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Community detectability and structural balance dynamics in signed networks
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We investigate signed networks with community structure with respect to their spectra and their evolution
under a dynamical model of structural balance, a prominent theory of signed social networks. The spectrum of
the adjacency matrix generated by a stochastic block model with two equal-size communities shows detectability
transitions in which the community structure becomes manifest when its signal eigenvalue appears outside the
main spectral band. The spectrum also exhibits “sociality” transitions involving the homogeneous structure
representing the average tie value. We derive expressions for the eigenvalues associated with the community and
homogeneous structure as well as the transition boundaries, all in good agreement with numerical results. Using
the stochastically generated networks as initial conditions for a simple model of structural balance dynamics
yields three outcome regimes: two hostile factions that correspond with the initial communities, two hostile
factions uncorrelated with those communities, and a single harmonious faction of all nodes. The detectability
transition predicts the boundary between the assortative and mixed two-faction states and the sociality transition
predicts that between the mixed and harmonious states. Our results may yield insight into the dynamics of
cooperation and conflict among actors with distinct social identities.
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I. INTRODUCTION

Most research in network science has focused on networks
that allow only positive ties. In signed networks, however,
ties can take on negative values as well. In social systems,
positive ties signify friendly or cooperative relationships
between the individual or collective actors represented by
the nodes whereas negative ties signify hostile or conflict-
ual relationships between nodes. As examples, signed social
networks have been used to represent interpersonal senti-
ments among students [1], supportive or critical references
among opinion makers [2], relationships in online social net-
works [3], and alliances and military clashes among nations
[4,5].

In this paper, we address community structure in signed
networks and its implications for dynamics governed by
structural balance, a theory commonly invoked in treatments
of signed networks in social systems. In unsigned networks,
community structure refers to the presence of clusters within
networks characterized by relatively dense intracluster ties
and sparse intercluster ties. A rich set of techniques have been
developed to detect communities in unsigned networks [6].
Of particular relevance here, spectral analysis has proven to
be a highly valuable tool for probing community structure
[7,8]. For signed networks, the notion of community can be
extended to accommodate negative ties by reversing the crite-
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ria for positive ties—there should be relatively sparse negative
ties within communities and denser ties between them. At
the present, however, the literature on community detection
in signed networks is itself rather sparse in comparison with
unsigned networks (e.g., Refs. [2,9–11]).

An important phenomenon of community structure in un-
signed networks is that of community detectability [12–17].
Here, community structure can be present—in the sense that
the tie-generating probabilities in a stochastic block model
indeed favor ingroup over outgroup ties—but it is too weak to
typically be discerned by analysis of the generated network.
For large networks, a phase transition characterizes the pas-
sage from undetectable to detectable structure.

We show that detectability transitions also occur in signed
networks. We generate our networks using a stochastic block
model for two communities in an unweighted and undirected
signed network (Sec. II). Examples of simulated networks
with community structure that is detectable and undetectable
are shown on the left in Figs. 1(a) and 1(b). We describe
the transitions observed in the spectra of simulated networks
in which outlying eigenvalues corresponding to meaningful
signals merge with the main spectral band corresponding to
noise (Sec. III). Two sets of spectral transitions are found:
one corresponds to the detectability transition involving the
two-community structure, while the other affects the ability
to observe an overall tendency toward positive or negative
tie formation, which we refer to as sociality transitions. Fig-
ure 1(c) shows an example of a network with a markedly
positive average tie value generated in the regime in which
an overall prosocial tendency can be reliably discerned.
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FIG. 1. Evolution of networks with initial community structure
under structural balance dynamics. (a) Moderate initial structuring
by group identity leads to a completely connected network consisting
of two factions sorted by identity. (b) Weak initial structure leads to
two factions of mixed identities. (c) Strong initial positivity in the
network leads to a single harmonious faction. Networks represented
as adjacency matrices with ±1, 0 tie values indicated by color. Initial
networks generated by stochastic block model, Eqs. (2)–(4) with
parameters N = 100 and din, dout = 0.4 in all networks. p+

out = 0.3
and p+

in = 0.7 for (a), p+
out = 0.4 and p+

in = 0.5 for (b), and p+
out = 0.6

and p+
in = 0.8 for (c). Final networks represent the connectivity signs

to which Eq. (1) converges (see Sec. VI).

We analytically calculate both the key eigenvalues and the
transition conditions for large networks. In the main text,
we use perturbation analysis to derive expressions for the
signal eigenvalues (Sec. IV), which are then used to obtain
the transition conditions by their equation with the main band
edge eigenvalues (Sec. V), these edge eigenvalues being found
using random matrix theory (Appendix A). We also present an
alternative to our perturbation treatment that derives the signal
eigenvalues on the basis of random matrix theory, in keep-
ing with previous treatments of detectability (Appendix B)
[13,14].

The spectral transitions have important implications for
the outcomes of structural balance dynamics for networks
possessing initial community structure. Structural balance
theory, which postulates that triads with one or three negative
edges will not endure, can be implemented as a deterministic,
continuous time dynamical system (Sec. VI),

dYi j

dt
=

N∑
k=1

YikYk j, (1)

where t is time and N is the number of nodes [18,19]. This
system evolves the connectivity Yi j between nodes i and j
as a function of their relationships with mutual neighbors:
the product YikYk j increases their connectivity when they
share a common inclination, positive or negative, toward k
but decreases it if their inclinations are oppositely signed.
This dynamic promotes balanced triads and eradicates unbal-
anced triads in the network. The model evolves into a fully
connected network where either: (1) there are two hostile
factions with only positive ties within each and only negative
ties between them; or (2) all nodes are positively connected
in a single harmonious faction. In either case, the final
state is determined by the leading eigenvector of the initial
network.

The driving role played by the leading eigenvector of the
initial network in the structural balance evolution gives rise to
a dynamical manifestation of the detectability transition when
the leading eigenvector also carries the community structure
signal. For the two-faction outcome, if the leading eigenvector
corresponds to the two identity types in the stochastic block
model, then the final factions will perfectly align with these
identities as shown in Fig. 1(a). However, if the leading eigen-
vector is merely the edge of the main noise band, as occurs for
weak initial structure below the detectability transition, then
the composition of the final factions will not align with the
identity types as seen in Fig. 1(b). An analogous transition
to the single-faction outcome is generated by the sociality
transition as seen in Fig. 1(c). Solutions of the structural
balance model starting from networks randomly generated by
the stochastic block model do indeed show sharp transitions
between behavioral regimes whose boundaries agree with
analytical predictions based on the detectability and sociality
transitions (Sec. VII).

