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Random telegraph signal analysis with a recurrent neural network
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We use an artificial neural network to analyze asymmetric noisy random telegraph signals, and extract
underlying transition rates. We demonstrate that a long short-term memory neural network can outperform other
methods, particularly for noisy signals and measurements with limited bandwidths. Our technique gives reliable
results as the signal-to-noise ratio approaches one, and over a wide range of underlying transition rates. We apply
our method to random telegraph signals generated by quasiparticle poisoning in a superconducting double dot,
allowing us to extend our measurement of quasiparticle dynamics to new temperature regimes.
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I. INTRODUCTION

An asymmetric random telegraph signal (RTS) is a signal
which exhibits stochastic switches between two levels y =
y1 and y = y2, with the asymmetry coming from unequal
dwell times at the two levels. They are a common result of
measurements on a wide variety of physical systems, includ-
ing ion channels in cells [1], semiconductor devices such
as transistors [2,3], quantum dots [4,5] and optoelectronic
devices [6], high-Tc superconductors [7], and single-Cooper-
pair boxes [8], as well as being the building block of 1/ f noise
[9]. The transition rates from 1 (2) to 2 (1), �1(2), where in
general �1 �= �2, are the accessible parameters describing the
dynamics of the underlying system, and it is often desirable to
extract them from the measured time sequence.

The most straightforward way to do this is to sample the
time domain signal at some rate fs, divide it into periods in
each of states 1 and 2 [Fig. 1(a)], histogram the dwell times
τ1(2), and fit k e−�1(2)τ1(2) to the resulting distribution. However,
the presence of noise and a finite measurement bandwidth
can result in the measured statistics not representing the
underlying system accurately [10]. The problem is twofold:
Noise whilst in one state can result in a false time period in the
other state being detected [Fig. 1(b)], and a limited bandwidth
means that genuine short-period excursions to the other state
are not seen [Fig. 1(c)]. This later effect also joins together the
two time periods on either side of the missed period, resulting
in a false long period.

A variety of solutions to this problem have been proposed
[11]. Some focus on optimizing the threshold at which the
signal is divided into states 1 and 2 [12]. Naaman and Au-
mentado modeled the detector as a separate process [10], and
derived corrections to the measured rates. Other techniques
include wavelet edge detection [13], autocorrelation methods
[14], cross correlation methods [15], hidden Markov models
[16], measurement of the factorial cumulants of the signal
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[17], and analysis of the probability density function of the
signal [18–20].

In this paper, we demonstrate that a recurrent neural
network can be used to extract the underlying rates from
noisy, bandwidth limited random telegraph signals. Artificial
neural networks (ANNs) comprise an input layer holding the
data to be analyzed, an output layer giving the result of the
analysis, and one or more “hidden” layers of any number
of nodes [21]. The connections between nodes within the
layer, and between the subsequent layers, can be arranged in a
wide variety of topologies, with different topologies having
varying performance characteristics for different tasks. The
weights of the internode connections are tuned using gradient
descent methods to achieve the optimal mapping between
the possible input vectors and the desired output vectors, a
process referred to as “training.” Neural networks have proven
to be a versatile tool, capable of tackling diverse problems
including image recognition, financial fraud detection, and
natural language processing. They have also proven useful for
the physical sciences, and have been applied to astrophysical
images [22,23], meta-analysis of the scientific literature [24],
the generation of quantum error correction algorithms [25],
and the characterization of quantum dots [26] and dopants
[27] in semiconductors.

II. ANN ARCHITECTURE

Recurrent ANNs are a class of ANN which act sequentially
in a particular direction along an input data array, with an
internal memory allowing correlations between data points
to affect the output. They are therefore particularly suitable
for time sequence data. We use a long short-term memory
(LSTM) [28] architecture, a recurrent ANN designed for time
sequences in which related information can have significant
temporal separation, such as speech [29] and handwriting [30]
recognition, and musical analysis [31].

Our ANN has an input size of 105 time samples, followed
by an LSTM layer with internal size 128 (Table I). The sub-
sequent fully connected hidden layers are of sizes 128, 128,
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FIG. 1. Filtered noisy RTSs, with apparent periods in each state
marked as gray and white. (a) The underlying signal has periods
in states 1 and 2, corresponding to signal levels ±1. (b) The same
signal with added Gaussian white noise of standard deviation 0.4.
The additional noise creates false excursions from one state into the
other (marked in red, example arrowed). (c) The signal in (b) passed
through a digital low pass filter. Now short periods in one state can
be missed (marked in red, example arrowed).

128, and 10, with exponential linear unit (ELU) activation
[32] functions. The output uses rectified exponential linear
unit (RELU) activation to ensure a non-negative output value.
Although both �1 and �2 are to be determined, the output
of the network is chosen to be single valued, and trained to
output only �1 for the input y(t ). �2 is determined by using
the inverted signal, ȳ(t ) = −y(t ), as input for the same ANN.
This approach gives faster and more accurate training.

