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Simplicial complexes are gaining increasing scientific attention as they are generalized network structures
that can represent the many-body interactions existing in complex systems ranging from the brain to high-order
social networks. Simplicial complexes are formed by simplicies, such as nodes, links, triangles, and so on. Cell
complexes further extend these generalized network structures as they are formed by regular polytopes, such as
squares, pentagons, etc. Pseudofractal simplicial and cell complexes are a major example of generalized network
structures and they can be obtained by gluing two-dimensional m-polygons (m = 3 triangles, m = 4 squares,
m = 5 pentagons, etc.) along their links according to a simple iterative rule. Here we investigate the interplay
between the topology of pseudofractal simplicial and cell complexes and their dynamics by characterizing the
critical properties of link percolation defined on these structures. By using the renormalization group we show
that the pseudofractal simplicial and cell complexes have a continuous percolation threshold at pc = 0. When
the pseudofractal structure is formed by polygons of the same size m, the transition is characterized by an
exponential suppression of the order parameter P∞ that depends on the number of sides m of the polygons
forming the pseudofractal cell complex, i.e., P∞ ∝ p exp(−α/pm−2). Here these results are also generalized to
random pseudofractal cell complexes formed by polygons of different number of sides m.

DOI: 10.1103/PhysRevE.102.012308

I. INTRODUCTION

Simplicial and cell complexes [1,2] are generalized net-
work structures capturing the many-body interactions existing
in complex systems such as brain networks [3–5], social
networks [6–8], and complex materials [9,10]. Simplicial and
cell complexes are not only formed by nodes and links like
networks, but they are also formed by higher-dimensional
simplexes and polytopes such as triangles, squares, pentagons,
etc. Being formed by geometrical and topological building
blocks simplicial complexes are ideal structures to study net-
work geometry [11–13]. Moreover, simplicial complexes are
key to investigate the role that network geometry and many-
body interactions have on dynamics. Among the vast variety
of dynamical processes that are starting to be investigated on
simplicial complexes we mention percolation [14–17], syn-
chronization [18–23], epidemic spreading [7,24], Gaussian
models [10,25,26], and random walks [27,28]. The vast ma-
jority of hierarchical networks studied in statistical mechan-
ics and network theory literature is formed by the skeleton
of simplicial and cell complexes (i.e., the network formed
by its nodes and links). Examples range from the diamond
network of Migdal and Kadanoff [29,30] to the hyperbolic
Farey graphs that have been shown to display a discontinuous

percolation phase transition in Ref. [31]. These networks
are well suited to perform exact real-space renormalization
group (RG) calculations. Using RG theory there has been very
important progress in characterizing the critical properties
of percolation [14–16,31–36], spin (Ising and Potts) mod-
els [37–40], and Gaussian models [25,26] in these structures.
In particular in Refs. [15,16] the robustness of the result
obtained by Boettcher, Singh and Ziff in Ref. [31] has been
investigated by considering more general simplicial and cell
complexes. It has been found that two-dimensional simplicial
and cell complexes, i.e., simplicial and cell complexes build
by gluing two-dimensional polygons along their links, can
display a large variety of critical behaviors for the order
parameter of link percolation. Here we extend this line of
research and we characterize the link percolation transition to
random pseudofractal simplicial and cell complexes. Pseud-
ofractal simplicial complexes have been originally proposed
as deterministic models for complex networks in Ref. [41].
Link percolation on these deterministic pseudofractal net-
works has been discussed previously in Ref. [42]. Here,
however, we provide a more extensive treatment of the prob-
lem and are able to show that the critical percolation prop-
erties of the deterministic pseudofractal simplicial complex
differs from the percolation properties of the deterministic
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FIG. 1. Examples of pseudofractal simplicial and cell complexes represented at iteration n = 3. Panel (a) shows a deterministic
pseudofractal simplicial complex with m = 3, panel (b) shows a deterministic pseudofractal cell complex with m = 4, panel (c) shows a
random pseudofractal cell complex with q3 = q4 = 1/2. The different colors indicate the different iterations: n = 0 (black), n = 1 (green)
n = 2 (purple), n = 3 (cyan).

pseudofractal cell complex and the random pseudofractal
simplicial complexes. Indeed our work shows that for the
deterministic pseudofractal simplicial complexes formed by
m-polygons, the phase transition is at pc = 0 and the order
parameter behaves as

P∞ ∝ p exp(−α/pm−2), (1)

where α is a constant. Therefore, the exponential suppression
goes like 1/p for m = 3 as obtained by Ref. [42] but goes like
1/pm−2 for m > 3. On a side note we mention also that our
derivation also captures the factor p in Eq. (1) not discussed
in Ref. [41]. Finally, for random pseudofractal simplicial
complexes we show that the critical behavior is dictated by the
smallest value of m of the polygons of the cell complex. This
results shows that the critical properties depend on the type
of 2-dimensional cells forming the building block of the cell
complex weakening the universality of the critical behaviour.

