂(k, k′|FC), where P̂(k, k′|FC) is given by Eq. (60).

The conditional probability P̂(k, k′|B) can be expressed in the form

P̂(k, k′|B) = P̂(k, k′|B, GC)P̂(e ∈ GC|B) + P̂(k, k′|B, FC)P̂(e ∈ FC|B). (90)

Extracting P̂(k, k′|B, GC) from Eq. (90) we obtain

P̂(k, k′|B, GC) = P̂(k, k′|B) − P̂(k, k′|B, FC)P̂(e ∈ FC|B)

P̂(e ∈ GC|B)
. (91)

Inserting P̂(e ∈ FC|B) from Eq. (83) and P̂(e ∈ GC|B) from Eq. (82) into Eq. (91), we obtain

P̂(k, k′|B, GC) = 1

2g̃
[(1 − g̃)k−2 + (1 − g̃)k′−2 − 2(1 − g̃)k+k′−3]P̃(k)P̃(k′), (92)

where k, k′ � 1 and k + k′ � 3.
The joint degree distribution of pairs of end-nodes of random edges on the giant component can be decomposed in the form

P̂(k, k′|GC) = P̂(k, k′|B, GC)P̂(e ∈ B|GC) + P̂(k, k′|NB, GC)P̂(e ∈ NB|GC), (93)

where the first term on the right-hand side accounts for the bredges and the second term account for all the edges that are not
bredges. Note that the joint degree distribution P̂(k, k′|NB, GC) may take nonzero values only under conditions in which both
k � 2 and k′ � 2. Extracting the joint degree distribution on the edges that are not bredges, we obtain

P̂(k, k′|NB, GC) = P̂(k, k′|GC) − P̂(k, k′|B, GC)P̂(e ∈ B|GC)

P̂(e ∈ NB|GC)
. (94)

Inserting P̂(k, k′|GC) from Eq. (63), P̂(k, k′|B, GC) from Eq. (92), P̂(e ∈ B|GC) from Eq. (79), and P̂(e ∈ NB|GC) from
Eq. (80), we obtain

P̂(k, k′|NB, GC) = 1

g̃2
[1 − (1 − g̃)k−1 − (1 − g̃)k′−1 + (1 − g̃)k+k′−2]P̃(k)P̃(k′), (95)

where k, k′ � 2. Eq. (95) can be written as a product of the form

P̂(k, k′|NB, GC) =
[

1 − (1 − g̃)k−1

g̃

]
P̃(k)

[
1 − (1 − g̃)k′−1

g̃

]
P̃(k′), (96)

which means that the degrees k and k′ of the end-nodes of nonbredge edges on the giant component are uncorrelated and
actually even independent. Therefore, the degree distribution P̃(k|NB, GC) of end-nodes of nonbredge edges that reside on the
giant component is given by

P̃(k|NB, GC) = 1 − (1 − g̃)k−1

g̃
P̃(k), (97)

where k � 2. We thus conclude that all the degree-degree correlations in the giant component of a configuration model network
are concentrated in the bredges.

A special property of bredges on the giant component is that they are “polarized” in the sense that each bredge e has one
end-node that resides on the giant component of the reduced network from which e is removed, while the other end-node
resides on the finite tree component that is detached from the giant component. These two end-nodes exhibit different statistical
properties. The conditional probability that the end-node i (of degree k) resides on the giant component and the end-node i′ (of
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degree k′) resides on the detached finite tree is given by

P̂(KGC = k, KFC = k′|k, k′, B, GC) = (1 − g̃)k′−1[1 − (1 − g̃)k−1]

(1 − g̃)k−1 + (1 − g̃)k′−1 − 2(1 − g̃)k+k′−2
, (98)

for k �= k′ and P̂(KGC = k, KFC = k′|k, k′, B, GC) = 1 for k = k′. The joint degree distribution P̂(KGC = k, KFC = k′|B, GC)
can thus be written in the form

P̂(KGC = k, KFC = k′|B, GC) = (2 − δk,k′ )P̂(KGC = k, KFC = k′|k, k′, B, GC)P̂(k, k′|B, GC), (99)

where δk,k′ is the Kronecker δ symbol and P̂(k, k′|B, GC) is given by Eq. (92). Inserting the right-hand side of Eq. (98) into
Eq. (99), we find that Eq. (99) can be written as a product of the form

P̂(KGC = k, KFC = k′|B, GC) = P̃(KGC = k|B, GC)P̃(KFC = k′|B, GC), (100)

where the the degree distribution of the end-node on the giant component side is

P̃(KGC = k|B, GC) = 1 − (1 − g̃)k−1

g̃
P̃(k), (101)

and the degree distribution of the end-node on the finite-component side is

P̃(KFC = k′|B, GC) = (1 − g̃)k′−2P̃(k′). (102)

Equation (100) implies that once we recognize that each bredge on the giant component has one end-node whose degree is
sampled from P̃(KGC = k|B, GC), while the degree of the other end-node is sampled from P̃(KFC = k′|B, GC), the correlation
between the degrees of the two end-nodes vanishes. The correlation found in the analysis above, between the degrees k and k′
of the end-nodes i and i′, in the joint degree distribution P̂(k, k′|B, GC) [Eq. (92)] is due to the fact that if i ends up on the giant
component of the reduced network, then i′ must end up on a finite component and vice versa.