We implement the ANN in Python using Keras [33] (see
Supplemental Material [34]). The ANN was typically trained
over 250 sets (termed “epochs”) of 100 RTSs, with 100
evolutionary steps per epoch, taking around 13.6 h. The ANN
is trained using synthetic RTSs, generated with independent
rates �1 and �2 uniformly distributed on the interval between
10−3 fs and fs. Rather than �1,2, we train for log10(�1,2), to
compress the output space.

We find that a realistic noise model is necessary for
accurate analysis of real data. Two components of additive
noise are generated: One with a 1/ f power spectrum and
randomized phase, representing, for example, noise processes

TABLE I. Configuration of our neural network.

Layer Type Size Activation

Input 105

1 LSTM 128 Sigmoid
2 Fully connected 128 ELU
3 Fully connected 128 ELU
4 Fully connected 128 ELU
5 Fully connected 10 ELU
Output 1 RELU

in a semiconductor substrate, and one with a flat power
spectrum and randomized phase, representing instrumentation
noise. The amplitude of the noise added to the training data
can be fixed to reflect the measured experimental noise, or
varied over a wider distribution. We find that, in general,
the ANN cannot be successfully trained if presented with
noisy data initially. Instead the training is started with noise
free data, and the noise amplitude is increased every 20
training epochs until the desired level is reached. Finally, the
generated signals are normalized such that they have mean 0
and standard deviation 1.

III. ANN VALIDATION

Once trained, the effectiveness of the ANN can be tested by
applying it to RTS data sequences. In Fig. 2 we compare the
results of testing ANNs trained for different noise levels on
synthetic data of length 105 samples to alternative methods.
The ANNs are applied to RTSs with logarithmically spaced
transition rates in the range 10−3 fs < �1,2 < fs, signal levels
y = ±1, and noise with standard deviations 0 (no additive
noise), 0.2, 0.4, and 0.6 (examples in upper panels). In
Figs. 2(a)–2(d) we show the results of analysis of 100 RTSs
for each rate pair (�1, �2) using a double-sided Page-Hinkley
algorithm [35] (middle panels) and using an ANN (lower
panels). The red dashed grid marks the underlying rates of
the synthesized signals.

The ANNs are more effective for all noise levels. Their
accuracy reduces when one or both rates are low (�1,2 <

3 × 10−3 fs), and so there are fewer events to analyze, or
equivalently the total power in the signal is low. Signals with
rates within a factor of ∼3 of the sample rate and noises of
amplitudes �0.4 are also challenging, reflecting the similarity
between a short period in a particular state and a spike due to
noise. Nevertheless, the ANNs still perform well for regimes
in which the Page-Hinkley algorithm fails.

In Fig. 3 we study the effect of filtering the RTS. The
noise amplitude for synthetic signals is now fixed at 0.4, a
noise level at which the age-Hinkley algorithm fails to deal
with the unfiltered signal, and they are filtered using a fifth
order digital Butterworth filter with 3 dB cutoffs of fc =
fs/3.162, fc = fs/10, and fc = fs/31.62, and again analyzed
using appropriately trained ANNs for each cutoff frequency.
The ANN is generally robust against low pass filtering when
fc > �1 + �2. If the rates are outside this regime, a significant
spectral content of the signal is above the passband of the
filter, and the ANN cannot extract reliable rates.

We now apply our neural network to RTSs due to Cooper
pair breaking in a superconducting double dot (SCDD)
[19,36,37]. The device comprises two aluminium supercon-
ducting islands coupled to each other by a Josephson junction,
and to metallic leads by superconducting-insulator-normal
tunnel junctions [Fig. 4(a)]. The state of the device is de-
scribed by the charge on each island, and is labeled (qleft/e,
qright/e). In the ground state, both qleft/e and qright/e are even,
due to the Cooper pairing of electrons in the superconducting
state.

When in the ground state the anticrossing between the
(0,2) and (2,0) charge states gives the device a finite quantum
capacitance, but this can be removed by the destruction of
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FIG. 2. Application of the trained neural network to synthetic data with varying additive noise. Top panels, example RTSs with levels ±1
(red lines) and noise of standard deviations (a) 0, (b) 0.2, (c) 0.4, and (d) 0.6. Middle panels, analysis of RTSs with rates 10−3 fs � �1,2 � fs

using the Page-Hinkley algorithm to extract dwell times, and a fit to an exponential decay. Points are colored according to density in (�1, �2),
with lighter points corresponding to higher point densities. The red grid marks the underlying rates of the synthesized data. The addition of
moderate amounts of noise causes the method to fail completely. Bottom panels show analysis of the same RTSs using the trained neural
networks, showing greatly increased robustness against noise.

coherence due to the presence of unpaired electrons, a process
known as quasiparticle poisoning [38–40]. By monitoring
the quantum capacitance of the SCDD via radio frequency
reflectometry, the loss and recovery of this coherence can be
observed. Time domain measurements [Fig. 4(d), upper panel]
yield an RTS with one rate determined by the vulnerability of

the Cooper pairs to breaking, and the other determined by the
recombination dynamics.