The paper is structured as follows: in Sec. II we describe
the main properties of the random pseudofractal cell com-
plexes studied in this work; in Sec. III we introduce link
percolation on pseudofractal cell complexes, we derive the
iterative equations for the linking probability defining the RG
equations, and we derive the expression for the generating
functions and the for the order parameter in terms of the
linking probability, in Sec. IV we discuss the RG flow, in
Sec. V we derive the critical behavior of the order parameter,
finally in Sec. VI we provide the conclusions.

II. RANDOM PSEUDOFRACTAL SIMPLICIAL
AND CELL COMPLEXES

The pseudofractal simplicial complex [41] is constructed
iteratively starting at iteration n = 0 from a single link. At
each time n � 1 we attach a triangle to every link introduced
at iteration 0 � n′ < n. This construction can be generalized
by considering a random cell complex formed by regular
m-polygons with different m � 3. We start at iteration n =
0 from an initial link. At each iteration n � 1 we glue a
m-polygon to every link of the cell complex introduced at
iteration 0 � n′ < n with m � 3 drawn from a qm distribution.
Is is easy to show that at iteration n the expected number of

nodes Nn and links Ln are given by

Nn = 2 + 〈m〉 − 2

〈m〉 − 1
(〈m〉n − 1), Ln = 〈m〉n, (2)

where 〈m〉 = ∑
m�3 mqm. In the following, we will refer to

these generalized network structures as random cell com-
plexes. However, for qm = δm,3 the random pseudofractal cell
complex reduces to the pseudofractal simplicial complex [see
Fig. 1(a)]. Moreover, for qm′ = δm′,m and m > 3 we obtain a
deterministic cell complex formed by gluing only m-polygons
[see Fig. 1(b) for an example of a deterministic cell complex
with m = 4]. Only if the distribution qm is not a Kronecker
delta, the model reduces to a genuine random cell complex
[see Fig. 1(b) for an example of a random cell complex with
q3 = q4 = 1/2].

III. LINK PERCOLATION ON PSEUDOFRACTAL
SIMPLICIAL AND CELL COMPLEXES

A. Link probability

In this paper we investigate the critical properties of link
percolation on pseudofractal cell complexes. We assume that
each link is retained with probability p. It follows that each
link is removed with probability q = 1 − p. To study link
percolation on pseudofractal cell complexes we first derive the
RG equations for the linking probability Tn that the two initial
nodes of the pseudofractal cell complex are linked at iteration
n. At iteration n = 0 the two initial nodes are connected if the
link between them is present, therefore T0 = p. At iteration
n � 0 the two initial nodes are connected by a path except
if the initial link is not present and the two nodes are not
connected by any path passing through any of the m-polygons
glued to initial link at different iterations. Therefore, for a
deterministic pseudofractal cell complex with qm′ = δm′,m we
obtain

Tn+1 = 1 − (1 − p)
n∏

j=0

(
1 − T m−1

j

)
, (3)

with initial condition T0 = p. For the random pseudofractal
cell complexes the iterative equations determining {Tn}n�0

needs to take into account the randomness of m. It is therefore
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immediate to show that we have

Tn+1 = 1 − (1 − p)

⎡
⎣ n∏

j=0

(1 − Q(Tj ))

⎤
⎦, (4)

where Q(T ) is given by

Q(T ) =
∑
m�3

qmT m−1, (5)

with T0 = p. This recursive set of equations can be also
written as

Tn+1 = 1 − (1 − Tn)[1 − Q(Tn)]. (6)

with T0 = p. The fixed point solutions are only

T � = 0, T � = 1. (7)

For any p > 0 the recursive equations go to the fixed point
T � = 1. Instead exactly at p = 0 the steady state solution is
T � = 0. Therefore, for any link probability p > 0 the perco-
lation probability of an infinite network is T � = 1. Indeed the
RG flow described by Eq. (6) starts with T0 = p and in the
limit n → ∞ reaches

lim
n→∞ Tn = T � =

{
1 if p > 0,

0 if p = 0.
(8)

Therefore, the (upper) percolation threshold is

pc = 0. (9)

At p = pc = 0 the percolation probability is

Tc = 0. (10)

B. Generating function

In this paragraph we derive the expression for the generat-
ing function T̂n(x) and Ŝn(x, y) which are key to determine
the properties of the link percolation in the pseudofractal
cell complexes. The function T̂n(x) is the generating function
of the number of nodes in the connected component linked
to both initial nodes of the considered random branching
network. The function Ŝn(x, y) is the generating function of
the sizes of the two connected components linked exclusively
to one of the two initial nodes of the same network. These
generating functions are defined as

T̂n(x) =
∞∑

�=0

tn(�)x�, Ŝn(x, y) =
∑
�,�

sn(�, �)x�y�, (11)

where tn(�) indicates the probability that � nodes are con-
nected to the two initial nodes and sn(�, �) indicates the joint
probability that � nodes are connected exclusively to one
initial node and � nodes are connected exclusively to other
initial node. Therefore, for every value of n, tn(�) and sn(�, �)
obey the normalization condition

∞∑
�=0

tn(�) +
∞∑

�=0

∞∑
�=0

sn(�, �) = 1, (12)

which implies

T̂n(1) + Ŝn(1, 1) = 1. (13)

(b)
 

(a)
 

FIG. 2. Diagrammatic representation of generating functions
T̂n(x) (a) and Ŝn(x, y) (b). Filled areas indicate connected components
that either connect to both end nodes [T̂n(x)] or connect to a single
end node [Ŝn(x, y)].