C. The marginal degree distribution of the end-nodes of bredges

The degree distribution P̃(k|B) of an end-node of a random bredge can be obtained as the marginal distribution of the joint
degree distribution P̂(k, k′|B) by tracing over k′, namely

P̃(k|B) =
∞∑

k′=1

P̂(k, k′|B). (103)

Inserting P̂(k, k′|B) from Eq. (89) and carrying out the summation, we obtain

P̃(k|B) = 1 + g̃(1 − g̃)k−2

1 + g̃
P̃(k). (104)

Extracting P̃(k) from Eq. (104), we obtain

P̃(k) = 1 + g̃

1 + g̃(1 − g̃)k−2
P̃(k|B). (105)

Inserting P̃(k) and P̃(k′) from Eq. (105) into Eq. (89), we obtain

P̂(k, k′|B) = (1 + g̃)
(1 − g̃)k−2 + (1 − g̃)k′−2 − (1 − g̃)k+k′−3

[1 + g̃(1 − g̃)k−2][1 + g̃(1 − g̃)k′−2]
P̃(k|B)P̃(k′|B). (106)

Since on the finite tree components all the edges are bredges, the degree distribution P̃(k|B, FC) of the end-nodes of bredges
that reside on the finite components satisfies P̃(k|B, FC) = P̃(k|FC), where P̃(k|FC) is given by Eq. (43). The degree distribution
P̃(k|B, GC) of end-nodes of bredges that reside on the giant component can be obtained by marginalizing P̂(k, k′|B, GC), given
by Eq. (92), over k′. This yields

P̃(k|B, GC) = 1 + (2g̃ − 1)(1 − g̃)k−2

2g̃
P̃(k), (107)

where k � 1. Extracting P̃(k) from Eq. (107), we obtain

P̃(k) = 2g̃

1 + (2g̃ − 1)(1 − g̃)k−2
P̃(k|B, GC). (108)

Inserting P̃(k) from Eq. (108) into Eq. (92), we obtain

P̂(k, k′|B, GC) = 2g̃[(1 − g̃)k−2 + (1 − g̃)k′−2 − 2(1 − g̃)k+k′−3]

[1 + (2g̃ − 1)(1 − g̃)k−2][1 + (2g̃ − 1)(1 − g̃)k′−2]
P̃(k|B, GC)P̃(k′|B, GC), (109)
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D. The mean degree of end-nodes of bredges

The mean degree of end-nodes of bredges is denoted by Ẽ[K|B]. Using the degree distribution P̃(k|B), given by Eq. (104),
we obtain

Ẽ[K|B] = 1

1 + g̃

{ 〈K2〉
〈K〉 + g̃[1 + G′

1(1 − g̃)]

}
. (110)

The mean degree Ẽ[K|B, FC] of the end-nodes of random bredges that reside on the finite components is identical to Ẽ[K|FC],
which is given by Eq. (46). Using Eq. (27) it is found that Ẽ[K|B, FC] < Ẽ[K]. Using Eq. (107) we obtain the mean degree of
the end-nodes of bredges that reside on the giant component, which is given by

Ẽ[K|B, GC] = 1

2g̃

{ 〈K2〉
〈K〉 + (2g̃ − 1)[1 + G′

1(1 − g̃)]

}
. (111)

Using Eq. (27) it is found that Ẽ[K|B, GC] � Ẽ[K]. Note that in heavy-tail degree distributions the mean degree Ẽ[K|B, GC]
of end-nodes on the giant component may diverge even under conditions in which 〈K〉 is finite. This is due to the fact that the
second moment 〈K2〉 appears on the right-hand side of Eq. (111). In heavy-tail degree distributions 〈K2〉 may diverge, leading to
the divergence of Ẽ[K|B, GC].

Below we evaluate the means of the degree distributions of the end-nodes of bredges e on the giant component, which reside
on the giant and on the finite components of the reduced network from which e is removed. Using Eq. (101) we obtain the mean
degree of the end-nodes that reside on the giant component of the reduced network, which is given by

Ẽ[KGC|B, GC] = 1

g̃

{ 〈K2〉
〈K〉 − (1 − g̃)[1 + G′

1(1 − g̃)]

}
. (112)

Using Eq. (102) we obtain the mean degree of the end-nodes that reside on a finite component of the reduced network, which
is given by

Ẽ[KFC|B, GC] = 1 + G′
1(1 − g̃). (113)

Similarly, the mean degree of the end-nodes of random nonbredge edges that reside on the giant component, obtained using
Eq. (97), is given by

Ẽ[K|NB, GC] = 1

g̃

{ 〈K2〉
〈K〉 − (1 − g̃)[1 + G′

1(1 − g̃)]

}
. (114)

E. The variance of the degree distribution of end-nodes of bredges

The second moment of the degree distribution P̃(k|B) of the end-nodes of bredges, obtained using Eq. (107), is given by

Ẽ[K2|B] = 1

1 + g̃

{ 〈K3〉
〈K〉 + g̃[(1 − g̃)G′′

1 (1 − g̃) + 3G′
1(1 − g̃) + 1]

}
. (115)

Using Ẽ[K|B] from Eq. (110) and Ẽ[K2|B] from Eq. (115), we obtain the variance

Ṽ [K|B] = 1

1 + g̃

{ 〈K3〉
〈K〉 + g̃[(1 − g̃)G′′

1 (1 − g̃) + 3G′
1(1 − g̃) + 1]

}
− 1

(1 + g̃)2

{ 〈K2〉
〈K〉 + g̃[1 + G′

1(1 − g̃)]

}2

. (116)

Since all the edges on the finite components are bredges, it is clear that Ẽ[K2|B, FC] = Ẽ[K2|FC], which is given by Eq. (51).
Similarly, Ṽ [K|B, FC] = Ṽ [K|FC], which is given by Eq. (55). The second moment of the degree distribution P̃(k|B, GC) of
nodes selected via random edges that reside on the giant component, obtained using Eq. (107), is given by

Ẽ[K2|B, GC] = 1

2g̃

{ 〈K3〉
〈K〉 + (2g̃ − 1)