We discuss the potential implications of these results for
conflict dynamics among actors with different identity types
due to, for instance, ethnicity, religion, or ideology (Sec. VIII).
In particular, conflicts such as civil wars may take on a binary
nature. If the system starts out with weak identity-driven
structure, then it will not be expected to polarize on the basis
of identity. But complete identity polarization results even
when initial affinities and animosities between identity types
are fairly mild and even though identity itself plays no role in
the micro-level conflict dynamics.

II. GENERATING AND REPRESENTING
COMMUNITY STRUCTURE

Communities in an unsigned network are characterized
by relatively dense within-community ties and sparse ties
between communities. Community detection algorithms seek
to discover these communities given an observed network
[6,7,20]. Stochastic block models, which generate random
networks with community structure by setting tie probabilities
within and between blocks of nodes, have been used to
investigate the behavior of community detection algorithms
[21]. In this section, we describe the stochastic block model
we use to generate our signed networks, the characterization
of community structure via assortativity, and decomposition
of the generated networks in terms of the eigenvectors of the
average adjacency matrix and a random matrix.
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A. Stochastic block model

Our construction starts with an undirected network of N
nodes consisting of two identity groups A and B of equal size
N/2, where N � 1. The A group nodes are indexed from 1
to N/2 and the B group from N/2 + 1 to N . A is the signed
adjacency matrix where Ai j is the tie value between node i
and node j, which can take on values of {1,−1, 0} with 0
signifying the absence of a tie. As the network is undirected,
the adjacency matrix is symmetric, Ai j = Aji. The probability
that a tie, positive or negative, will form between any given
ingroup (A with A, B with B) node pair is din. Similarly, the tie
formation probability between outgroup (A with B) node pairs
is dout. These tie formation probabilities are equivalent to the
expected ingroup and outgroup tie densities and their average
yields the expected tie density for the total network, d =
(din + dout)/2. Given the presence of a tie between ingroup
members, the conditional probability that it is positive is p+

in
and that it is negative is p−

in = 1 − p+
in. Similarly, the positive

and negative tie conditional probabilities between outgroup
nodes are written p+

out and p−
out = 1 − p+

out. For brevity, we
refer to p+

in and p+
out as the ingroup and outgroup affinities and

p−
in and p−

out as the in and outgroup animosities.
The adjacency matrix can be written in terms of the follow-

ing block structure:

A =
[

AAA AAB

ABA ABB

]
, (2)

where each block is a random N/2 × N/2 matrix. The diago-
nal blocks represent AA or BB ties, whose elements are set
using the following probability distribution for the ingroup
random variable Ain:

P(Ain = k) =
⎧⎨
⎩

din p+
in, k = 1,

din(1 − p+
in ), k = −1,

1 − din, k = 0.

(3)

Since A is symmetric, there are (N/2)(N/2 + 1) independent,
identically distributed (i.i.d.) ingroup ties.

The off-diagonal blocks, corresponding to AB or BA ties,
are transposes of each other resulting in N2/4 i.i.d. outgroup
ties, which are drawn according to the random variable Aout:

P(Aout = k) =
⎧⎨
⎩

dout p
+
out, k = 1,

dout(1 − p+
out ), k = −1,

1 − dout, k = 0.

(4)

Equations (2)–(4) define the stochastic block model used
to generate matrices with more or less community structure
as seen on the left in Fig. 1 and for all the numerically
generated spectra shown in this paper. Note that this model
allows nonzero self-ties, unlike in many empirical networks,
but this is a standard approximation that facilitates analytical
treatment [13,14,22]. For large networks, the contribution of
the N diagonal elements is negligible in comparison with that
of the order N2 off-diagonal elements. As we note below, the
effect of removing self-ties on the average of A is to shift the
eigenvalues by a constant that is independent of N . In addition,
the model of structural balance dynamics, Eq. (1), allows for
self-ties.

r

r+

r−

p+
in

r

FIG. 2. Example of assortativity coefficients as a function of
ingroup affinity. Values calculated using expected tie numbers. Pa-
rameters are din = 0.5, dout = 0.3, p−

out = 0.7, and N = 100.

Networks that are too sparse become disconnected and the
structural balance dynamics of the isolated subgroups will
evolve independently of each other as opposed to the holistic
evolution we see when the network forms one connected
graph. An Erdős-Rényi graph will very likely form a sin-
gle connected graph if p > ln(N )/N [17,23]. Similarly, our
stochastic block model matrices with two communities and
density probabilities din = a/N and dout = b/N will have a
single giant component if (a + b)/2 > 1, and will very likely
form a single connected graph if din = a ln(N )/N, dout =
b ln(N )/N and (a + b)/2 > 1 [17].

B. Assortativity

Assortativity refers to the tendency for nodes of the same
type to be more strongly connected than nodes of different
types. We extend the standard definition of the assortativity
coefficient for discrete node types [24] to our signed network
case by calculating separate coefficients for the positive and
negative tie networks and then essentially differencing them.
We will use the signed network assortativity coefficient to
characterize the regimes of the structural balance dynamics
in Sec. VII.

First, considering the adjacency matrix of positive ties only,
we let e+

i j denote the fraction of all positive ties that connect
a node of type i to one of type j where i, j ∈ {A, B}. The
assortativity coefficient r+ for the network of positive ties,
whose adjacency matrix elements are 1 if Ai j > 0 and zero
otherwise, is then

r+ =
∑

i e+
ii − ∑

i(a
+
i )2

1 − ∑
i(a

+
i )2

, (5)

where a+
i = ∑

j e+
i j . The assortativity coefficient can range

between −1 and 1. A network containing only ingroup (AA or
BB) positive ties with no outgroup (AB, BA) ties is completely
assortative, r+ = 1, which in the social network context im-
plies that people only cooperate with members of the same
group. A network containing only outgroup ties is completely
disassortative, r+ = −1, implying cooperation across the two
groups but not within them. We see this state in the example
shown in Fig. 2 in which r+ = −1 when the ingroup affinity
p+

in = 0. As the ingroup affinity increases, r+ increases but
does not reach one as there are still outgroup ties due to the
nonzero value of the fixed outgroup affinity.
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The assortativity for the network of negative ties, r−, is
defined analogously to Eq. (5). Whereas positive values of r+
imply that ingroup relations are more friendly than outgroup
relations, assortative mixing in the network of negative ties
implies more hostility within groups than between them.
Thus, in Fig. 2 we see that r− > 0 when there is complete
ingroup animosity (p−

in = 1 corresponding to p+
in = 0) and

r− = −1 when there is no ingroup animosity and so no
negative ties within groups.

