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Reckoning of pairwise dynamical correlations significantly improves the accuracy of mean-field theories and
plays an important role in the investigation of dynamical processes in complex networks. In this work, we
perform a nonperturbative numerical analysis of the quenched mean-field theory (QMF) and the inclusion of
dynamical correlations by means of the pair quenched mean-field (PQMF) theory for the susceptible-infected-
susceptible model on synthetic and real networks. We show that the PQMF considerably outperforms the
standard QMF theory on synthetic networks of distinct levels of heterogeneity and degree correlations, providing
extremely accurate predictions when the system is not too close to the epidemic threshold, while the QMF
theory deviates substantially from simulations for networks with a degree exponent γ > 2.5. The scenario for
real networks is more complicated, still with PQMF significantly outperforming the QMF theory. However,
despite its high accuracy for most investigated networks, in a few cases PQMF deviations from simulations are
not negligible. We found correlations between accuracy and average shortest path, while other basic network
metrics seem to be uncorrelated with the theory accuracy. Our results show the viability of the PQMF theory
to investigate the high-prevalence regimes of recurrent-state epidemic processes in networks, a regime of high
applicability.
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I. INTRODUCTION

Pairwise approximation constitutes a valuable tool recur-
rently used for understanding dynamical processes in graphs
(networks or lattices) and, particularly, epidemic spreading
on the top of complex networks [1–3]. This approach outper-
forms ordinary mean-field approximations, extending dynam-
ical equations from one site to the pair level [4]. Extensions to
higher-order methods using n-cluster approximations [5] can
lead to more accurate theories at the cost of increasing the
theoretical complexity. While being of limited application for
low-dimensional systems near critical phase transitions [4],
pair approximations can be remarkable improvements with
respect to the one-site theory either if we are not too close
to the transition [6] or if the system dimension is large such as
the case of random graphs [7,8].

For dynamical processes on the top of complex networks,
heterogeneities play a central role [9,10] that has to be
taken into account to reproduce the most fundamental results
[11,12]. Particularly, the interplay between structural het-
erogeneity and dynamical correlations has been investigated
using heterogeneous pair approximations [7,8,13–15]. We
consider the susceptible-infected-susceptible (SIS) model [9],
whose dependence on heterogeneities serves as a reference
for many other dynamical processes [9,16]. In the SIS model
individuals are represented by vertices of a network and can be

*diogo.henrique@ufv.br
†francisco@icmc.usp.br
‡silviojr@ufv.br

in either susceptible or infected states. Infected vertices heal
spontaneously at rate μ and infect their susceptible neighbors
at rate λ per contact. A central aspect of spreading phenom-
ena is the epidemic threshold λc, above which an extensive
fraction of the population is infected or, in other words, the
epidemic prevalence is finite.

Heterogeneities of networks can change the behavior of the
threshold drastically. If the network possesses a heavy-tailed
degree distribution in the form of a power law P(k) ∼ k−γ , the
epidemic threshold of the SIS model is 0 in the thermodynam-
ical limit when the network size N → ∞ [17–19]. This in-
volves a very special type of transition from an active and fluc-
tuating to an absorbing state [20,21], which can be knocked
out with small modifications of the SIS dynamics [22,23].
The SIS transition on uncorrelated power-law networks can
be of two types [20–22]: If the degree exponent is small (γ <

2.5) the activation is triggered by a densely connected core
identified by the maximal index of a k-core decomposition
[20]. If the degree exponent is large (γ > 2.5), then the
activation is ruled by the hubs. The latter involves long-term
epidemic activity on star subgraphs, composed of a single hub
(the center) and its khub nearest neighbors (the leaves), through
a feedback mechanism where the hub infects the leaves, which
in turn reinfect the hub. This activity must last for sufficiently
long times to permit the mutual activation of hubs which are
not directly connected (long-range) [17,18,21].

Heterogeneities can be included in mean-field approxima-
tions in different forms [10]. Two widely used approximations
are the heterogeneous mean-field (HMF) [11] and quenched
mean-field (QMF) [12,24] theories. The former consists of a
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coarse-graining where only the degree of the nodes and the
statistical degree correlations are included in the dynamical
equations for the probability that a node is infected [11,25]
and neglects the dynamical correlations. The latter includes
the full connectivity structure of the networks but still neglects
dynamical correlations assuming that the states of nearest
neighbors are independent. Due to the aforementioned nature
of the SIS activation mechanisms, the explicit inclusion of
the network connectivity structure, as in the QMF approach,
is imperative to construct mean-field theories of the SIS
model since heterogeneous mixing, which corresponds to an
annealed network [20], will destroy some localization effects
such as, for example, the self-sustained activity in a star
subgraph.