[
(1 − g̃)G′′

1 (1 − g̃) + 3G′
1(1 − g̃) + 1

]}
. (117)

Using the first and second moments from Eqs. (111) and (117), respectively, we obtain the variance

Ṽ [K|B, GC] = 1

2g̃

{ 〈K3〉
〈K〉 + (2g̃ − 1)[(1 − g̃)G′′

1 (1 − g̃) + 3G′
1(1 − g̃) + 1]

}
− 1

4g̃2

{ 〈K2〉
〈K〉 + (2g̃−1)[1+G′

1(1−g̃)]

}2

. (118)

Below we evaluate the second moments of the degree distributions and of the end-nodes of bredges e on the giant component,
which end up on the giant and on the finite components of the reduced network from which e is removed. The second moment
of the degree distribution of the end-nodes that end up on the giant component, obtained using Eq. (101), is given by

Ẽ[K2
GC|B, GC] = 1

g̃

{ 〈K3〉
〈K〉 − (1 − g̃)2[G′′

1 (1 − g̃) + 3G′
1(1 − g̃) + 1]

}
. (119)
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Using the first and second moments from Eqs. (112) and (119), respectively, we obtain the variance

Ṽ [KGC|B, GC] = 1

g̃

{ 〈K3〉
〈K〉 − (1 − g̃)2[G′′

1 (1 − g̃) + 3G′
1(1 − g̃) + 1]

}
− 1

g̃2

{ 〈K2〉
〈K〉 − (1 − g̃)[1 + G′

1(1 − g̃)]

}2

. (120)

The second moment of the degree distribution of the end-nodes that end up on the finite tree that is detached from the giant
component of the reduced network, obtained using Eq. (102), is given by

Ẽ[K2
FC|B, GC] = (1 − g̃)G′′

1 (1 − g̃) + 3G′
1(1 − g̃) + 1. (121)

Using the first and second moments from Eqs. (113) and (121), respectively, we obtain the variance

Ṽ [KFC|B, GC] = (1 − g̃)G′′
1 (1 − g̃) + G′

1(1 − g̃)[1 − G′
1(1 − g̃)]. (122)

The second moment of the degree distribution P̃(k|NB, GC) of the end-nodes of nonbredge edges that reside on the giant
component, obtained using Eq. (97), is given by

Ẽ[K2|NB, GC] = 1

g̃

{ 〈K3〉
〈K〉 − (1 − g̃)[(1 − g̃)G′′

1 (1 − g̃) + 3G′
1(1 − g̃) + 1]

}
. (123)

using Ẽ[K|NB, GC] from Eq. (114) and Ẽ[K2|NB, GC] from Eq. (123), we obtain the variance

Ṽ [K|NB, GC] = 1

g̃

{ 〈K3〉
〈K〉 − (1 − g̃)[(1 − g̃)G′′

1 (1 − g̃) + 3G′
1(1 − g̃) + 1]

}
− 1

g̃2

{ 〈K2〉
〈K〉 − (1 − g̃)[1 + G′

1(1 − g̃)]

}2

. (124)

F. The covariance of the joint degree distribution of end-nodes of bredges

The covariance of the joint degree distribution of end-nodes of random bredges is given by

�(B) = Ê[KK ′|B] − Ẽ[K|B] Ẽ[K ′|B], (125)

where Ê[KK ′|B] is the mixed second moment of the joint degree distribution P̂(k, k′|B) and the mean degree Ẽ[K|B] of the
marginal degree distribution is given by Eq. (110). Evaluating the right-hand side of Eq. (125), we obtain

�(B) = − 1

(1 + g̃)2

[ 〈K2〉
〈K〉 − 1 − G′

1(1 − g̃)

]2

. (126)

As expected, below the percolation transition, where g̃ = 0, the correlation coefficient is zero. In the dilute network regime
of 0 < g̃ � 1, just above the percolation transition,

�(B) 	 −
( 〈K3〉

〈K〉 − 3
〈K2〉
〈K〉 + 2

)2

g̃2 + O(g̃)3. (127)

In the opposite limit of g̃ → 1− the covariance �(B) converges toward an asymptotic value that depends on the degree
distribution. It is given by

�(B) → −1

4

[ 〈K2〉
〈K〉 − 1 − 2P(2)

〈K〉
]2

. (128)

The Pearson correlation coefficient for pairs of end-nodes of bredges in configuration model networks is given by

R(B) = �(B)

Ṽ [K|B]
, (129)

where Ṽ [K|B] is given by Eq. (116).
The covariance of the joint degree distribution of end-nodes of bredges that reside on the giant component is given by

�(B, GC) = Ê[KK ′|B, GC] − Ẽ[K|B, GC] Ẽ[K ′|B, GC], (130)

where Ê[KK ′|B, GC] is the mixed second moment of P̂(k, k′|B, GC). Evaluating the right-hand side of Eq. (130), we obtain

�(B, GC) = − 1

4g̃2

[ 〈K2〉
〈K〉 − 1 − G′

1(1 − g̃)

]2

. (131)

In the dilute network regime of 0 < g̃ � 1, just above the percolation transition, the covariance is given by

�(B, GC) 	 −1

4

( 〈K3〉
〈K〉 − 3

〈K2〉
〈K〉 + 2

)2

+ O(g̃). (132)
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In the opposite limit of g̃ → 1− the covariance �(B, GC) converges toward an asymptotic value that depends on the degree
distribution. It is given by

�(B, GC) → −1

4

[ 〈K2〉
〈K〉 − 1 − 2P(2)

〈K〉
]2

, (133)

which is identical to �(B) in that limit. The Pearson correlation coefficient for pairs of end-nodes of bredges that reside on the
giant component is given by

R(B, GC) = �(B, GC)

Ṽ [K|B, GC]
, (134)

where Ṽ [K|B, GC] is given by Eq. (118). The end-nodes of nonbredge edges that reside on the giant component are actually
independent, as expressed by Eq. (96), and in particular they exhibit no degree-degree correlations. Therefore, R(NB, GC) = 0.