Accordingly, as we want positive values of our overall
signed network assortativity coefficient r to signify that in-
group interactions tend to be more amicable than outgroup
ones, we average r+ and −r−, yielding

r = r+ − r−

2
, (6)

which can take on values between −1 and 1. Figure 2 shows
that r is negative for low ingroup affinity and positive for high
ingroup affinity.

C. Adjacency matrix decomposition

This section presents a decomposition of the adjacency
matrices generated by the stochastic block model into: (i) a
signal component that results from the expected tie values
generated by the ingroup and outgroup random variables, Ain

and Aout; and (ii) a noise component due to random deviations
from the expected values. This decomposition will form the
starting point for our calculation of the network eigenvalues
in Sec. IV. We write A as the sum of the average matrix 〈A〉
and a random deviation matrix X:

A = 〈A〉 + X. (7)

Given the block structure of Eq. (2), 〈A〉 can be written as

〈A〉 =
[〈AAA〉 〈AAB〉
〈ABA〉 〈ABB〉

]
, (8)

where each element of 〈AAA〉 and 〈ABB〉 is equal to 〈Ain〉 and
each element of 〈AAB〉 and 〈ABA〉 is equal to 〈Aout〉. From
Eqs. (3) and (4), we have

〈Ain〉 = din(2p+
in − 1), (9)

〈Aout〉 = dout(2p+
out − 1). (10)

We define a couple of useful linear combinations of the in and
outgroup expected tie values. We denote by μ the average over
all the elements in 〈A〉,

μ = 〈Ain〉 + 〈Aout〉
2

, (11)

and we denote by ν the half-difference between the in and
outgroup expected tie values,

ν = 〈Ain〉 − 〈Aout〉
2

. (12)

Both μ and ν range from −1 to 1. Noting that 〈Ain〉 = μ + ν

and 〈Aout〉 = μ − ν, these expressions allow us to express 〈A〉
as a sum of two outer products,

〈A〉 = μNuH uT
H + νNuCuT

C , (13)

where uH and uC are orthonormal N-dimensional vectors:
uH = 1√

N
[1, 1, ..., 1]T and uC = 1√

N
[1, ..., 1,−1, ...,−1]T ,

where the −1’s align with the B block node indices. In fact,
uH and uC are readily seen to be the two eigenvectors of 〈A〉
with respective eigenvalues μN and νN :

〈A〉uH = μNuH , (14)

〈A〉uC = νNuC . (15)

The term containing uH in Eq. (13) generates a homogeneous
N × N matrix whose elements are all equal to μ, the global
average tie value. Hence, we refer to uH as the homogeneous
eigenvector. The term containing uC generates a matrix whose
diagonal block elements are all equal to ν and whose off-
diagonal block elements are −ν and so corresponds to the
structure of ingroup and outgroup tie differences. Accord-
ingly, uC generates the community structure and we refer to
it as the contrast eigenvector.

The homogeneous and contrast eigenvectors are signal
eigenvectors whose ability to be distinguished from the noise
generated by X has important implications for community
detectability and structural balance dynamics. From this per-
spective, μ and ν can be regarded as natural parameters for
the signal structure in the network and could be used in place
of two of the parameters in the stochastic block model, for
instance, the ingroup and outgroup affinities. Doing so is less
intuitive from a simulation viewpoint, however.

While 〈A〉 is rank 2, in general, if either μ or ν equals
zero, then 〈A〉 becomes a rank 1 matrix composed of either
the homogeneous eigenvector or the contrast eigenvector. If
p+

out = 1/2, then 〈Aout〉 = 0 and μ = ν and so the two eigen-
values of 〈A〉 are degenerate, as is the case when dout = 0 and
the two blocks are disconnected from each other. However,
taking din = 0 yields a bipartite network between the A and B
blocks in which μ = 〈Aout〉/2 = −ν, and so the homogeneous
and contrast eigenvalues are equal and opposite. If μ and ν

are both zero, then 〈A〉 vanishes and A reduces to the noise
matrix X.

To remove self-ties from 〈A〉, one can subtract 〈Ain〉I from
Eq. (13), where I is the identity matrix. This shifts the signal
eigenvalues by −〈Ain〉 = −(μ + ν).

The noise matrix X is a symmetric matrix that can be
written in the block form,

X =
[

XAA XAB

XBA XBB

]
. (16)

Since X = A − 〈A〉, the elements of the ingroup blocks XAA

and XBB can assume values in {1 − 〈Ain〉,−1 − 〈Ain〉,−〈Ain〉}
that are distributed according to the random variable Xin,

P(Xin = k) =
⎧⎨
⎩

din p+
in, k = 1 − 〈Ain〉,

din(1 − p+
in ), k = −1 − 〈Ain〉,

1 − din, k = −〈Ain〉.
(17)

Likewise, the entries of the outgroup blocks XAB = XT
BA are

distributed like Xout,

P(Xout = k) =
⎧⎨
⎩

dout p
+
out, k = 1 − 〈Aout〉,

dout(1 − p+
out ), k = −1 − 〈Aout〉,

1 − dout, k = −〈Aout〉.
(18)
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All the elements of X have zero mean as 〈Xin〉 = 〈Xout〉 = 0.
The variances of Xin and Xout are given by σ 2

in = 〈X 2
in〉 and

σ 2
out = 〈X 2

out〉, which are written in terms of the stochastic
block model parameters as

σ 2
in = din − d2

in(2p+
in − 1)2, (19)

σ 2
out = dout − d2

out(2p+
out − 1)2. (20)

These variances will appear as their average,

σ 2 = σ 2
in + σ 2

out

2
, (21)

in the noise-induced correction to the signal eigenvalues cal-
culated below. The average variance can also be related to the
parameters μ and ν as follows:

σ 2 = din + dout

2
− d2

in(2p+
in − 1)2 + d2

out(2p+
out − 1)2

2
, (22)

= din + dout

2
− 1

2
(〈Ain〉2 + 〈Aout〉2), (23)

= din + dout

2
− μ2 − ν2, (24)

where we have used Eqs. (9) and (10) in the second line and
〈Ain〉2 + 〈Aout〉2 = (μ + ν)2 + (μ − ν)2 = 2(μ2 + ν2) in the
third.