Despite the detailed microscopic description of the QMF
theory, neglecting dynamical correlations in the SIS model
can lead to modest accuracy with significant deviations from
simulations [26–28] if the epidemic involves, for example,
activation localized in the hubs that spreads to the rest of
network [17,20]. Indeed, the threshold predicted by the QMF
theory for the SIS model, given by the inverse of the largest
eigenvalue of the adjacency matrix [12,19] (see Sec. II for
details), involves a localized phase on random power-law
networks with degree exponent γ > 2.5 [29]. Dynamical cor-
relations reckoned by individual pairwise interactions greatly
improve the predictions of the epidemic thresholds of the
QMF approach in the so-called pair QMF (PQMF) theory
[27]; see Sec. II for details. Indeed, PQMF theory [2,3,28,30]
and modified versions of it [31–34] have been intensively
investigated recently. The asymptotic scaling exponent of the
threshold as a function of the network size is unchanged when
the pair approximation is included in the QMF theory [27,28].

Since PQMF theory has been mainly analyzed perturba-
tively in the limit of very low prevalence to investigate the
position of the epidemic thresholds, Matamalas et al. [31]
claimed that it has limitations to compute high-epidemic-
incidence regimes and proposed that a microscopic Markov
chain approach (MMCA) [35], which is a discrete-time ver-
sion of the QMF theory, could be used instead. However,
a nonperturbative approach is possible through numerical
integration of both QMF and PQMF dynamical equations.
Since large discrepancies between discrete- and continuous-
time approaches can be present in the SIS dynamics [36], a
nonperturbative analysis of QMF and PQMF theories is nec-
essary. We develop nonperturbative analyses of both QMF and
PQMF theories for SIS on networks using numerical integra-
tion of the corresponding dynamical equations. We consider
both large synthetic networks generated with the Weber-Porto
model [37] and real networks with different levels of degree
correlation. We address regimes not asymptotically close to
the epidemic threshold since the mean-field theories fail in
predicting very low densities of infected vertices [28,38].
However, numerical analyses support that this asymptotic
scaling is confined to a small interval near λ = λc → 0 such
that the mean-field theories are still applicable beyond this
region (see Fig. 1). We report that PQMF theory predicts
very accurately the epidemic prevalence in synthetic networks
for all ranges of degree exponent (γ < 2.5 and γ > 2.5) and
correlations (assortative, disassortative, and uncorrelated) in-
vestigated, while QMF theory presents significant deviations

FIG. 1. Epidemic prevalence around the transition threshold
λc = 1/�(1) for uncorrelated configuration model networks with
γ = 2.3, kmin = 3, and kmax = 2

√
N . Simulations are represented by

solid lines with symbols, and numerical integrations of the QMF
equation are shown by the dashed lines. Horizontal arrows indicate
the interval where curves depart from linearity.

for γ > 2.5. For real networks, in general, PQMF theory con-
siderably outperforms QMF but also presents nonnegligible
deviations from simulations in some cases.

The remainder of the paper is organized as follows. The
mean-field theories used in this work are discussed in Sec. II.
Comparison of numerical integration and stochastic simula-
tions is performed in Sec. III, while our concluding remarks
are presented in Sec. IV. Appendixes A, B, and C present
technical details of our numerical analyses.

II. MEAN-FIELD THEORIES

We investigate the SIS model in a connected, undirected,
and unweighted network with i = 1, . . . , N vertices whose
structure is encoded in the adjacency matrix Ai j defined by
Ai j = 1 if i and j are connected and Ai j = 0 otherwise. The
healing rate is fixed to μ = 1 without loss of generality.