The generating functions at iteration n = 0 are given by

T̂0(x) = p, Ŝ0(x, y) = 1 − p, (14)

because initially the two nodes can be either connected by a
link (which occurs with probability p) or not connected by
a link (which occurs with probability 1 − p). In both cases
the two initial nodes are not connected to any other node, so
tn(0) = p and tn(�) = 0, for all � > 0; similarly, sn(0, 0) =
1 − p and sn(�, �) = 0, for all (�, �) �= (0, 0).

Our aim is to write a set of recursive equations for T̂n+1(x)
and Ŝn+1(x, y) expressing the generating functions at iteration
n + 1 given the expression of the generating functions at
previous generations. To this end we follow the diagrammatic
representation of the generating functions T̂n(x) and Ŝn(x, y),
already introduced in Refs. [15,16,31]. In particular, we repre-
sent T̂n(x) and Ŝn(x, y) with the diagrams presented in Fig. 2.

At iteration n + 1 the initial link will be incident to n + 1
polygons added subsequently at each iteration. The polygon
added at iteration n + 1 − j with 0 � j � n has links whose
statistical properties are equivalent to the one of the initial
link at iteration j. If we consider a single polygon added at
iteration n + 1 − j, its links will connect the two initial nodes
to other nodes of the cell complex added at later generations,
and these nodes will not be reachable by following links
that branch out from other polygons. The polygon added at
iteration n + 1 − j will contribute to the generating functions
T̂n+1(x) and Ŝn+1(x, y) with terms that can be expressed dia-
grammatically as described in Fig. 3(a) for a m-polygon with
m = 4. Only one of these diagrams, i.e., the diagram corre-
sponding to xm−2T m−1

j (diagram (a) in Fig. 3) will guarantee
connectivity of the two end nodes. Therefore, the diagram in
Fig. 3(a) and its counterpart diagrams for polygons of different
number of sides, cannot contribute to Ŝn(x, y). However, since
the initial link at iteration n is connected to n polygons and
connectivity can be guaranteed by the initial link or, when this
link is removed, by any one of the polygons connected to the
initial link, all diagrams contribute to T̂n+1(x).

To calculate the generating function Ŝn(x, y) we need to
impose that the initial nodes are not directly connected, i.e.,
for every polygons we need to consider only the contributions
from diagrams that do not guarantee connectivity (diagrams
(b–h) of Fig. 3). In this way, for a deterministic pseudofractal
cell complex we obtain

Ŝn+1(x, y)

= (1 − p)
n∏

j=0

[
m−2∑
r=0

xrym−2−r T̂ r
j (x)Ŝ j (x, y)T̂ m−2−r

j (y)

+
m−3∑
s=0

s∑
r=0

xrys−r T̂ r
j (x)Ŝ j (x, 1)Ŝ j (y, 1)T̂ s−r

j (y)

]
. (15)
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(a)
 

(b)
 

(c)
 

(d)
 

(e)
 

(f)
 

(g)
 

(h)
 

FIG. 3. The diagrams coming from a single m-polygon added at iteration n + 1 − j with m = 4 are shown. These diagrams represent terms
that contribute to T̂n+1(x) and Ŝn+1(x, y). Diagram (a) contributes exclusively to T̂n+1(x) with a term x2T̂ 3

j , diagrams (b–h) contribute both to
T̂n+1(x) and Ŝn+1(x, y). The diagrams (b–h) contribute to T̂n+1(x) under the assumption that both initial nodes are connected either by the
initial link or by polygons added at different generations. The contribution of the diagrams (b–h) to T̂n+1(x) are: (b, c, and d) x2T̂ 2

j (x)Ŝn(x, x);
(e) and (h) Ŝ2

j (x, 1); (f, g) xT̂j (x)Ŝ2
j (x, 1). The diagrams (b–h) contribute to Ŝn+1(x, y) under the assumption that the two initial nodes not

connected by the initial link and by any other polygon added at different generations. The contribution of the diagrams (b–h) to Ŝn+1(x, y) are:
(b) y2T̂ 2

j (y)Ŝn(x, y); (c) x2T̂ 2
j (x)Ŝn(x, y); (d) xyT̂j (x)T̂j (y)Ŝn(x, y); (e, h) Ŝ j (x, 1)Ŝ j (y, 1); (f), xT̂j (x)Ŝ j (x, 1)Ŝ j (y, 1); (g) yT̂j (y)Ŝ j (x, 1)Ŝ j (y, 1).