III. SIGNAL EIGENVALUE TRANSITIONS

Spectral analysis has been used to address the number and
detectability of communities in unsigned networks by consid-
ering the leading eigenvalues that reside outside the (approx-
imately) continuous main spectral band due to its generation
as a random graph [8,13,14,25]. For undirected networks, the
adjacency matrix is symmetric and hence has a real spec-
trum. The number of detectable communities is equivalent
to the number of positive eigenvalues that lie beyond the
main spectral band. Nadakuditi and Newman [13] showed
the existence of, and analytically calculated, a detectability
transition in which the community structure, as generated by
a stochastic block model with two communities, while still
present becomes no longer detectable. Under assortative tie
formation, this transition occurs once the second eigenvalue
of the adjacency matrix, which carries the community struc-
ture information, merges with the main spectral band. Using
random matrix theory, the authors derived expressions for
both leading eigenvalues and the edge of the spectral band,
thereby enabling the analytical determination of the transition
dependence.

Similar to unsigned networks, Fig. 3 illustrates that the
spectra of our signed networks consist of a continuous band
of eigenvalues originating from X, the variability or noise in
the system, and signal eigenvalues originating from 〈A〉, the
structure in the system. The edges of the main spectral band,
±γ , are derived in Appendix A,

γ = 2σ
√

N, (25)

(b)

(a)
γ

λH

λC

p−
out

p−
out

λ(A)

assortative
transition

prosocial
transition

antisocial
transition

disassortative
transition

uN u1

FIG. 3. (a) Eigenvalue spectrum of A as a function of out-
group animosity p−

out. The other parameters remain constant: N =
100, p+

in = 0.4, din = 0.5, dout = 0.8. (b) Signs (yellow, positive;
blue, negative) of the components of the last, uN , and first, u1,
eigenvectors as functions of p−

out. The theoretical curves for λC (solid
green), λH (solid pink), and γ (dashed blue) are calculated from
Eqs. (26), (27), and (A15), respectively.

while the average contrast and homogeneous signal eigenval-
ues, 〈λC〉 and 〈λH 〉, are derived in Sec. IV and Appendix B,

〈λC〉 = νN + σ 2

ν
, |ν| � σ√

N
, (26)

〈λH 〉 = μN + σ 2

μ
, |μ| � σ√

N
. (27)

The formulas for 〈λC〉 and 〈λH 〉 consist of their respective
eigenvalues from 〈A〉 and a correction proportional to the
average variance. The conditions |ν|, |μ| � σ/

√
N imply that

|〈λC〉|, |〈λH 〉| � |γ | so that Eqs. (26) and (27) are only valid
when outside of the main spectral band. Note that because
of the self-averaging behavior for large N , we can effectively
drop the expectation brackets and take λC ≈ 〈λC〉 and λH ≈
〈λH 〉.

The successive horizontal slices in Fig. 3(a) correspond
to the eigenvalues of single instances of A generated by the
stochastic block model as the outgroup animosity is increased.
There are four points at which the outlying eigenvalues merge
with the main band. Considering first the upper right of the
plot, the largest eigenvalue, λ1, is observed to detach from
the main band for p−

out greater than about 0.7. The right
plot in Fig. 3(b), which depicts the signs of components
of the first eigenvector u1, shows that u1 displays a two
block structure for high p−

out. Consequently, in this regime,
the leading eigenvector corresponds to a perturbed version
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of the contrast eigenvector, uC , of 〈A〉. The point at which
λ1 emerges from the main band is then identified with the
community detectability transition. Indeed, below this point
u1 loses its block structure and rapidly takes on the appearance
of random noise. We observe that in contrast to the analogous
case in unsigned networks where the detectability transition
involves the second eigenvalue of the adjacency matrix, here
the two communities are no longer discernible when the
leading eigenvalue merges with the main spectral band. We
refer to the transition involving the merging of the contrast
eigenvalue with the positive edge of the main band as the as-
sortative transition because the communities are preferentially
grouped by identity type. With an eye toward its dynamical
significance when the contrast eigenvalue is leading, the two
final factions produced by the structural balance dynamics are
polarized by identity type after λ1 emerges from the band.

The leading eigenvalue is observed to undergo another
transition at p−

out ≈ 0.3. For lower outgroup animosities, u1

takes on a single block structure and so can be taken to result
from a perturbation of the homogeneous eigenvector uH . This
homogeneous structure disappears from u1 for p−

out values
above the transition. As the homogeneous eigenvalue carries
information about the average tie value over all nodes, its
emergence from the noise band can be considered a sociality
transition. In particular, we refer to transitions that occur on
the positive side of the noise band as prosocial transitions,
in which a pattern of overall positive ties between nodes
becomes apparent. The prosocial transition induces a transi-
tion in the structural balance dynamics from the two-faction
equilibrium (not sorted by identity) to a single harmonious
faction consisting of all nodes.

The lower left section of Fig. 3(a) shows the intersection of
the last and least eigenvalue, λN , with the noise band at p−

out ≈
0.4. For outgroup animosity values beneath this intersection,
the last eigenvector uN displays a two block structure as seen
on the left plot of Fig. 3(b). However, although these blocks
align with the A and B identity groups, the warmer outgroup
than ingroup relations implies that the blocks are really dis-
assortative “anti”-communities rather than assortative com-
munities (prominent negative eigenvalues are also associated
with disassortativity in unsigned networks [7]). Since this
disassortative transition involves the least eigenvector, it has
no significance with respect to the outcomes of the structural
balance dynamics.

Finally, the other transition involving λN , seen in the upper
left of Fig. 3(a), represents the emergence of the homogeneous
eigenvalue and its corresponding single block structure from
the noise band. It is a sociality transition and, in particular,
an antisocial transition as it occurs on the negative side of
the noise band signifying a conflictual relationship among
nodes on average. The antisocial transition has no dynamical
significance with respect to the structural balance dynamics.

Signal eigenvalues can occur on alternative sides of the
spectral band as in Fig. 3(a) or on the same side as seen
in Fig. 4(a). When λH and λC are on the same side of the
spectral band, p−

out = 1/2 is the point at which the signal
eigenvalues cross one another since μ = ν. This affects which
of the first two eigenvectors carries the community structure,
but the structure itself remains apparent [Fig 4(b)]. How-
ever, the signal crossing does affect the balance dynamics,

(a)
γ

λH

λC

p−
out

λ(A)

signal
crossing

prosocial
transition

assortative
transition

(b)

u2 u1

p−
out

FIG. 4. (a) Spectrum of A as a function of p−
out with constant

parameters N = 100, din, dout = 0.5, and p+
in = 1. (b) Signs (yellow

positive, blue negative) of the components of the first and second
eigenvectors, u1 and u2, as functions of p−

out. The theoretical curves
for λC (solid green), λH (solid pink), and γ (dashed blue) are
calculated from Eqs. (26), (27), and (A15), respectively.

producing a transition between the harmonious and assortative
outcomes.