The probability that a vertex i is infected, represented by
ρi, evolves as [27]

dρi

dt
= −ρi + λ

∑
j

φi jAi j, (1)

where φi j is the probability that a vertex i is susceptible and
its nearest neighbor j is infected. Equation (1) is exact but
not closed. A closed system is obtained taking the one-site
approximation φi j ≈ ρi(1 − ρ j ) that corresponds to the QMF
theory [24,29]:

dρi

dt
= −ρi + λ(1 − ρi )

N∑
j=1

Ai jρ j . (2)

The QMF epidemic threshold is given by λQMF
c �(1) =

1, where �(1) is the largest eigenvalue of the adjacency
matrix Ai j .
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The PQMF theory includes dynamical correlations consid-
ering the evolution of φi j which, in its complete but not closed
form, depends on the triplets; see Ref. [27]. The PQMF theory
consists of approximating the triplets [Ai, Bj,Cl ] in which i
and l are both connected to j by

[Ai, Bj,Cl ] ≈ [Ai, Bj][Bj,Cl ]

[Bj]
. (3)

Here A, B, and C are the states of the vertices that, in the SIS
case, can be either infected or susceptible. The approximation
given by Eq. (3) considers that (i, j, l ) does not form a
triangle, i.e., i and l are connected to j but not to each
other. Actually, the effects of clustering have been recently
investigated [34] for connected random networks and it was
shown that even in networks with a high cluster coefficient
and plenty of triangles, the approximation given by Eq. (3)
performs very well for the steady state. The final PQMF
equation for φi j becomes

dφi j

dt
= −(2 + λ)φi j + ρ j + λ

∑
l

ωi jφ jl

1 − ρ j
(Ajl − δil )

− λ
∑

l

φi jφil

1 − ρi
(Ail − δl j ), (4)

in which ωi j = 1 − φi j − ρi. Equations (1) and (4) form a
closed system of N + M equations where M = 1

2

∑
j ki is the

number of edges of the network. More details of the derivation
are given in Ref. [27].

The epidemic threshold within the PQMF framework
is given by the transcendent equation λc	

(1)(λc) = 1, [28]
where 	(1) is the largest eigenvalue of the weighted adjacency
matrix Bi j given by

Bi j = 2 + λ

2λ + 2

Ai j

1 + λ2ki
2λ+2

. (5)

See [28] for the derivation of Eq. (5).
Very close to the threshold, the epidemic prevalence ρ,

defined as ρ = 1
N

∑
i ρi, approaches 0 following a power law

in the form ρ � a1(λ − λc)β , where β is a critical exponent
[4] and a1 is prefactor that may depend on the network size.
In both QMF [29,39] and PQMF [28] theories it can be shown
that βQMF = βPQMF = 1, while aQMF or aPQMF can be expressed
in terms of the principal eigenvector (PEV) {v(1)

i } of either Ai j

or Bi j (λc), respectively, as [28,29]

a =
∑N

i=1 v
(1)
i

N
∑N

i=1

[
v

(1)
i

]3 . (6)

These results are straightforwardly derived when the network
presents a spectral gap �(1) � �(2), where �(2) is the second
largest eigenvalue of the adjacency matrix (see, e.g.. [28] and
[29]). However, it was shown that βQMF = 1 is always true
[40] and the same is expected for the PQMF theory since
pair approximations should not change the universality class
predicted by the one-vertex theory [5].

The mean-field exponent β = 1 does not match the rigor-
ous results obtained by Mountford et al. [38] in the thermody-

namical limit N → ∞, where

ρ ∼

⎧⎪⎪⎨
⎪⎪⎩

λ
1

3−γ if 2 < γ < 5/2,

λ2γ−3

(ln 1
λ

)γ−2 if 5/2 < γ < 3,

λ2γ−3

(ln 1
λ

)2γ−4 if γ > 3,

(7)

according to which β > 1 for any γ > 2. For large networks
with γ < 5/2, where the epidemic threshold is very accu-
rately reproduced by the QMF theory, the numerical integra-
tion performed in Ref. [28] confirms the deviation from the
exact result for λ approaching λQMF

c = 1
�(1) , while stochas-

tic simulations are in agreement with the rigorous results.
However, the simulations show a preasymptotic behavior fully
consistent with βQMF = 1. On a linear scale [41], the region
that departs from linearity is squeezed around λ = λc → 0
as the network size increases, as indicated by the horizontal
arrows in Fig. 1, in which simulations and QMF theory are
compared. The slope of the linear region decreases with size
since aQMF also does: We found aQMF = 0.00382 for N = 107

and aQMF = 0.00130 for N = 108. Finally, we see that QMF
is not able to capture quantitatively the amplitude of the
linear region observed in simulations reinforcing the need of
nonperturbative analyses of the PQMF theory.