The derivation of the recursive equation for T̂n+1(x) is slightly
more complex. In fact, to guarantee that T̂n+1(x) is the
generating function of the connected component connected
to both initial nodes, we need to impose connectivity. As
noted before, it is sufficient that the initial link guarantees
connectedness or, when this link is removed, it is sufficient
that a single polygon contributes for the connectedness of
the two initial nodes. Therefore, we express Tn+1(x) as the

difference between two terms. The first term considers, for
each polygon the contribution of all diagrams (the one that
guarantee connectedness and the one that do not). The second
term considers for each polygons only the terms that do not
guarantee connectedness, i.e. removes from the first term
the contribution coming from disconnected configurations. In
this way for a deterministic pseudofractal cell complex we
obtain

T̂n+1(x) =
n∏

j=0

[
xm−2T̂ m−1

j (x) + (m − 1)xm−2T̂ m−2
j (x)S j (x, x) +

m−3∑
s=0

(s + 1)xsT̂ s
j (x)Ŝ j (x, 1)Ŝn(1, x)

]

− (1 − p)
n∏

j=0

[
(m − 1)xm−2T̂ m−2

j (x)S j (x, x) +
m−3∑
s=0

(s + 1)xsT̂ s
j (x)Ŝ j (x, 1)Ŝ j (1, x)

]
.

For a random pseudofractal cell complex we can generalize these equations obtaining for T̂n(x) and Ŝn(x, y) the recursion

Ŝn+1(x, y) = (1 − p)
n∏

j=0

{∑
m�3

qm

[
m−2∑
r=0

xrym−2−r T̂ r
j (x)Ŝ j (x, y)T̂ m−2−r

j (y) +
m−3∑
s=0

s∑
r=0

xrys−r T̂ r
j (x)Ŝ j (x, 1)Ŝ j (y, 1)T̂ s−r

j (y)

]}
,

T̂n+1(x) =
n∏

j=0

{∑
m�3

qm

[
xm−2T̂ m−1

j (x) + (m − 1)xm−2T̂ m−2
j (x)S j (x, x) +

m−3∑
s=0

(s + 1)xsT̂ s
j (x)Ŝ j (x, 1)Ŝn(1, x)

]}

− (1 − p)
n∏

j=0

{∑
m�3

qm

[
(m − 1)xm−2T̂ m−2

j (x)S j (x, x) +
m−3∑
s=0

(s + 1)xsT̂ s
j (x)Ŝ j (x, 1)Ŝ j (1, x)

]}
,

with initial conditions T̂0(x) = 1 − Ŝ0(x, y) = p.
We are particularly interested in the generating function T̂n(x) whose derivative calculated for x = 1 gives the expected

size of the giant component. The generating function T̂n+1(x) depends on the generating functions T̂j (x) and the functions
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�̂ j (x) = Ŝ j (x, x), and Ŝ j (x) = Ŝ j (1, x) at iterations 0 � j � n. From the above equations for T̂n+1(x) and Sn+1(x, y) we can
deduce directly the set of recursive equations for T̂n+1(x), �̂n+1(x), and Ŝn+1(x) which read

T̂n+1(x) =
n∏

j=0

{∑
m�3

qm

[
xm−2T̂ m−1

j (x) + (m − 1)xm−2T̂ m−2
j (x)� j (x) +

(
m−3∑
i=0

(i + 1)xiT̂ i
j (x)

)
S2

j (x)

]}

− (1 − p)
n∏

j=0

{∑
m�3

qm

[
(m − 1)xm−2T̂ m−2

j (x)� j (x) +
(

m−3∑
i=0

(i + 1)xiT̂ i
j (x)

)
S2

j (x)

]}
,

�̂n+1(x) = (1 − p)
n∏

j=0

{∑
m�3

qm

[
(m − 1)xm−2T̂ m−2

j (x)� j (x) +
(

m−3∑
i=0

(i + 1)xiT̂ i
j (x)

)
S2

j (x)

]}
,

Ŝn+1(x) = (1 − p)
n∏

j=0

{∑
m�3

qm

[(
m−2∑
i=0

xiT̂ i
j (x)

)
S j (x)

]}
. (16)

These equations differ significantly from the corresponding equations valid for two-dimensional hyperbolic manifolds [15,31]
and for branched simplicial complexes [16]. In fact these equations for T̂n+1(x), �̂n+1(x) and Ŝn+1(x) depend on the entire RG
flow of the process, i.e., their left hand side if a function of all T̂j (x), �̂ j (x) and Ŝ j (x) all previous iterations j with 0 � j � n.

This apparent complication of the obtained equations can be removed by introducing an auxiliary function Kn+1(x) (see, for
instance, a similar trick used for the Gaussian model in Refs. [25,26]). To show this let us rewrite Eq. (16) as

T̂n+1(x) = K̂n+1(x) − �̂n+1(x),

K̂n+1(x) =
n∏

j=0

{∑
m�3

qm

[
xm−2T̂ m−1

j (x) + (m − 1)xm−2T̂ m−2
j (x)� j (x) +

(
m−3∑
i=0

(i + 1)xiT̂ i
j (x)

)
S2

j (x)

]}
,

�n+1(x) = (1 − p)
n∏

j=0

{∑
m�3

qm

[
(m − 1)xm−2T̂ m−2

j (x)� j (x) +
(

m−3∑
i=0

(i + 1)xiT̂ i
j (x)

)
S2

j (x)