VII. APPLICATIONS TO SPECIFIC NETWORK MODELS

Here we apply the approach presented above to several
examples of configuration model networks with given degree
distribution. More specifically, we consider the cases of the
Poisson degree distribution (ER networks), the exponential
degree distribution and the power-law degree distribution
(scale-free networks).

A. Erdős-Rényi networks

The ER network is a random network in which each
pair of nodes is connected with probability p [50–52]. The
mean degree of an ER network is c = (N − 1)p, where N
is the network size, and the degree distribution is a Poisson
distribution of the form [6]

P(k) = e−cck

k!
. (135)

Since it exhibits no correlations, the ER network is a
configuration model network with a Poisson degree distri-
bution. Moreover, it is a maximum entropy network under
the condition that the mean degree 〈K〉 = c is constrained.
Asymptotic ER networks exhibit a percolation transition at
c = 1, such that for c < 1 the network consists only of finite
components, which exhibit tree topologies. For c > 1 a giant
component emerges, coexisting with the finite components.
At a higher value of the connectivity, namely at c = ln N ,
there is a second transition, above which the giant component
encompasses the entire network.

Erdős-Rényi networks exhibit a special property, resulting
from the Poisson degree distribution [Eq. (135)], which sat-
isfies P̃(k) = P(k − 1), where P̃(k) is given by Eq. (4). This
implies that for the Poisson distribution the two generating
functions are identical, namely G1(x) = G0(x). Using Eqs. (2)
and (5) we obtain that for ER networks g̃ = g. Carrying out the
summations in Eqs. (6) and (3) with P(k) given by Eq. (135),
one obtains G0(x) = G1(x) = e−(1−x)c. Inserting this result in
Eq. (5), it is found that g satisfies the equation 1 − g = e−gc

[6]. Solving for the probability g as a function of the mean
degree, c, one obtains

g = g̃ = 1 + W (−ce−c)

c
, (136)

where W (x) is the Lambert W function [53].
In Fig. 5(a) we present analytical results for the probability

P̂(e ∈ GC) (dashed line), that a randomly sampled edge in an

ER network resides on the giant component, as a function of
the mean degree c. These results are obtained by inserting g̃
from Eq. (136) into Eq. (35). We also present the comple-
mentary probability P̂(e ∈ FC) (dotted line) that a randomly
sampled edge resides on one of the finite components. In
Fig. 5(b) we present analytical reults for the probability P̂(e ∈
B) (solid line) that a randomly sampled edge in an ER network
is a bredge as a function of the mean degree c. The probability
P̂(e ∈ B) can be expressed as a sum of two components: the
probability P̂(e ∈ B, GC) = P̂(e ∈ B|GC)P̂(e ∈ GC) (dashed
line) that a randomly sampled edge is a bredge that resides
on the giant component, and the probability P̂(e ∈ B, FC) =
P̂(e ∈ FC) (dotted line) that a randomly sampled edge is a
bredge that resides on one of the finite components. The
analytical results are in excellent agreement with the results
of computer simulations (circles), performed for an ensemble
of ER networks of N = 104 nodes.

In Fig. 6 we present analytical results for the marginal
degree distribution P̃(k|GC) of end-nodes of edges on the
giant component of an ER network (solid line), obtained by
inserting g̃ from Eq. (136) into Eq. (41). We also present
the marginal degree distribution P̃(k|B, GC) of end-nodes of
bredges on the giant component (dotted line), obtained by
inserting g̃ from Eq. (136) into Eq. (107) and for the marginal
degree distribution P̃(k|NB, GC) of nonbredge edges that
reside on the giant component (dashed line), obtained by
inserting g̃ from Eq. (136) into Eq. (97). The analytical
results are in excellent agreement with the corresponding
results obtained from computer simulations (circles). It is
found that the marginal degree distribution of the end-nodes
of bredges decreases monotonically as a function of k, while
the marginal degree distribution of the nonbredge edges ex-
hibits a peak. Overall, the degrees of end-nodes of non-
bredge edges tend to be higher than the degrees of end-nodes
of bredges.

In Fig. 7 we present analytical results for the correlation
coefficient R(GC) between the degrees of pairs of end-nodes
of edges on the giant component of an ER network as
a function of the mean degree c (solid line), obtained by
inserting g̃ from Eq. (136) into Eq. (72). We also present
the correlation coefficient R(B, GC) between the degrees of
end-nodes of bredges that reside on the giant component of
an ER network (dotted line), obtained by inserting g̃ from
Eq. (136) into Eq. (134). The analytical results are in ex-
cellent agreement with the results obtained from computer
simulations (circles).
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B. Configuration model networks with
exponential degree distributions

Consider a configuration model network with an expo-
nential degree distribution of the form P(k) ∼ e−αk , where
kmin � k � kmax. In case that kmin � 2 one can show that
g = g̃ = 1 and there are no bredges. Here we consider the
case of kmin = 1 and kmax = ∞. In this case it is convenient
to parametrize the degree distribution using the mean degree
c in the form

P(k) = 1

c − 1

(
c − 1

c

)k

. (137)