A closed solution for Eqs. (1) and (4) can be derived for the
particular case of homogeneous networks where P(k) = δk,m

for which ρi = ρ and φi j = φ. The expression for stationary
epidemic prevalence is [42]

ρ̄ = λ − λc

m−1 + λ − λc
, λc = 1

m − 1
. (8)

III. RESULTS

We numerically integrated QMF and PQMF equations
using a fourth-order Runge-Kutta method with time step δt =
10−2 to 10−1. Initial conditions consistent with the exact
closure equations relating pairwise and single vertex proba-
bilities such as [Si, I j] + [Ii, I j] = [I j] must be chosen and the
steady state is insensitive to a particular choice. We performed
stochastic simulations of the SIS dynamics on networks using
an optimized Gillespie algorithm [44]; see Appendix C. The
absorbing states, which are rigorously the unique real sta-
tionary state in finite-size networks, were circumvented using
quasistationary simulations [45]; see Appendix B.

A. Synthetic networks

A simple metrics to quantify the correlations is the av-
erage degree of the nearest neighbors of vertices with a
given degree k [9,46], represented by κnn(k). The functional
form of κnn(k) reveals correlation patterns of the network.
If κnn is an increasing function of k, the network presents
assortative correlations where vertices of similar degree tend
to be connected. Conversely, if κnn decreases with k the
network has disassortative correlations where vertices of high
degree tend to be connected with vertices of low degree.
Finally, if κnn does not depend on the degree, the network
is said to be uncorrelated or neutral and assumes the value
κnn = 〈k2〉/〈k〉 [9].

We investigated networks with distributions P(k) ∝ k−γ

and k = kmin, . . . , kmax, where kmin = 3. For γ < 3 we used
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kmax = 2
√

N , which permits us to build networks without
degree correlation with the uncorrelated configuration model
[47]. The factor 2 helps to accelerate the convergence to the
asymptotic limit where both N → ∞ and kmax → ∞ [28]. For
γ > 3, a rigid cutoff given by P(kmax)N = 1 [48] was used
to suppress multiple (localized) transitions [49] and facilitate
threshold determination. Degree correlations were included
using the benchmark model proposed by Weber and Porto
[37], hereafter called the Weber-Porto configuration model;
see Appendix A. The dependence κnn(k) ∝ kα was investi-
gated where α < 0, α = 0, and α > 0 correspond to disassor-
tative, neutral, and assortative correlations, respectively. All
investigated networks are connected.

Epidemic prevalences obtained from theories and stochas-
tic simulations are compared in Fig. 2. PQMF outperforms
QMF theory in all investigated cases, as intuitively expected
since the former includes higher-order correlations. While
QMF theory deviates from simulation for regimes of high
densities of infected vertices, PQMF cannot be distinguished
from simulations in the presented scales. Under low-density
regimes, QMF and PQMF agree very well and are indis-
tinguishable from simulations for γ = 2.3 [Fig. 2(a)], while
larger deviations of QMF can be seen for larger values of
γ [Figs. 2(b) and 2(c)]. The accuracy of the theories at low
prevalence is better for assortative and worse for disassortative
networks compared with the neutral case. Another interesting
dependence on the assortativity can be observed in these
curves. For low prevalences, assortative and disassortative net-
works possess, respectively, higher and lower densities com-
pared with the uncorrelated networks. At high prevalences, the
converse is observed, where disassortative networks present
higher densities than the assortative and neutral networks. The
same behavior is observed for all values of γ , indicating that
it is related to the degree correlations. The behavior at low
densities can be explained in terms of the reduced capacity to
transmit infection when hubs are surrounded by low-degree
vertices in the disassortative case rather than being directly
connected with higher probability in the assortative case. We
cannot provide simple arguments for the inverted dependence
on the assortativity degree at high densities, but it is very
precisely reproduced by the PQMF theory. We also simulated
the SIS on larger networks with N = 107 vertices and the level
of accuracy of the mean-field theories is similar.

We also investigate the role of the heterogeneity compar-
ing the PQMF theory with a pair homogeneous mean-field
(PHMF) theory using Eq. (8) with m replaced by the average
degree 〈k〉 of the network [50,51]. The densities of infected
vertices obtained in both pairwise approaches are shown in
Fig. 3. Beyond the expected discrepancy for describing the
low-prevalence regimes, since one theory predicts a finite and
the other a vanishing threshold, the regime of high epidemic
prevalence is affected by the inclusion of heterogeneity. As
one would expect, the more heterogeneous networks present
the larger discrepancies between homogeneous and heteroge-
neous theories.