]}
,

Sn+1(x) = (1 − p)
n∏

j=0

{∑
m�3

qm

[(
m−2∑
i=0

xiT̂ i
j (x)

)
S j (x)

]}
, (17)

with initial conditions T̂0(x) = p, �̂0(x) = Ŝ0(x) = 1 − p, K̂0(x) = 1. This latter system of equations can be expressed by a set
of iterative equations between the variables at iteration n and the variable at iteration n + 1, i.e.,

T̂n+1(x) = K̂n+1(x) − �̂n+1(x),

K̂n+1(x) = K̂n(x)

{∑
m�3

qm

[
xm−2T̂ m−1

n (x) + (m − 1)xm−2T̂ m−2
n (x)�n(x) +

(
m−3∑
i=0

(i + 1)xiT̂ i
n (x)

)
S2

n (x)

]}
,

�n+1(x) = �n(x)

{∑
m�3

qm

[
(m − 1)xm−2T̂ m−2

n (x)�n(x) +
(

m−3∑
i=0

(i + 1)xiT̂ i
n (x)

)
S2

n (x)

]}
,

Sn+1(x) = Sn(x)

{∑
m�3

qm

[(
m−2∑
i=0

xiT̂ i
n (x)

)
Sn(x)

]}
. (18)

As we will see in the next section, this recursive set of
equations will turn out to be particularly useful for evaluating
the expected size of the giant component.

C. Order parameter

The order parameter of link percolation is the fraction of
nodes P∞ that in the thermodynamic limit belongs to the giant
component, i.e.,

P∞ = lim
n→∞

Mn

Nn
, (19)

where Mn is the expected size of the giant component con-
nected to the two initial nodes of the cell complex. The value
of Mn can be derived from the generating function T̂n(x) by
differentiation, i.e.,

Mn = dT̂n(x)

dx

∣∣∣∣
x=1

. (20)

To obtain Mn we rewrite Eq. (18) in terms of the vector

Vn(x) = [
V 1

n (x),V 2
n (x),V 3

n (x),V 4
n (x)

]	
= [

T̂n(x), K̂n(x), �̂n(x), Ŝn(x)
]	

, (21)
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as

Vs
n+1(x) = Fn({Vn(x)}, x). (22)

By using this notation, we note that the derivative of Vn+1(x)
calculated at x = 1 follows

dVn+1(x)

dx

∣∣∣∣
x=1

= Jn
dVp

n (x)

dx

∣∣∣∣
x=1

+ ∂Fs
n

∂x

∣∣∣∣
x=1

, (23)

where Jn indicates the Jacobian matrix of the system of
Eq. (22). The initial condition of Eq. (23) is V̇0 = 0 obtained
by taking into consideration that the initial nodes are not
counted. To evaluate Eq. (22) we need to provide an explicit
expression of the Jacobian matrix Jn whose elements are given
by

[Jn]i j = ∂F i
n+1

∂V j
n (x)

∣∣∣∣
x=1

. (24)

Let us we indicate with Tn = T̂n(1), �n = �n(1) Sn =
Ŝn(1) and Kn = K̂n(1) that by definition satisfy Tn = 1 − Sn =
1 − �n and Kn = 1.

By direct calculation of the Jacobian Jn we notice that Jn

can be expressed as a function of Q(Tn) and H (Tn) with Q(T )
given by Eq. (5) and H (T ) given by

H (T ) =
∑
m�3

qm

m−2∑
i=0

T i. (25)

In fact, by using the following two relations:

(1 − Tn)
m−3∑
i=0

i(i + 1)T i−1
n

= 2
m−3∑
i=0

(i + 1)T i
n − (m − 1)(m − 2)T m−3

n (26)

and

(1 − Tn)
m−3∑
i=0

(i + 1)T i
n =

m−2∑
i=0

T i
n − (m − 1)T m−2

n ,

and using Tn = 1 − Sn = 1 − �n, Kn = 1, a direct calculation
shows that Jn is given by

Jn =

⎛
⎜⎜⎝

Q′(Tn) + 2Tn[H (Tn) − Q′(Tn)] 1 TnQ′(Tn) − SnH (Tn) 2Tn[H (Tn) − Q′(Tn)]
Q′(Tn) + 2[H (Tn) − Q′(Tn)] 1 Q′(Tn) 2[H (Tn) − Q′(Tn)]

2Sn[H (Tn) − Q′(Tn)] 0 Sn[H (Tn) + Q′(Tn)] 2Sn[H (Tn) − Q′(Tn)]
Sn[H (Tn) − Q′(Tn)] 0 0 2SnH (Tn)

⎞
⎟⎟⎠. (27)

Similarly, the nonhomogeneous term can be expressed as

∂Fn

∂x
=

⎛
⎜⎜⎝

(m − 2)Q(Tn) + 2T 2
n (H (Tn) − Q′(Tn))

(m − 2)Q(Tn) + 2Tn[H (Tn) − Q′(Tn)]
2TnSn[H (Tn) − Q′(Tn)]
TnSn[H (Tn) − Q′(Tn)]

⎞
⎟⎟⎠.