In order to find the properties of bredges in such net-
works, we first calculate the parameters g̃ and g. Inserting the
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FIG. 5. (a) The probability P̂(e ∈ GC) (dashed line), that a ran-
domly sampled edge in an ER network resides on the giant com-
ponent, as a function of the mean degree c = 〈K〉, obtained from
Eq. (35); The complementary probability P̂(e ∈ FC) (dotted line)
that a randomly sampled edge resides on one of the finite components
is also shown. (b) The probability P̂(e ∈ B) (solid line) that a
randomly sampled edge in an ER network is a bredge, as a function of
the mean degree c, obtained from Eq. (73); The probability P̂(e ∈ B)
is equal to the sum of two components: the probability P̂(e ∈ B, GC)
(dashed line) that a randomly sampled edge is a bredge that resides on
the giant component, and the probability P̂(e ∈ B, FC) (dotted line)
that a randomly sampled edge is a bredge that resides on one of the
finite components. The analytical results are in excellent agreement
with the results of computer simulations (circles), performed for an
ensemble of ER networks of N = 104 nodes.
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FIG. 6. Analytical results for the marginal degree distribution
P̃(k|GC) (solid line) of end-nodes of randomly sampled edges, the
marginal degree distribution P̃(k|B, GC) (dotted line) of end-nodes
of randomly sampled bredges and the marginal degree distribution
P̃(k|NB, GC) (dashed line) of randomly sampled nonbredge edges
on the giant component of an ER network with mean degree c = 2.
The analytical results are in excellent agreement with the results
obtained from computer simulations (circles).

exponential degree distribution of Eq. (137) into the gener-
ating function G1(x), given by Eq. (3), we obtain G1(x) =
[c − (c − 1)x]−2. Inserting the above expression of G1(x) into
Eq. (2) and solving for g̃, we find that for c > 3/2 there is a
nontrivial solution of the form

g̃ = 1

2

[
c − 3

c − 1
+

√
c + 3

c − 1

]
. (138)
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FIG. 7. Analytical results for the correlation coefficient R(GC)
(solid line) between the degrees k and k′ of end-nodes of randomly
sampled edges and the correlation coefficient R(B, GC) (dotted line)
between the end-nodes of randomly sampled bredges that reside
on the giant component of an ER network, as a function of the
mean degree c. The analytical results are in excellent agreement
with the results obtained from computer simulations (circles). The
correlations, which are concentrated on the bredges, are negative and
become stronger as c is increased. Since the fraction of bredges on
the giant component is a decreasing function of c, the correlation
coefficient over all the edges on the giant component decreases (in
absolute value) as c is increased.
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FIG. 8. (a) Analytical results for the probability P̂(e ∈ GC)
(dashed line) that a randomly sampled edge in a configuration model
network with an exponential degree distribution resides on the giant
component, as a function of the mean degree c; The complemen-
tary probability P̂(e ∈ FC) (dotted line) that a randomly sampled
edge resides on one of the finite tree components is also shown.
(b) Analytical results for the probability P̂(e ∈ B) (solid line) that
a randomly sampled edge is a bredge, as a function of the mean
degree c, obtained from Eq. (73); The probability P̂(e ∈ B) is equal
to the sum of two components: the probability P̂(e ∈ B, GC) (dashed
line), that a randomly sampled edge is a bredge that resides on the
giant component and the probability P̂(e ∈ B, FC) that a randomly
sampled edge is a bredge that resides on one of the finite components.
The analytical results are in excellent agreement with the results
of computer simulations (circles), performed for an ensemble of
configuration model networks of N = 104 nodes.

Inserting the exponential degree distribution of Eq. (137)
into Eq. (6), we obtain G0(x) = x/[c − (c − 1)x]. Inserting g̃
from Eq. (138) and the above expression of G0(1 − g̃) into
Eq. (5), we find that for c > 3/2

g = c

2(c − 1)

[
3 −

√
c + 3

c − 1

]
. (139)

Thus, it is found that the configuration model network
with an exponential degree distribution exhibits a percolation
transition at c0 = 3/2.

In Fig. 8(a) we present the probability P̂(e ∈ GC) (dashed
line), that a random edge in a configuration model network
with an exponential degree distribution resides on the giant
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FIG. 9. Analytical results for the marginal degree distribution
P̃(k|GC) (solid line) of end-nodes of randomly sampled edges, the
marginal degree distribution P̃(k|B, GC) (dotted line) of end-nodes
of randomly sampled bredges, and the marginal degree distribution
P̃(k|NB, GC) (dashed line) of randomly sampled nonbredge edges,
on the giant component of a configuration model network with
an exponential degree distribution and mean degree c = 2.5. The
analytical results are in excellent agreement with the results obtained
from computer simulations (circles).

component, obtained from Eq. (35), and the probability P̂(e ∈
FC) (dotted line) that a random edge resides on one of the
finite components, as a function of the mean degree c. In
Fig. 8(b) we present the probability P̂(e ∈ B) that a random
edge in a configuration model network with an exponential
degree distribution is a bredge (solid line), as a function of
c, obtained from Eq. (73). We also present the probability
P̂(e ∈ B, GC) (dashed line) that a randomly selected edge in
the network is a bredge that resides in the giant component
and the probability P̂(e ∈ B, FC) (dotted line) that a randomly
selected edge in the network is a bredge that resides in one of
the finite components. The analytical results are found to be in
excellent agreement with the results of computer simulations
(circles), performed for an ensemble of configuration model
networks of N = 104 nodes.

In Fig. 9 we present analytical results for the marginal
degree distribution P̃(k|GC) of end-nodes of randomly se-
lected edges (solid line), the marginal degree distribution
P̃(k|B, GC) of end-nodes of bredges (dotted line) and the
marginal degree distribution P̃(k|NB, GC) of nonbredge
edges (dashed line) on the giant component of a configuration
model network with an exponential degree distribution. The
analytical results are in excellent agreement with the results
obtained from computer simulations (circles).