IV. CALCULATION OF SIGNAL EIGENVALUES

In this section, we will derive formulas for the signal
eigenvalues as a function of our stochastic block model
parameters. We employ a perturbation treatment here but
present an alternative derivation employing random matrix
theory and complex analysis in Appendix B. Equation (7),
which expresses the adjacency matrix A as the sum of its
expected value 〈A〉 and a matrix of random deviations X,
will form the starting point of our analysis. We consider
〈A〉 as a given deterministic matrix with homogeneous and
contrast eigenvalues and eigenvectors, Eqs. (14) and (15),
that is subject to a perturbation from the independent noise
matrix X, which induces shifts to the signal eigenvalues and
eigenvectors. A perturbation expansion to second order and
the statistics of the noise matrix then yield the corrections
to the signal eigenvalues. We note that in treating X as an
independent perturbation to 〈A〉, we temporarily suspend their
linkage via the tie formation probabilities in the stochastic
block model.

A. Perturbation expansion setup

We show the perturbation calculation for the case of the
contrast eigenvalue. The homogeneous eigenvalue can be
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obtained in precisely analogous fashion. The eigenvalue equa-
tion is

(〈A〉 + X)vC = λCvC . (28)

We write the perturbed eigenvector and eigenvalue up to
second order as

vC = uC + u(1) + u(2), (29)

λC = νN + λ(1) + λ(2), (30)

where λ(1), λ(2), u(1), u(2) are the first- and second-order per-
turbations. As the unperturbed eigenvalue is O(νN ), we
divide Eq. (28) by N so that the zeroth-order equation is
O(1). Then, using Eqs. (29) and (30), the eigenvalue equation
becomes ( 〈A〉

N
+ X

N

)
(uC + u(1) + u(2) )

=
(

ν + λ(1)

N
+ λ(2)

N

)
(uC + u(1) + u(2) ). (31)

Before embarking upon our perturbation analysis, we spec-
ify the appropriate expansion parameter. To do so, we de-
termine the orders of the 〈A〉 and X matrices by evaluating
their 2-norms. The 2-norm of each matrix is equivalent to its
largest eigenvalue. Consequently, for the unperturbed matrix,
||〈A〉||2 is given by the larger of N |ν| or N |μ|. Taking ν, μ to
be O(1) therefore implies that 〈A〉 is O(N ). In Appendix A,
using Wigner’s semicircle law for the spectral density of a
random matrix as well as matrix bounds, we determine that
||X||2 is O(σ

√
N ). The ratio of the orders of X to 〈A〉 is

O(σ/
√

N ), and so successive orders in the perturbation series
must diminish by a factor of σ/

√
N , which therefore serves as

our expansion parameter. At a given N , the perturbation can
be made arbitrarily small by letting σ go to zero. But in the
large N regime, we need not constrain σ to be small.

Separating Eq. (31) out by expansion orders yields
O(1)

〈A〉
N

uC = νuC, (32)

O(σ/
√

N )

〈A〉
N

u(1) + X
N

uC = νu(1) + λ(1)

N
uC, (33)

O(σ 2/N )

〈A〉
N

u(2) + X
N

u(1) = νu(2) + λ(1)

N
u(1) + λ(2)

N
uC . (34)

B. First-order treatment

To find the first-order eigenvalue perturbation, λ(1), we
multiply both sides of Eq. (33) by NuT

C . Then using Eq. (13)
and the orthonormality of uC and uH gives

νNuT
C u(1) + uT

C XuC = νNuT
C u(1) + λ(1). (35)

Solving for λ(1) yields

λ(1) = uT
C XuC (36)

= 1

N

⎧⎨
⎩

N
2∑

i, j=1

Xi j +
N∑

i, j= N
2 +1

Xi j − 2

N
2∑

i=1

N∑
j= N

2 +1

Xi j

⎫⎬
⎭.

The first two terms in the braces above sum ties in the ingroup
blocks AA and BB, respectively, each tie distributed as Xin, and
the third term corresponds to the AB and BA outgroup ties,
distributed as Xout. As λ(1) is equal to the sum of zero-mean
random ingroup and outgroup variables, its mean therefore
vanishes,

〈λ(1)〉 = 0. (37)

Turning to the variance, each element within the outgroup
sum has variance σ 2

out, which becomes 4σ 2
out/N2 when the 2/N

prefactor is included. The contribution to the variance from
the N2/4 outgroup variables is therefore σ 2

out. Similarly, for the
ingroup sums, the symmetry of X implies that, neglecting the
diagonal, there are approximately a total of N2/4 independent
variables each with variance 4σ 2

in/N2 so that the ingroup
variance contribution is σ 2

in. Accordingly, the variance of
λ(1) is

Var(λ(1) ) = σ 2
in + σ 2

out = 2σ 2. (38)

To solve for u(1), we write it as a vector decomposition and
solve for the individual components,

u(1) = u(1)
�

+ u(1)
⊥ , (39)

where u(1)
�

is the component of u(1) that is in the uC, uH

plane, and u(1)
⊥ is the component orthogonal to that plane. We

find u(1)
�

and u(1)
⊥ by multiplying both sides of the O(σ/

√
N )

equation, Eq. (33) by uT
H , the transpose of the homogeneous

eigenvector of 〈A〉, which gives

uT
H (〈A〉u(1) + XuC ) = uT

H (νNu(1) + λ(1)uC ), (40)

which after employing the eigenvector properties becomes

μNuT
H u(1) + uT

H XuC = νNuT
H u(1). (41)

Rearranging and noting that uT
H u(1) = uT

H u(1)
�

, we find

uT
H u(1) = uT

H u(1)
�

= uT
H XuC

νN − μN
, (42)

which suggests the following solution for u(1)
�

,

u(1)
�

= [XuC]�

νN − μN
. (43)

Writing [XuC]� as a decomposed projection onto uC and uH ,

[XuC]� = (
uT

C XuC
)
uC + (

uT
H XuC

)
uH , (44)

allows us to write u(1)
�

as

u(1)
�

=
(
uT

C XuC
)

νN − μN
uC +

(
uT

H XuC
)

νN − μN
uH . (45)
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We now seek to solve for u(1)
⊥ . Using the decomposition

Eq. (39) in the first-order equation, Eq. (33), gives

〈A〉[u(1)
�

+ u(1)
⊥

] + XuC = νN
[
u(1)

�
+ u(1)

⊥
] + λ(1)uC . (46)

Retaining only the terms that have components orthogonal to
the uC, uH plane and rearranging yields

u(1)
⊥ = [XuC]⊥

νN
. (47)

Using the substitution [XuC]⊥ = XuC − [XuC]� then gives
the solution for the orthogonal component

u(1)
⊥ = XuC − [(

uT
C XuC

)
uC + (

uT
H XuC

)
uH

]
νN

. (48)

Combining Eqs. (45) and (48) gives the solution for the first-
order perturbation to the eigenvector u(1),

u(1) = XuC

νN
+ μ

(
uT

C XuC
)

νN (ν − μ)
uC + μ

(
uT

H XuC
)

νN (ν − μ)
uH . (49)

C. Second-order treatment

Having found the first-order eigenvalue and eigenvector
perturbations, λ(1) and u(1), we can now solve for the second-
order correction λ(2). We multiply both sides of Eq. (34) by
uT

C and then solve to get

λ(2) = uT
C Xu(1) − λ(1)uT

C u(1) (50)

= uT
C X2uC

νN
−

(
uT

C XuC
)2

νN
+ μ

(
uT

H XuC
)2

νN (ν − μ)
, (51)

where Eqs. (36) and (49) have been used to obtain the second
line.