B. Real networks

Real networks usually present some degree of correlation,
and in many cases, the patterns can be quite complex,

FIG. 2. Epidemic prevalence as a function of the infection rate
for Weber-Porto configuration model networks with N = 106 ver-
tices, degree exponent (a) γ = 2.3, (b) γ = 2.8, and (c) γ = 3.5, and
different levels of degree correlations. Symbols represent stochastic
simulation; solid and dashed lines, the numerical integration of the
QMF and PQMF theories, respectively. Bottom inset: Zoom-in of
low prevalence. Top inset: Zoom-in of high prevalence.

exhibiting both assortative and disassortative correlations for
distinct ranges of degree [9,52]. Therefore the comparison
between mean-field theories and simulations are necessary in
order to determine to which extent the accuracy observed in
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FIG. 3. Comparison of PQMF (dashed lines) and PHMF (solid
lines) theories for uncorrelated networks with different levels of
heterogeneity. The network size is N = 106.

synthetic networks holds in the real-world counterparts. We
selected some networks with different levels of heterogeneity,
sizes, and correlations recently used in the investigation of
epidemic processes [28,53,54]. Only the largest connected
components are used if there is more than one. For detailed
information about the original references for all the networks
see Refs. [55,56].

Figure 4 presents the prevalence as a function of the
infection rate for 12 real networks. We remark that data
asymptotically close to the epidemic threshold are known to
mismatch simulations [28] and are beyond the scope of the
present work. In some cases, QMF and PQMF are indistin-
guishable from each other and agree almost perfectly with
simulations in the scale presented in these figures. In other
cases, QMF theory deviates considerably from simulations
while PQMF theory remains accurate. In order to quantify
the differences we define the relative deviation of densities
obtained in simulations (ρsim) with the QMF theory (ρQMF) as

ηQMF =
∫ λ2

λ1
[ρQMF(λ) − ρsim(λ)]dλ

∫ λ2

λ1
ρsim(λ)dλ

, (9)

where λ1 and λ2 are the initial and final infection rates in the
simulations presented in Fig. 4, and an equivalent definition
of ηPQMF for the PQMF theory. The intervals [λ1, λ2] were
chosen to include sufficiently high densities to guarantee that
the effects of the absorbing states are small and prevalences
are not close to 1. The relative deviations are listed in Table I.
The positivity of η shows that the mean-field theories overes-
timate the density obtained in simulations as expected since
dynamical correlations, pruned in mean-field theories, reduce
the spreading capacity of the epidemic process. As can be
seen, we have ηPQMF � ηQMF such that PQMF is always more
precise than QMF. Three networks present significant devia-
tions of the PQMF theory from the simulations, namely, for

FIG. 4. Epidemic prevalence on real networks. Symbols represent stochastic simulations, while solid and dashed lines represent the
numerical integration of the QMF and PQMF equations, respectively. In each panel, the usual name and size of the networks are given.
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TABLE I. Relative deviations and inverse participation ratios for
QMF and PQMF theories applied to real networks.

Network ηQMF ηPQMF Y (1)
QMF Y (1)

PQMF

AS Caida 0.032 0.0022 0.0240 0.0139
Amazon 3/2/03 0.75 0.24 0.106 0.0114
AstroPhys 93-03 0.035 0.013 0.0045 0.0043
CiteSeer 0.067 0.010 0.0177 0.0109
Jung 0.0079 0.0021 0.0478 0.0335
S 838 0.28 0.070 0.179 0.0340
Slashdot 0.032 0.0011 0.144 0.0347
URV email 0.022 0.0028 0.0096 0.0087
Cora 0.152 0.037 0.0100 0.0090
Air Traffic 0.38 0.066 0.0191 0.0154
Gnutella 8/24/02 0.17 0.0066 0.214 0.0800
cElegans Neural 0.057 0.0078 0.0189 0.0175

Amazon customers, electronic circuit S838, and Air Traffic
networks, with 24%, 7%, and 6.6% of deviation, respectively.