In Fig. 10 we present analytical results for the correlation
coefficients R(GC) and R(B, GC) between the degrees k
and k′ of the end-nodes of edges that reside on the giant
component (solid line) and bredges that reside on the giant
component (dotted line), respectively, as a function of the
mean degree c in configuration model networks with ex-
ponential degree distributions. The analytical results are in
excellent agreement with the results obtained from computer
simulations (circles).
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FIG. 10. Analytical results for the correlation coefficient R(GC)
(solid line) between the degrees k and k′ of end-nodes of edges
and the correlation coefficient R(B, GC) (dotted line) between the
end-nodes of bredges that reside on the giant component of a config-
uration model network with an exponential degree distribution, as a
function of the mean degree c. The analytical results are in excellent
agreement with the results obtained from computer simulations
(circles).

C. Configuration model networks with
power-law degree distributions

Consider a configuration model network with a power-law
degree distribution of the form P(k) ∼ k−γ , where kmin �
k � kmax. For γ � 2 the mean degree diverges in the limit
of kmax → ∞. For 2 < γ � 3 the mean degree is bounded
while the second moment diverges. For γ > 3 both moments
are bounded. Here we focus on the case of γ > 2, in which the
mean degree, 〈K〉, is bounded even for kmax → ∞. We choose
kmin = 1, for which there is phase coexistence of the giant
component and the finite tree components and kmax = 100.
The normalized degree distribution is given by

P(k) = A(γ , kmax) k−γ , (140)

where the normalization factor is A(γ , kmax) = [ζ (γ ) −
ζ (γ , kmax + 1)]−1, the function ζ (γ , k) is the Hurwitz ζ func-
tion and ζ (γ ) = ζ (γ , 1) is the Riemann ζ function [53]. The
mean degree is given by 〈K〉 = A(γ , kmax)/A(γ − 1, kmax)
and the second moment of the degree distribution is given
by 〈K2〉 = A(γ , kmax)/A(γ − 2, kmax). Inserting the degree
distribution of Eq. (140) into Eqs. (6) and (3) we obtain

G0(x) = A(γ , kmax)[Liγ (x) − xkmax+1�(x, γ , kmax + 1)],
(141)

and

xG1(x) = A(γ − 1, kmax)[Liγ−1(x)

− xkmax+1�(x, γ − 1, kmax + 1)], (142)

where �(x, γ , k) is the Lerch transcendent and Liγ (x) is the
polylogarithm function [54]. The values of the parameters
g̃ and g are determined by Eqs. (2) and (5). Unlike the
ER network and the configuration model network with an
exponential degree distribution, here we do not have closed
form analytical expressions for g and g̃. However, using the
expressions above for G0(x) and G1(x), the values of g and g̃
can be easily obtained from a numerical solution of Eqs. (2)
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FIG. 11. (a) Analytical results for the probability P̂(e ∈ GC)
(dashed line) that a randomly sampled edge in a configuration model
network with a power-law degree distribution resides on the giant
component, as a function of the mean degree c. The complementary
probability P̂(e ∈ FC) (dotted line) that a randomly sampled edge
resides on one of the finite tree components is also shown; (b) ana-
lytical results for the probability P̂(e ∈ B) (solid line) that a random
edge is a bredge, as a function of the mean degree c. The probability
P̂(e ∈ B) is equal to the sum of two components: the probability
P̂(e ∈ B, GC) (dashed line) that a randomly sampled edge is a bredge
that resides on the giant component and the probability P̂(e ∈ B, FC)
(dotted line) that a randomly sampled edge is a bredge that resides
on one of the finite components. The analytical results are in ex-
cellent agreement with the results of computer simulations (circles),
performed for networks of N = 104 nodes and kmax = 100.

and (5). Using the Molloy-Reed criterion [24,25], we find that
for kmax = 100 the percolation threshold is c0 	 1.219, where
γ0 	 3.378.

In Fig. 11(a) we present the probability P̂(e ∈ GC) that
a random edge in a configuration model network with a
power-law degree distribution resides on the giant component
(dashed line), obtained from Eq. (35), as a function of c. We
also present the complementary probability P̂(e ∈ FC) that a
random edge resides on one of the finite components (dotted
line). In Fig. 11(b) we present the probability P̂(e ∈ B) that a
random edge in a configuration model network with a power-
law degree distribution is a bredge (solid line), as a function
of c, obtained from Eq. (73). We also present the probability
P̂(e ∈ B, GC) (dashed line) that a randomly selected edge is a
bredge that resides on the giant component and the probability
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FIG. 12. Analytical results for the marginal degree distribution
P̃(k|GC) of end-nodes of randomly selected edges (solid line), the
marginal degree distribution P̃(k|B, GC) of end-nodes of bredges
(dotted line) and the marginal degree distribution P̃(k|NB, GC) of
end-nodes of nonbredge edges (dashed line) on the giant compo-
nent of a configuration model network with a power-law degree
distribution with an exponent γ = 2.5, mean degree c = 1.54, and
kmax = 100. The analytical results are in excellent agreement with
the results obtained from computer simulations (circles).

P̂(e ∈ B, FC) (dotted line) that a randomly selected edge is a
bredge that resides on one of the finite tree components. The
analytical results are in excellent agreement with the results
of computer simulations (circles), performed for an ensemble
of configuration model networks of N = 104 nodes.

In Fig. 12 we present analytical results for the marginal
degree distribution P̃(k|GC) of end-nodes of randomly se-
lected edges (solid line), the marginal degree distribution
P̃(k|B, GC) of end-nodes of bredges (dotted line) and the
marginal degree distribution P̃(k|NB, GC) of nonbredge
edges (dashed line) on the giant component of a configuration
model network with a power-law degree distribution. The
analytical results are in excellent agreement with the results
obtained from computer simulations (circles).