We seek the expected value 〈λ(2)〉 and consider the right-
hand terms of Eq. (51) in succession. Expanding the expected
value of the first term yields

〈
uT

C X2uC
〉

νN
= 1

νN

1

N

⎧⎨
⎩

N
2∑

i, j=1

〈(X2)i j〉 +
N∑

i, j= N
2 +1

〈(X2)i j〉

−2

N
2∑

i=1

N∑
j= N

2 +1

〈(X2)i j〉
⎫⎬
⎭, (52)

where (X2)i j = ∑N
k=1 XikXk j . As the elements of X are inde-

pendent, the cross-element terms in this sum have vanishing
expectation: 〈XikXk j〉 = 0 for i 	= j. When i = j, the value of
〈X 2

ik〉 is either the ingroup or outgroup variance: 〈X 2
ik〉 = σ 2

in
if i, k � N/2 or i, k > N/2; 〈X 2

ik〉 = σ 2
out otherwise. Accord-

ingly, the expectations for the elements of X2 are given by

〈(X2)i j〉 =

⎧⎪⎨
⎪⎩

N
2 σ 2

in + N
2 σ 2

out = Nσ 2, i = j,

0, i 	= j.

(53)

The above equation reduces the double sums in the first two
terms in Eq. (52) to single sums over 〈(X2)ii〉 = Nσ 2, which
can then be combined. The last term, which contains only

off-diagonal elements of 〈(X2)〉, vanishes. The contribution
of the first term in Eq. (51) to 〈λ(2)〉 is therefore〈

uT
C X2uC

〉
νN

= 1

νN

1

N

N∑
i=1

Nσ 2 (54)

= σ 2

ν
. (55)

We now turn to the second and third terms on the right-
hand side of Eq. (51). The numerator of the second term,
(uT

C XuC )2, involves the square of λ(1) by Eq. (36). Hence, its
expected value is equivalent to the variance of λ(1) (which has
zero mean), and so goes as σ 2 as shown above. Consequently,
the expected value of the second term goes as σ 2/N . The same
argument holds for the third term as its numerator depends on
uT

H XuC , which is likewise tantamount to the sum over the ran-
dom ingroup and outgroup variables. Therefore, in the large-N
regime of concern here, the second and third terms, which
have a 1/N dependence, can be neglected in comparison
with the first term, which is independent of N . Accordingly,
Eq. (55) gives the second-order eigenvalue perturbation,

〈λ(2)〉 = σ 2

ν
. (56)

Having found that the first-order perturbation vanishes on
average and given the second-order perturbation above, we
arrive at the approximate solution for the expected value of
the contrast eigenvalue of Eq. (28),

〈λC〉 = νN + σ 2

ν
. (57)

Since the ratio of the second-order correction to the unper-
turbed eigenvalue goes as σ 2/N , the expansion parameter,
given by its square root, is therefore O(σ/

√
N ) as stated at

the beginning of this calculation.
A similar calculation, this time expanding about the ho-

mogeneous eigenvector uH , gives us the solution for λH ,
which simply involves swapping out ν for μ in the preceding
equation,

〈λH 〉 = μN + σ 2

μ
. (58)

The analytical expressions for the signal eigenvalues,
Eqs. (57) and (58), are plotted in Fig. 3(a) for values outside
the main spectral band. They are observed to be in good agree-
ment with the outlying eigenvalues of the numerical spectrum.
This is the case even though, rather than an average over many
generated networks, each horizontal slice represents just one
instance, a reflection of the self-averaging behavior of large
random networks. These expressions also work well in the
nonsparse limit as shown in Fig. 5 for the case where the
contrast eigenvalue becomes the leading eigenvalue beyond
the assortative transition. The predicted λC is observed to
separate from the spectral edge past a critical density, which
decreases with network size, and shows good agreement with
the first eigenvalue of the simulated network, particularly for
the two larger networks. For the special case μ = ν, the same
signal eigenvalue expressions still hold but we note how this
case affects the derivation. When μ 	= ν, the last term on
the right-hand side of Eq. (51) could be neglected above as
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FIG. 5. Theoretical contrast [λC , Eq. (57)] and band edge [γ ,
Eq. (A15)] eigenvalues, along with the simulated leading eigenvalue
(λ1), as a function of network density. (a) N = 50, (b) N = 100,

(c) N = 1000. λC is plotted for network density values where it meets
or exceeds γ . One leading eigenvalue instance is computed for each
d value. d = din = dout, p+

in = 0.6, and p+
out = 0.4.

it is a factor of 1/N smaller than the first term. For μ = ν,
however, the third term is singular. Yet, Eq. (41) implies that
uT

H XuC = 0 for μ = ν (or is higher order for μ − ν ∼ 1/N)
and so the seemingly problematic third term does not arise.
For the special cases ν = 0 or μ = 0, 〈λC〉 = 0 or 〈λH 〉 = 0,

respectively, and 〈A〉 becomes rank 1. Figure 7(b) shows
example spectra for μ = 0 in which λC is the only signal
eigenvalue.

The symmetric forms of the expressions for λC and λH

reflect the fact that an orthogonal transformation K exists
that transforms the contrast and homogeneous eigenvectors of
〈A〉 into each other, that is, u′

H = KuC and u′
C = KuH where

the primes denote the transformed system. Specifically, K
is the diagonal matrix diag(1, . . . , 1,−1, . . . ,−1) where the
negative values start at index N/2 + 1. It is its own inverse,
K−1 = K. The transformation of the expected adjacency ma-
trix, 〈A′〉 = K〈A〉K, flips the sign of the off-diagonal blocks
so that 〈A′

out〉 = −〈Aout〉. Therefore, by Eqs. (11) and (12),
μ′ = ν and ν ′ = μ, which swaps the perturbed signal eigen-
values, λ′

H = λC and λ′
C = λH .