Because the transitions between charge configurations
are driven by the energy difference between the states,
it is interesting to study the transition rates as a function
of temperature and applied magnetic field, which affect

Neural network

FIG. 3. Application of the trained neural network to synthetic data with noise standard deviation 0.4, passed through digital low-pass filters
with cutoff frequencies (a) fc > fs [identical to Fig. 2(c)], (b) fc = fs/3.162, (c) fc = fs/10, and (d) fc = fs/31.62. Example time signals are
shown in the top panels and extracted rates in the lower panels. Points are colored as in Fig. 2.
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FIG. 4. (a) False color SEM of a superconducting double dot.
Purple regions are the superconducting islands, yellow regions are
normal-metal grounded reservoirs, and electrostatic control gates are
green. Other gates are not used in these experiments. (b) The charge
stability diagram, showing the ground state charge configuration as a
function of gate voltages VL and VR. (c) Charge state energies along
ε in panel (b). The anticrossing between the (2,0) and (0,2) charge
states is mediated by the Josephson energy (EJ ) of the interdot tunnel
junction, while the additional energy of the (1,1) state is due to the
superconducting gap �. (d) Top panel: rf reflected phase at B = 0,
T = 25 mK, ε = 0, showing an RTS. Bottom panel: rf reflected
phase at B = 180 mT, T = 100 mK, ε = 0 with no RTS apparent.

the poisoned state’s free energy via changes in the
superconducting gap [41]. For low temperatures (T = 35 mK)
and magnetic fields (B < 120 mT), rates can be determined
by applying thresholding methods to the measured signal.
But at higher temperatures and fields, the quality of the phase
signal is sufficiently degraded [Fig. 4(d), lower panel] that
this technique does not work.

Time signals with an acquisition time of 1s and
comprising 105 phase measurements were taken at temper-
atures of 75 mK, 100 mK, and 125 mK, and at fields of
150 mT < H < 200 mT. The demodulated phase signal was
filtered with a cutoff of 15 kHz before sampling. For each
field and temperature, measurements were made at points
along a line in the charge stability diagram corresponding to
transfer of charge from one island to the other, labeled ε in
Fig. 4(b). Signals were found to have a low signal-to-noise
ratio, with no obvious random telegraph behavior [Fig. 4(d),
lower panel]. Rates can nevertheless be extracted using our
ANN. In Fig. 5(a) we plot the rates at zero detuning for
increasing field at three temperatures, and observe the super-
exponential behavior previously seen at lower temperatures
[19,36].

To further support the validity of the rates extracted using
our ANN, we compare the mean phase for each measured
signal with the expected mean value for an RTS having
extracted rates �1 and �2,

ȳ = �1

�1 + �2
. (1)

In each case this is a measure of the excited state occupancy.
In Fig. 5(b) we plot the measured mean signals (left) and
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FIG. 5. Application of trained ANN to experimental data from
an SCDD. (a) Cooper pair breaking rates (log scale) as a function
of applied field for increasing temperatures at zero detuning from
the charge state anticrossing. (b) Left panels: Time average phase
as a function of ε detuning. The measured phase is a measure of the
proportion of time spent in the excited state. By fitting the probability
density function of a filtered noisy RTS to the measured probability
density [18–20] we determine phases of y1 = (232.2 ± 0.1)◦ and
y2 = (242.1 ± 0.2)◦ for the ground and excited states. Right panels:
The occupancy of the excited state deduced from the rates �1 and �2

extracted by the trained ANN.

deduced excited state occupancy (right). The agreement is
excellent, demonstrating the efficacy of our ANN for analysis
of experimental data.

IV. CONCLUSION

In summary, we find that an LSTM recurrent neural
network is a powerful tool for the determination of
the transition rates underlying noisy random telegraph
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signals with finite sampling rates. The network architecture
presented is simple, yet versatile enough to apply to different
signal parameters, and can be trained in a reasonable
time on relatively modest hardware. Furthermore, there
is scope for increasing the depth of the network, or
adapting its architecture, for application to problems in
different regimes. This technique has allowed us to analyze
previously inaccessible signals, and is particularly useful

for measurement of delicate quantum systems for which
measurements are difficult, and the SNR likely to be low.
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