In Fig. 13 we present analytical results for the correlation
coefficient R(GC), between the degrees k and k′ of end-nodes
of edges (solid line) and the correlation coefficient R(B, GC)
between the end-nodes of bredges (dotted line) that reside on
the giant component of a configuration model network with
a power-law degree distribution, as a function of the mean
degree c. The analytical results are in excellent agreement
with the results obtained from computer simulations (circles)
except for the dilute network regime where there are notice-
able deviations due to finite-size effects.

In the case of infinite networks, one may consider the
limit of kmax → ∞. In this limit the expression for the degree
distribution is simplified to P(k) = k−γ /ζ (γ ). For γ > 2 the
mean degree is given by 〈K〉 = ζ (γ − 1)/ζ (γ ) and for γ > 3
the second moment is given by 〈K2〉 = ζ (γ − 2)/ζ (γ ). The
generating functions are simplified to G0(x) = Liγ (x)/ζ (γ )
and xG1(x) = Liγ−1(x)/ζ (γ − 1). Using the Molloy-Reed
criterion [24,25], we find that for kmax → ∞ the percolation
threshold is c0 	 1.196, where γ0 	 3.478.
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FIG. 13. Analytical results for the correlation coefficient R(GC),
between the degrees k and k′ of end-nodes of edges (solid line)
and the correlation coefficient R(B, GC) between the end-nodes of
bredges (dotted line) that reside on the giant component of a con-
figuration model network with a power-law degree distribution, as a
function of the mean degree c with kmax = 100. The analytical results
are in excellent agreement with the results obtained from computer
simulations (circles), except for the dilute network regime just above
the percolation transition. In this regime the giant component is
small and its size fluctuates between different network instances.
The data points in this regime were averaged over 100 network
instances, while all the other data points were averaged over 20
network instances.

VIII. DISCUSSION

Transportation, communication and many other networks
consist of a single connected component, in which there is at
least one path connecting any pair of nodes. This property is
essential for the functionality of these networks. The failure
of a node or an edge disconnects the paths that go through
the failed node or edge. In case that the failed node is an AP
or the failed edge is a bredge, the disconnected paths have
no substitute. As a result, a whole patch of nodes becomes
disconnected from the rest of the network. Networks that
do not include any APs and bredges are called biconnected
networks [55,56]. In such networks, any node i is connected
to any other node j by at least two nonoverlapping paths.
While biconnected networks are resilient to the deletion of
a single node or a single edge, they are still vulnerable to
multiple node or edge deletions. This is due to the fact that
the deletion of a node or edge may turn other nodes into
APs and other edges into bredges. Their subsequent deletion
would disconnect other nodes from the rest of the network.
The properties of APs and bredges are utilized in optimized
algorithms of network dismantling [19–22]. The first stage of
these dismantling processes is the decycling stage in which
one node is deleted in each cycle, transforming the network
into a tree network. In tree networks all the nodes of degrees
k � 2 are APs and all the edges are bredges. Thus the deletion
of such nodes or edges efficiently breaks the network into
many small components.

The properties of bredges in a wide range of real-world
empirical networks were recently studied [49]. The fraction
of bredges in each network was calculated using an algorithm
based on depth-first search. An ensemble of configuration
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model networks, whose degree distribution coincides with the
degree sequence of the empirical network, was generated us-
ing degree-preserving randomization. The fraction of bredges
in each ensemble was calculated both numerically and using a
generating function formalism. It was found that the fraction
of bredges in the randomized ensembles is very similar to
their fraction in the corresponding empirical networks. This
indicates that the information about the number of bredges
is captured in the degree distribution. Therefore, correlations
and other structural properties that distinguish an empirical
network from the corresponding configuration model network
were found to have little effect on the number of bredges.

The edges in a network can be considered as the building
blocks of paths connecting pairs of nodes. Pairs of nodes that
reside on the same network component may be connected to
each other by multiple paths. Among the paths connecting
a pair of nodes i and j, the shortest paths are of particular
importance because they are likely to provide the fastest and
strongest interactions. The statistical properties of the shortest
paths are captured by the distribution of shortest path lengths
(DSPL). The DSPL can be used to characterize the large scale
structure of the network, in analogy to the degree destribution
which is used to characterize the local structure. Central
measures of the DSPL such as the mean distance [6,57–
59] and extremal measures such as the diameter [60] were
studied. However, apart from a few studies [26,61–66] the
DSPL has not attracted nearly as much attention as the degree
distribution. Recently, an analytical approach was developed
for calculating the DSPL in the (ER) network [67], followed
by more general formulations that apply to configuration
model networks [43,68,69], to modular networks [70] and to
networks that form by kinetic growth processes [71–73].

The importance of a given edge e in a network may be
quantified by its betweeness centrality, which is the number
of pairs of nodes i and j, such that of shortest paths between
them pass through e [74,75]. In general, the calculation of the
betweeness centrality of an edge cannot be done locally. It
involves the calculation of the shortest paths between all the
pairs of nodes in the network, which requires access to the
structure of the whole network [76]. However, in case that
an edge e is a bredge, one can easily obtain its betweeness
centrality. Consider a bredge e that resides on the giant
component whose size is NGC. If the deletion of e detaches
a tree component of size NFC from the giant component, the
betweeness centrality of e is given by βe = NFC(NGC − NFC).

The damage exerted on a network on deletion of a bredge
can be evaluated using a centrality measure called bridgeness
[49]. The bridgeness of a bredge e that resides on the giant
component is defined as the number of nodes disconnected
from the giant component on deletion of e. The bridgeness
of bredges that reside on the finite components is zero. Using
a generating function formulation derived earlier to calculate
the size distribution of the finite tree components [77,78],
Wu et al. obtained the bridgeness distribution in configuration
model networks with Poisson, exponential and power-law de-
gree distributions [49]. It was found that the mean bridgeness
diverges at c → c+

0 and and monotonically decreases as the
mean degree is increased.