An alternative calculation of the signal eigenvalues based
on random matrix theory and complex analysis is presented
in the Appendix B. We find the same formulas for the signal
eigenvalues [see Eq. (B29)] as have been derived here.

V. TRANSITION BOUNDARIES

In this section, we derive theoretical predictions for the
boundaries of the detectability and sociality transitions. As
discussed in Sec. III, these transitions occur when the sig-
nal eigenvalues merge with the main spectral band. From
Eq. (A15), the edges of the main band of X are given by
±2σ

√
N , a formula that is a straightforward adaptation of the

band edge of Wigner’s semicircle distribution. We consider
the community detectability transitions first, that is, those
involving the contrast eigenvector uC , whose eigenvalue is
given by Eq. (57). The detectability transition will therefore
occur when

νN + σ 2

ν
= 2σ

√
N . (59)

Solving for the critical value ν∗ yields

ν∗ = σ (ν∗)√
N

. (60)

The notation σ (ν∗) serves as a reminder that ν∗ also appears
on the righthand side due to the functional dependence of
σ given by Eq. (24). The community structure is detectable
when |ν| > ν∗. In particular, the assortative transition occurs
for ν = ν∗ and the detectability transition for disassortative
structure occurs for ν = −ν∗.

We observe that the transition condition Eq. (60) also
results by setting the noise power equal to the signal power.
Defining the noise power as the projection of X2 onto uC , its
average, 〈uT

C X2uC〉, is found using Eq. (55) to be Nσ 2. One
could also arrive at this value by considering how much of
the total noise variance, N2σ 2, is carried on average by each
of N randomly chosen orthogonal basis vectors. Equating the
signal power to the average noise power, ν2N2 = Nσ 2, yields
Eq. (60).

The sociality transitions associated with the homogeneous
signal occur when the homogeneous eigenvalue given by
Eq. (58) equals the band edge eigenvalue. This yields a critical
value μ∗,

μ∗ = σ (μ∗)√
N

. (61)

The prosocial transition occurs for μ = μ∗ and the antisocial
transition occurs for μ = −μ∗.

We now unpack the transition conditions derived above to
express them in alternative ways in parameter space that will
further intuitive understanding of the transition behavior and
allow for connection with simulation results.

First, we substitute Eq. (24) for σ 2 in the detectability
condition Eq. (60) to yield

Nν2 = 1
2 (din + dout) − μ2 − ν2. (62)

We point out that (din + dout)/2 is simply the overall tie
density in the network. For a sparse network, din, dout 
 1,
we can neglect the μ2 and ν2 terms on the right-hand side, so
that the detectability transitions occur at

±ν∗ = ±
√

1

2N
(din + dout). (63)

The positive sign corresponds to the assortative transition and
the negative sign corresponds to the disassortative transition.
As ν can be regarded as a natural parameter for the community
structure, this structure (assortative or disassortative) becomes
easier to detect as the network becomes more sparse since ν∗
shifts to smaller values (but care should be taken to distinguish
the behavior of ν from that of the affinities and animosities,
which can behave oppositely with density as in Eq. (72)
below). Weaker structure is also more detectable as the size
of the network grows, as was already apparent from Eq. (60).

We now substitute into Eq. (62) the definitions Eqs. (11)
and (12) for μ and ν and rearrange to obtain

0 = 〈Aout〉2 − 2N

N + 2
〈Aout〉〈Ain〉

+ 〈Ain〉2 − 2

N + 2
(din + dout), (64)
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which can be solved for the critical value of 〈Aout〉 (omitting
the asterisk),

〈Aout〉 = N

N + 2
〈Ain〉

±
√

2

N + 2
(din + dout) − 4(N + 1)

(N + 2)2
〈Ain〉2. (65)

To write the detectability transitions completely in terms of
the block model probabilities, we substitute Eqs. (9) and (10)
for 〈Ain〉 and 〈Aout〉 into Eq. (65). Solving for the outgroup
animosity and taking the large N limit yields

p−
out = 1

2
− din

dout

(
p+

in − 1

2

)

± 1

dout

√
din + dout − 8d2

in

(
p+

in − 1
2

)2

2N
, (66)

where the positive sign corresponds to the assortative transi-
tion. Neglecting the second term inside the square root yields
the sparse limit, equivalent to Eq. (63).

For the sociality transitions, the sparse limit results in the
condition

±μ∗ = ±
√

1

2N
(din + dout). (67)

The positive and negative signs correspond to the prosocial
and antisocial transitions, respectively. The critical value of
the outgroup animosity is given by

p−
out = 1

2
+ din

dout

(
p+

in − 1

2

)

± 1

dout

√
din + dout − 8d2

in

(
p+

in − 1
2

)2

2N
, (68)

where the negative sign is used for the prosocial transition.

VI. STRUCTURAL BALANCE DYNAMICS

In its simplest incarnation, structural balance theory considers
the stability of triads. Triads with all positive ties (“the friend
of my friend is my friend”) or two negative ties (“the enemy
of my enemy is my friend”) are considered balanced and so
stable. In contrast, a triad with an odd number of negative ties
will be unbalanced. For fully connected networks, assuming
that all triads must be balanced over time implies that the
system achieves either a state of global harmony in which all
nodes are positively connected or two hostile camps with pos-
itive connections within each camp and negative connections
between them [26]. Empirical signed networks in social sys-
tems such as international relations, student relationships, and
online social networks have been found to be approximately
balanced [1,3,27], exhibiting a tendency toward partition into
two factions.

Although the concept of balance can be extended to
arbitrary-length cycles, the triadic notion has motivated the
construction of dynamical systems models that evolve the
relationship between a pair of nodes as a function of their
relationships with their network neighbors [18,19,28]. As

noted when Eq. (1) was introduced, if both members of a dyad
have a positive relationship with a third node, then that will act
toward making the focal dyad’s relationship more positive. In
contrast, having oppositely signed relationships with the third
node will contribute a force pulling the dyad toward a more
conflictual relationship. Unbalanced triads wither away under
these dynamics. Building upon Ref. [18], Marvel et al. [19]
demonstrated that the model of structural balance dynamics
defined by Eq. (1) almost always achieves a balanced state
starting from random initial conditions. Equation (1) can be
written as a matrix equation,

dY
dt

= Y2, (69)

where Y is the matrix of signed and continuous connectivity
values, Yi j , between node pairs. In support of its empirical
relevance, Ref. [19] found that when implemented upon the
initial network of several real world systems, this model well
predicts the observed final network.