C. Accuracy versus structural properties

The gain of PQMF theory with respect to QMF in real
networks is expressive but it still deviates from simulations
in some cases, as shown in Table I. One central question is to
determine when either QMF or PQMF performance is satis-
factory. Near the transition point, when the prevalence is very
small, a relation between the accuracy and the localization
of the PEV of the weighted adjacency matrices obtained in
the linearization has been proposed [28]. This is justified by
the fact that a leading contribution to the probability that a
vertex i is infected in the mean-field theories is proportional
to the corresponding PEV of Ai j or Bi j (λc) for QMF and
PQMF theories, respectively. For the sake of completeness of
Ref. [28], in which the accuracy at the epidemic threshold was
discussed thoroughly, Fig. 5 shows the steady-state density

FIG. 5. Finite-size scaling of the steady-state density evaluated
at λ = 2λPQMF

c . Weber-Porto configuration model networks with
degree exponent γ = 2.8 presenting (a) disassortative (α = −0.2)
and (b) neutral (α = 0) degree correlations are considered. Insets:
Corresponding IPRs calculated for the PEV of the corresponding
mean-field theory.

calculated slightly above the epidemic threshold of the PQMF
theory versus the network size. The PQMF theory is much
more accurate than the QMF but also starts to deviate from
simulations as the network size increases. In both cases the
accuracy is greater for networks with a less localized PEV
as quantified by the inverse participation ratio (IPR) [29],
defined as

Y (1) =
N∑

i=1

[
v

(1)
i

]4
, (10)

where v
(1)
i is the normalized PEV defined in Sec. II. The larger

the IPR, the more localized the PEV. The insets in Fig. 5
show the IPR for both QMF and PQMF theories where we see
that the latter is much less localized than the former but still
increases towards a finite value as the network size increases,
indicating localization asymptotically.

However, the nonperturbative theory accounts for the con-
tributions of the complete basis of eigenvectors, whether
it is of Ai j or Bi j (λc), and this comparison is no longer
justifiable. Indeed, as shown in Table I, the accuracy of the
QMF theory can be high even when the PEV is localized,
as, for example, in the case of the Slashdot network. In other
cases, such as the Air Traffic and Cora networks, the PEV
localization corresponding to the QMF and PQMF theories
are similar but the performance of the latter is much better.
We performed a statistical analysis of the correlations between
ln η and ln Y (1) and found non–statistically significant p values
of pQMF = 0.29 and pPQMF = 0.46. It is noteworthy that the
statistical analyses considering the linear data present even
lower statistical significance.

We also checked (logarithm) statistical correlations of η

with other basic network metrics, namely, the heterogeneity
coefficient ε = 〈k2〉/〈k〉, the modularity coefficient Q [57], the
average clustering coefficient 〈c〉, and the average shortest dis-
tances 〈�〉. We found statistical significance, at p < 0.02, only
with ε and 〈�〉. Actually, ε and 〈�〉 are correlated since more
heterogeneous networks tend to have shorter average dis-
tances due to the shortcuts introduced by hubs [52]. The cor-
relation between η and 〈�〉 actually is not very surprising since
one intuitively expects that the shorter the distances, the more
accurate the mean-field hypothesis of neglecting long-range
correlations becomes. One interesting feature is that the ap-
proximation given by Eq. (3) in the PQMF theory discards the
possibility of triangles [27], in which the neighbors i and l of j
are also connected. So, one could expect a worse performance
in networks with a high clustering coefficient, but no statistical
correlation with this metric was found (pPQMF = 0.51). In sum-
mary, we could not infer which structural properties control
the accuracy of the mean-field approaches in regimes of high
prevalence.

IV. CONCLUSIONS

Theoretical understanding of dynamical processes on net-
works constitutes a powerful tool for protection against threats
such as disease dissemination, misinformation propagation,
and transportation infrastructure overload, among many other
examples. Reliable theoretical approximations are usually
required to consider the heterogeneous structure of the contact
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networks and the dynamical correlations, in which the states
of neighboring individuals are statistically correlated. These
features are explicitly included in the PQMF theory [27].
However, this theory has been applied mainly to analyze the
behavior of epidemic processes in the neighborhood of the
transition from an endemic to a disease-free state through
perturbative analyses where the epidemic prevalence is very
low. In this work, we contribute to filling this gap by perform-
ing a detailed nonperturbative numerical analysis of the SIS
model on synthetic and real networks within a wide range of
heterogeneities and assortativities.