Since we have now an explicit expression for both Jn and
∂Fn/∂x, we can numerically integrate Eq. (22) finding the
number of nodes Mn in the giant component of pseudofrac-
tal cell complexes for any value of n (numerical precision
permitting). However, we also want to have some analytical
predictions of the critical properties of link percolation. To this
end we notice that for n > 0 and Tn < 1 the nonhomogeneous
term ∂Fn/∂x is subleading with respect to the homogeneous
one in Eq. (22). However, for n = 0 the homogeneous term
vanishes due to the initial condition V̇0 = 0 so therefore the
nonhomogeneous term cannot be neglected. Therefore, we
can express V̇n+1 as

V̇n+1 
 An

n∏
n′=1

λn′un, (28)

where λn and un are the largest eigenvalue and the corre-
sponding left eigenvector of the Jacobian matrix Jn and An is

given by

An =
(

n∏
n′=2

〈vn′ |un′−1〉
)

〈v1|V̇1〉 , (29)

with V̇0 = ∂F0/∂x and vn, indicating the right eigenvector
corresponding to the largest eigenvalue of the Jacobian Jn.

Using Eq. (27) we can directly calculate the largest eigen-
value λn of the Jacobian matrix Jn which is given by

λn = 1

2
[K̂ (Tn) +

√
	̂(Tn)], (30)

where 	̂(Tn) and K̂ (Tn) are given by

K̂ (Tn) = (1 − 2T )Q′(Tn) + 2H (Tn) + 1,

	̂(Tn) = [K̂ (Tn)]2 + 8(T − 1)[H2(Tn) + Q′(Tn)]. (31)

Note that for Tn → 1 then λn → 〈m〉.
The right eigenvector vn corresponding to the largest eigen-

value of Jn is given by

vn = 1

CR

⎛
⎜⎜⎜⎝

ˆK (Tn) − 4H (Tn)(1 − Tn) +
√

	̂(Tn)2(H (Tn) − Q′(Tn))(Tn − 1)
ˆK (Tn) − 4Q′(Tn)(1 − Tn) +

√
	̂(Tn)

−4(H (Tn) − Q′(Tn))(Tn − 1)
−2(H (Tn) − Q′(Tn))(Tn − 1)

⎞
⎟⎟⎟⎠, (32)
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and the corresponding left eigenvector un is given by

uL
n = 1

CL

⎛
⎜⎜⎜⎝

2H3(Tn) + 4H (Tn)Q′(Tn) − 2Q′2(Tn) + H2(Tn)[−1 − 3Q′(Tn) + 2TnQ′(Tn) +
√

	̂(Tn)]

2H2(Tn) − 2H (Tn)Q′(Tn) + Q′(Tn)[1 − Q′(Tn) + 2TnQ′(Tn) +
√

	̂(Tn)]

−2H3(Tn) + 2Q′2(Tn) + H2(Tn)[−1 + Q′(Tn) + 2TnQ′(Tn) +
√

	̂(Tn)]
4([H (Tn) − Q′(Tn)][H2(Tn) + Q′(Tn)]

⎞
⎟⎟⎟⎠, (33)

where CR and CL are normalization constants which guarantee
that the right and left eigenvectors have absolute value one.
Note that the right and left eigenvectors of vn and un satisfy
by definition

〈vn|un〉 = 1. (34)

From Eqs. (28) and (20) it follows that the expected number
of nodes Mn+1 in the giant component can be expressed as

Mn+1 
 An

n∏
n′=1

λn′u1
n, (35)

where u1
n indicates the first element of the vector un.

In Sec. V we will use Eq. (35) to derive the critical proper-
ties of link percolation on the pseudofractal cell complexes.

IV. RG FLOW

In this section we study the RG flow described by Eq. (6)
that we rewrite here for convenience,

Tn+1 = 1 − (1 − Tn)[1 − Q(Tn)], (36)

with initial condition T0 = p. By defining the auxiliary vari-
able

yn = − ln(1 − Tn), (37)

the RG flow described by Eq. (36) can be written as

yn+1 = G(yn) = yn − ln[1 − Q(1 − e−yn )]. (38)

For p � 1, i.e., close to pc = 0 we can develop Eq. (38)
close to T = Tc = 0, yc = 0. Stopping at the first relevant term
in the expansion of yn+1 − yn we obtain

yn+1 − yn = qmym−1
n , (39)

with initial condition y0 = − ln(1 − p). Note that in Eq. (39),
m indicates the minimum value of m for which qm > 0.
By going in the continuous limit and substituting yn with a
function y(n), Eq. (39) can be written as

dy

dn
= qmym−1. (40)

By integrating this equation from 0 up to n we get

y = y0[1 − n/nc]−1/(m−2), (41)

with

nc = [(m − 2)| ln(1 − p)|m−2qm]−1. (42)

In particular, y diverges at a finite value of n = nc.
From Eq. (41), using

1 − Tn 
 e−yn , (43)

we get the asymptotic scaling valid for y � 1 and p � 1,

1 − Tn = (1 − p)θn , (44)

with

θn = [1 − (m − 2)| ln(1 − p)|m−2qmn]−1/(m−2). (45)

For n � nc we can made a further approximation and express
θn as

θn 
 exp[qm pm−2n]. (46)

Therefore, for n � nc

yn = y0 exp[qm pm−2n], (47)

with y0 = | ln(1 − p)|.
In Fig. 4 we show the very good agreement between the

numerically integrated value of yn and the expression given
by Eq. (47) for n � nc.