Another useful measure of the importance of an edge e in a
network is given by its range ρ, which is the distance between

its end-nodes i and i′ in the reduced network from which e is
removed [79,80]. In the special case in which e is a bredge,
its range is ρ = ∞, because on deletion of e its end-nodes
land on different network components. For edges that are not
bredges the range ρ � 2 is finite. It is equal to the shortest
path length between i and i′ in the reduced network. It also
satisfies ρ = 
 − 1 where 
 is the length of the shortest cycle
that includes the edge e in the original network. Edges whose
range ρ is large are considered important because on their
removal the shortest alternate path between i and i′ is large.
In practical applications, large ρ implies long and potentially
costly delays in communication and transportation in case that
the edge e fails.

In Fig. 14 we present ER networks of N = 100 nodes with
mean degrees c = 1.1 [Fig. 14(a)] and c = 1.7 [Fig. 14(b)].
In both networks the giant component coexists with many
finite components. The nonbredge edges (solid lines) connect
pairs of nodes that reside on the 2-core of the giant component
[55,56]. The giant component is decorated by tree branches,
on which all the edges are bredges. The bredge that connects
each tree branch to the 2-core of the giant component is called
root bredge (dashed line). The end-node of the root bredge
that resides on the 2-core is called root end-node. All the other
bredges (dotted lines) connect pairs of nodes that reside on the
tree branches, which are not on the 2-core. The average size
of the tree branches that decorate the giant component is given
by [49]

NT = 1

1 − G′
1(1 − g̃)

, (143)

which is the sum of a geometric series whose ratio G′
1(1 − g̃)

is the excess degree of the end-nodes of the finite component
side of the bredges, whose degree distribution is given by
Eq. (102). Thus, the fraction of root end-nodes among the
end-nodes on the GC side of bredges on the giant component
is 1/NT . The degree distribution of the root end-nodes, which
reside on the 2-core of the giant component, is given by

P̃(K2-CORE = k|B, GC)

= [1 − (1 − g̃)k−1] − (k − 1)g̃(1 − g̃)k−2

g̃[1 − G′
1(1 − g̃)]

P̃(k). (144)

The degree distribution of the end-nodes on the GC sides
of all other bredges, which reside on the 1-core of the giant
component is given by

P̃(KGC∩2-CORE = k|B, GC) = (k − 1)(1 − g̃)k−2

G′
1(1 − g̃)

P̃(k).

(145)
The overall distribution of the degrees KGC, given by

Eq. (101), is recovered by

P̃(KGC = k|B, GC) = 1

NT
P̃(K2-CORE = k|B, GC)

+
(

1− 1

NT

)
P̃(KGC∩2-CORE =k|B, GC).

(146)

The distinction between root bredges and all the other
bredges on the giant component may be useful for optimized
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FIG. 14. Erdős-Rényi networks of N = 100 nodes with mean
degree c = 1.1 (a) and c = 1.7 (b), which exhibit a coexistence be-
tween a giant component and finite tree components. The nonbredge
edges (solid lines) connect pairs of nodes that reside on the 2-core of
the giant component. In the more dilute case (a) the 2-core consists of
a single cycle, while in the denser case (b) it exhibits a complex web
of cycles. The root bredges (dashed lines) connect the tree branches
on the giant component to the 2-core. All the other bredges (dotted
lines) connect pairs of nodes on that reside on the tree branches of the
giant component and pairs of nodes on the finite tree components.

dismantling algorithms and targeted attacks. This is due to the
fact that the deletion of a root bredge disconnects the whole
tree branch that is held by this bredge. In contrast, random
deletion of bredges may require a large number of deletion
steps in order to chop each tree branch from the 2-core of the
giant component.

IX. SUMMARY

We presented analytical results for the statistical properties
of edges and bredges in configuration model networks. To
quantify the abundance of bredges, we calculated the proba-
bility P̂(e ∈ B) that a random edge e in a configuration model
network with a given degree distribution P(k) is a bredge. We
also obtained the conditional probability P̂(e ∈ B|k, k′) that a
random edge whose end-nodes are of degrees k and k′ is a
bredge. Using Bayes’ theorem, we obtained the joint degree
distribution P̂(k, k′|B) of the end-nodes of randomly sampled
bredges. We also studied the distinct properties of bredges on
the giant component and on the finite components. On the
finite components all the edges are bredges, namely P̂(e ∈
B|FC) = 1, and there are no degree-degree correlations. We
calculated the probability P̂(e ∈ B|GC) that a random edge
on the giant component is a bredge. We also obtained the
joint degree distribution P̂(k, k′|B, GC) of the end-nodes of
bredges and the joint degree distribution P̂(k, k′|NB, GC) of
the end-nodes of NB edges on the giant component. Surpris-
ingly, it was found that the degrees k and k′ of the end-nodes
of bredges are correlated, while the degrees of the end-nodes
of nonbredge edges are uncorrelated. This implies that all
the degree-degree correlations on the giant component are
concentrated on the bredges. We calculated the covariance
�(B, GC) and found that it is negative, which means that
bredges on the giant component tend to connect high degree
nodes to low degree nodes and vice versa. We applied this
analysis to ensembles of configuration model networks with
degree distributions that follow a Poisson distribution (Erdős-
Rényi networks), an exponential distribution and a power-
law distribution (scale-free networks). The implications of
these results were discussed in the context of common attack
scenarios and network dismantling processes.
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