For synthetic networks generated with the Weber-Porto
[37] configuration model, we report that the PQMF theory
predicts with great accuracy the regime of high prevalence
observed in stochastic simulations in networks with power-
law degree distributions for all values of degree exponents
investigated (γ = 2.3, 2.8, and 3.5) and degree correlations
(disassortative, neutral, and assortative). In the case of a
large γ > 2.5, where hubs tend to become separated as the
network size increases, we observed that the PQMF theory
significantly outperforms the simpler QMF theory where
heterogeneity is fully considered but dynamical correlations
are neglected, the discrepancy between theories being larger
for large γ . The high accuracy of the PQMF theory at high
prevalences contrasts with its bad performance at asymptot-
ically low densities, where the theory is known to deviate
from exactly known critical behavior [38], where ρ ∼ λβ with
β > 1 while the mean-field exponent is βMF = 1 [28]. We
argue, however, that this mismatch is constrained to a region
very close to λ = λc → 0+ such that the regime of not too low
density can still be accurately described by the PQMF theory.

In a set of real networks, where much more complex
structures and correlations can be present, we observed that
the PQMF theory always outperforms (sometimes very sig-
nificantly) the QMF theory but may still present nonneg-
ligible deviations from simulations in some cases (see Ta-
ble I). Differently from the low-prevalence regime, where
the accuracy of mean-field theories is correlated with the
spectral properties of Jacobian matrices, only trivial statistical
correlations with simple network metrics could be identified
and the problem of predicting when nonperturbative analy-
sis is sufficiently accurate given certain network properties
remains open.

We expect that our work will stimulate the application of
nonperturbative approaches through the numerical integration
of continuous-time equations to address other fundamental
problems of dynamical processes on networks. As perspective
it would be interesting to perform a microscopic analysis
of the validity of Eq. (3) at the triplet level. Moreover, the
systematic comparison of nonperturbative mean-field theories
and simulations could be extended to dynamical processes of
a different nature such as the non-Markovian case [58].
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APPENDIX A: WEBER-PORTO CONFIGURATION MODEL

The Weber-Porto configuration model networks are gen-
erated as follows. The degree of each vertex is drawn ac-
cording to the degree distribution P(k) such that each node
has k unconnected half-edges. Two half-edges are chosen and
connected with probability

Plink(q′, q) = f (q′, q)

fmax
, (A1)

where q and q′ are the respective degrees of the chosen
vertices and fmax is the maximum value of

f (q, q′) = 1 + (κnn(q) − 〈k〉e)(κnn(q′) − 〈k〉e)

〈kκnn〉e − 〈k〉2
e

, (A2)

where 〈A(k)〉e = ∑
k A(k)Pe(k) and Pe(k) = kP(k)/〈k〉 is the

probability that an edge ends on a vertex of degree k. Self and
multiple connections are forbidden. In the absence of degree
correlations, we have κnn = 〈k〉e, implying f (q, q′) = 1 and
Plink = 1. See Ref. [37] for more details.

APPENDIX B: QUASISTATIONARY METHOD

We applied the standard quasistationary method
[44,45,59], where the dynamics returns to a previously
visited active configuration with at least one infected vertex
every time the system falls into the absorbing state where
all vertices are simultaneously susceptible. The method is
implemented by building and constantly updating a list with
M = 100 active configurations. Every time the system falls
into the absorbing state one of the M configurations is chosen
with an equal chance and replacing the absorbing state.
The list is updated with probability 10−2 by unit of time
and the update consists of replacing a randomly selected
configuration of the list by the present state of the dynamics.
The quasistationary averages are computed during a time
varying from tav = 105 μ−1 to tav = 106 μ−1 after a relaxation
time trlx = 105μ−1. Longer times are used for lower densities
where fluctuations are more relevant.

APPENDIX C: STOCHASTIC SIMULATION
OF THE SIS MODEL

Simulations of the SIS model were performed using the
optimized Gillespie algorithm described in [44]. The number
of infected vertices Ninf and the total number of edges emanat-
ing from them NSI are computed and kept updated along the
simulations. At each time step, with probability

q = μNinf

μNinf + λNSI
, (C1)

one infected vertex is chosen with equal chance and healed.
With the complementary probability

1 − q = λNSI

μNinf + λNSI
, (C2)
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one infected vertex i is chosen with a probability proportional
to its degree. One of the nearest neighbors of i, represented by
j, is chosen with equal chance. If j is susceptible, it becomes
infected, and otherwise, no change of state is implemented.
The time is incremented by

δt = − ln u

μNinf + λNSI
, (C3)

where u is a pseudorandom number uniformly distributed in
the interval (0,1).
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