Finally, we notice that although Eq. (41) is obtained in the
limit y � 1 we can see from numerical integration of the RG
flow that y retains the structure

y = y0 f (n/nc). (48)

Although the functional form of f (n/nc) obtained in the ex-
pansion for 0 < y � 1 [which can be deduced from Eq. (41)]
is not exactly close to n 
 nc, from this expansion we can
deduce that y diverges for a finite value of n of the order of nc.
In correspondence of this divergence the linking probability
Tn jumps to Tn = 1 (see Fig. 5).

FIG. 4. The RG flow is represented by plotting ln(y/y0 ) [where
y0 = − ln(1 − p)] versus n for p = 5 × 10−5 with m = 3 (blue solid
line), m = 4 (orange dashed line), and m = 5 (green dot-dashed line).
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FIG. 5. The RG flow is shown by plotting the value yn =
− ln(1 − Tn) where Tn is the percolation probability, versus n for
fixed value of p. The solid (blue) line indicates the RG flow for
the deterministic pseudofractal simplicial complex with m = 3 and
p = 10−3, the dashed (orange) line indicates the RG flow for the
deterministic pseudofractal cell complex with m = 4 and p = 6 ×
10−3. The divergence of yn occurring at a value of n of the order of
magnitude of nc is clearly noticeable, indicating that Tn reaches the
value Tn = 1 discontinuously at a finite n 
 nc.

V. CRITICAL PROPERTIES OF THE ORDER PARAMETER

A. Critical region

We are interested in characterizing the properties of the
order parameter

P∞ = lim
n→∞

Mn

Nn
, (49)

in the critical region, i.e., close to the percolation threshold
pc = 0 taking 0 < p � 1. To this end we first discuss the
properties of the expected number of nodes Mn in the giant
component when the pseudofractal cell complex has evolved
up to iteration n. According to the derivation obtained in
Sec. III C, using Eq. (35), Mn can be approximated as

Mn 
 An−1

n−1∏
n′=1

λn′u1
n, (50)

where An is given by Eq. (29), which can be written also as

An = Dn 〈v1|V̇1〉 , (51)

where Dn is given by

Dn =
n∏

n′=2

〈vn′ |un′−1〉 . (52)

For p 
 pc, Dn is in first approximation independent of n and
approximately equal to one, as the right and left eigenvectors
will change slowly with n and by definition Eq. (34) is
satisfied. Therefore, Eq. (50) can be written as

Mn 
 〈v1|V̇1〉
n−1∏
n′=1

λn′u1
n. (53)

B. Critical expansions

Our major goal is to study the critical behavior of the order
parameter P∞ [given by Eq. (49)], depending on the scaling of

the expected number of of nodes Mn [whose leading behavior
is given by Eq. (53)] in the pseudofractal simplicial complex
with the number of iterations n.

To this end in this paragraph we will investigate the scaling
of λn with n for 0 < p � 1 and we will investigate the scaling
of the other factors 〈v1|V̇1〉 and u1

n present in Eq. (53) with p.
The leading eigenvalue λn of the Jacobian matrix Jn is

expressed according to Eq. (30) as a function of H (Tn)
and Q(Tn). For yn = − ln(1 − Tn) � 1 we can expand both
H (Tn) = H (1 − e−yn ) and Q′(Tn) = Q′(1 − e−yn ) getting

Q′(1 − e−yn ) = qm(m − 1)ym−2
n + O

(
ym−1

n

)
,

H (1 − e−yn ) = 1 + yn + O
(
y2

n

)
, (54)

where m indicates the smallest value of m for which qm > 0.
Using this expansion in Eq. (30) for the maximum eigenvalue
λn of the Jacobian matrix, we get

λn = 2(1 + yn) + O
(
y2

n

)
. (55)

For yn � 1 also the inhomogeneous term ∂Fn/∂x can be
expanded to give

∂Fn

∂x



⎛
⎜⎝

(2 + q3)y2
n

2yn

2yn

yn

⎞
⎟⎠, (56)

For n = 0 where the homogeneous term vanishes due to the
trivial initial condition V̇0 = 0 and the inhomogeneous term
has the leading behavior

V̇1 = ∂F0

∂x



⎛
⎜⎝

(2 + q3)p2

2p
2p
p

⎞
⎟⎠. (57)

Moreover, the leading term of v1 is

v1 
 1

6 − 4p/3
[(1 + p), (1 − p), (−1 + p), 2]. (58)

Therefore, for p � 1 we have that 〈v1|V̇1〉 scales linearly with
p. In particular,

〈v1|V̇1〉 
 p

3
. (59)

Finally, we observe that for n � 1 we have Tn 
 1 and
the right eigenvector corresponding to the largest eigenvalue
scales like

un = (1, 1, 0, 0)	. (60)

By considering the scaling relations determined by Eqs. (59)
and (60) in Eq. (53), we obtain that for n � 1 the fraction of
nodes Mn in the giant component obeys

Mn ∝ p
n−1∏
n′=1

λn′ , (61)

with λn following Eq. (55) for yn � 1.

C. Critical scaling of the order parameter

In this paragraph we derive the asymptotic behavior of the
order parameter P∞ given by Eq. (49) close to the percolation
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threshold pc = 0. By approximating Mn with Eq. (61) the
order parameter P∞ given by Eq. (49) can be easily shown
to obey for 0 < p � 1,

P∞ ∝ p lim
n→∞

1

Nn

n∏
n′=1

λn′

= p exp

[
− ln〈m〉

∫ ∞

0
dn(1 − ψn)

]
, (62)

where ψn is defined as

ψn = ln λn

ln〈m〉 . (63)

Using for λn the expansion given by Eq. (55), ψn can be
expanded to give

ψn = ln λn

ln〈m〉 = ln 2

ln〈m〉 + yn

ln〈m〉 + O
(
y2

n

)
. (64)

Therefore, in the continuous limit for n we get

1 − ψ 
 1 − ln 2

ln〈m〉 − y

ln m
, (65)

with the function y(n) given by the scaling function Eq. (48)
and diverging for n = nc. At a value of n ∼ nc, Tn jumps to
Tn = 1, λn = 〈m〉. Consequently, we have that 1 − ψn will
also have a discontinuity at nc, i.e.,

1 − ψn =
{

fψ (n̂/nc) for n < nc

0 for n > nc
, (66)

where fψ (x) is a scaling function. Using this expression in
Eq. (62) we obtain

P∞ ∝ p exp

[
− ln〈m〉

∫ ∞

0
dn(1 − ψn)

]

= p exp

[
− ln〈m〉

∫ n̂c

0
dn̂ fψ (n̂/nc)

]
. (67)

By changing the variable of integration from n to x = n/nc,
we obtain

P∞ ∝ p exp

[
−nc ln〈m〉

∫ 1

0
dx fψ (x)

]
. (68)

Finally, using the expression for nc given by Eq. (42), by
indicating with α the constant

α = ln〈m〉
(m − 2)qm

∫ 1

0
fψ (x)dx, (69)

we obtain

P∞ ∝ p exp

(
− α

| ln(1 − p)|m−2

)
. (70)

Because in the critical region p � 1, it follows that P∞
follows the asymptotic scaling

P∞ ∝ p exp(−α/pm−2). (71)

This scaling can be validated by numerically integrating
Eq. (23) and using the finite size scaling of Pn defined as the
fraction of nodes in the giant component of a pseudofractal

FIG. 6. The scaling of the order parameter Pn is shown a as
function of p for the deterministic pseudofractal simplicial and cell
complexes with m = 3 (top panel), m = 4 (central panel), and m =
5 (bottom panel). The order parameter Pn is shown for different
values of n = 20 000, 10 000, 5 000, 2 500 indicated with solid (red),
dashed (green), dot-dashed (orange), and dotted (blue) thick lines.
The predicted scaling of the order parameter in the infinite network
limit is indicated with the thin dashed (black) line.

cell complexes evolved up to iteration n, i.e.,

Pn = Mn

Nn
. (72)

Our numerical results shown in Fig. 6 clearly demonstrates
that if n > nc [where nc is a function of p defined by Eq. (42)]
then Pn follows the asymptotic scaling defined in Eq. (71).
However, if n < nc, then Pn saturates to a constant value. This
phenomenology is in perfect agreement with our theoretical
understanding of the critical properties of link percolation on
pseudofractal cell complexes.

VI. CONCLUSIONS

In this work we have studied the nature of the link
percolation transition in pseudofractal simplicial and cell
complexes. The pseudofractal generalized networks under
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study include deterministic and random cell complexes, made
by gluing together m-polygons with the same number of
sides m or with random number of sides m drawn from a qm

distribution. All these generalized network topologies display
a link percolation transition at pc = 0. However, the critical
behavior of the order parameter depends on the topology of
the generalized network structure. For deterministic pseud-
ofractal simplicial complexes (m = 3) we confirm the results
of Ref. [42] showing that the order parameter is exponentially
suppressed by a term 1/p and we predict an additional mod-
ulation of the order parameter by a factor p. For deterministic
pseudofractal cell complexes with m > 3 we show that the
exponential suppression is more severe than for simplicial
complexes and decays as 1/pm−2. Finally, for random cell
complexes we show that the critical behavior is dominated by

the smallest value of m, m for which qm > 0. It follows that
albeit both simplicial and cell complexes have an order param-
eter that is exponentially suppressed close to the critical point,
the universality of the phase transition is weakened by the
dependence on m of this exponential suppression. Therefore in
this work shows clearly that the dynamical processes defined
on simplicial complexes and their cell complex counterpart
might be significantly different, emphasizing the important
role that network topology and geometry have on dynamical
processes.
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