Equation (69) is the matrix form of a Riccati equation and
has the following closed form solution [19]:

Y(t ) = Y(0)[I − Y(0)t]−1. (70)

The elements Yi j diverge to positive or negative infinity in a
finite time t f and so the solution only holds for t < t f .

For the purposes of analyzing community structure, we
convert the connectivity matrix Y to an adjacency matrix
A with discrete values ±1 and 0 by taking the sign of the
connectivity values so that Ai j = sgn(Yi j ). The leading eigen-
vector of the initial connectivity matrix, Y(0), grows fastest
and so dominates the solution as t → t f . As a result, the final
adjacency matrix A f corresponding to Y as t → t f converges
to the outer product,

A f = u1uT
1 , (71)

where u1 consists of the signs of the leading eigenvector of
Y(0).

The rank 1 structure of A f toward which the connectivity
matrix converges implies that the final network must partition
into either two hostile factions or one harmonious community
as consistent with the expectations of structural balance theory
[19]. The final network consists of a single harmonious faction
if the components of u1 are of uniform sign, but consists of
two hostile factions if u1 contains both positive and negative
values [19]. Note that these results hold only if there is a single
dominant eigenvalue and the graph is connected. When dout =
0, the graph is disconnected and the isolated identity blocks
will evolve independently of each other and the connectivity
matrix will become rank 2 after structural balance dynamics.
Although the first two eigenvalues of 〈A〉 are equal in the
p+

out = 1/2 case as well, the network remains connected and,
due to stochasticity, one eigenvalue will inevitably be slightly
larger in the realized A, causing it to generate the ultimate rank
1 state. The case of din = 0 is also connected and so evolves
to rank 1.

We will investigate the evolution of networks with com-
munity structure under the structural balance model (69). The
initial connectivity matrix is taken to be proportional to an
initial adjacency matrix A0 generated using the stochastic
block model, in particular Y(0) = A0/N . Figure 6(a) shows an
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(a)

(b)

tf

FIG. 6. Structural balance evolution of a network with commu-
nity structure. (a) Connectivity network weights Yi j (t ) over time
evolved by Eq. (69) from an initial network generated by a stochas-
tic block model (with values rescaled by 1/N). (b) Initial and
final adjacency matrices. Initial matrix parameters N = 100, din =
0.7, dout = 0.7, p+

in = 0.65, and p+
out = 0.35.

example of the evolution of network connectivity values over
time from a Y(0) corresponding to the A0 shown on the left in
Fig. 6(b). We see that the Yi j → ±∞ and the final adjacency
matrix A f on the right shows the split into two factions with
positive ties within each faction and negative ties between
factions. It is given by the outer product Eq. (71) with u1 = uC

so that the factions correspond with the identity blocks A
and B.

VII. STRUCTURAL BALANCE BEHAVIORAL REGIMES

As the final structure of these dynamical networks is dom-
inated by the initial network’s leading eigenvector, we can
determine the extent to which networks in our parameter space
will become assortative or homogeneous using our transition
formulas derived above. First we treat a special case before
exploring more general parameters.

A. Ingroup affinity equals outgroup animosity

We consider the simple case in which the ingroup affinity
is set equal to the outgroup animosity, p+

in = p−
out. We also

make the simplification din = dout = d . For this case, 〈Ain〉 =
−〈Aout〉 so that μ = 0, i.e., there is no homogeneous signal,
and ν = −〈Aout〉. Using 〈Aout〉 = d (1 − 2p−

out ) in Eq. (63), we

(a)

p−out

d

assortative

transition curve

non-assortative

r

1

1
2

0

(b) d = 0.4

p−out
assortative
transition

(c) d = 0.4

u1

FIG. 7. (a) Assortativity of final adjacency matrix as a function of
d and p−

out for network size N = 1000 averaged over 400 simulations.
Solid curve is the theoretical transition boundary given by Eq. (72).
Note that the theoretical curve corresponds to the early part of the
transition in which r just begins to rise, whereas the more visually
distinctive yellow-cyan interface marks the middle of the transition.
(b) Initial adjacency matrix spectra for d = 0.4 and increasing p−

out.
Dashed line indicates theoretical transition point. (c) Component
signs for the leading eigenvector u1 of the initial adjacency matrix.
The disassortative transition is not dynamically relevant so only the
upper part of the p−

out scale is plotted in (a).

solve for the critical outgroup animosity

p−
out = 1

2

(
1 +

√
1

dN

)
. (72)

Note that we only use the positive sign from Eq. (63), since
it is the assortative transition, not the disassortative one, that
involves the leading eigenvector.

Figure 7 shows the alignment between the dynamical
regimes evolved by the structural balance model and the
community structure of the initial network. Figure 7(a) plots
the assortativity r defined by Eq. (6) of the final adjacency
matrix, A f as averaged over 400 initial networks generated
by the stochastic block model at each point in the d and
p−

out parameter space. The yellow region represents the fully
assortative outcome where the system evolves into two fac-
tions corresponding to the identities defined by the stochastic
block model. In the blue region where r ≈ 0, the two final
factions are well mixed by identity. We see that the boundary
between these two regions is in good accord with Eq. (72).
As the network density increases, the assortative regime
is observed to grow, extending down to smaller outgroup
animosity values. Figures 7(b) and 7(c) plot, respectively,
the spectrum and first eigenvector of the initial adjacency
matrix, A0 for a constant density value. The transition in
the structural balance dynamics mirrors the behavior of the
first eigenvector which undergoes an assortative detectability
transition at p−

out = 0.525. These plots also confirm that the
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leading eigenvector is never homogeneous and so one does
not expect to observe the single faction outcome in this case
(being extremely improbable).

B. General parameter conditions

We now analyze the final states of networks generated
using more general parameter conditions. We plot the be-
havior of the signal transition curves in the two-dimensional
parameter space defined by p+

in and p−
out for fixed values of

din/dout.
As the homogeneous signal was irrelevant in the previous

case, we needed only plot the assortativity r. However, the
prosocial transition will occur in general and so we must
measure the extent to which nodes can be found in one
large group. We define the homogeneity h as the fraction of
all nodes that can be assigned to a single group by virtue
of having a common sign in the leading eigenvector of the
adjacency matrix. When all nodes have a common sign, they
are positively connected to all other nodes so that h = 1,
while when nodes are divided into two equal factions, the
homogeneity assumes its minimum value, h = 1/2.

The top plots of Fig. 8 show the assortativity and homo-
geneity of the final adjacency matrix evolved by the structural
balance dynamics in the parameter space defined by the
ingroup affinity and outgroup animosity. They can then be lin-
early combined to effect their joint visualization as shown in
the bottom plot. The assortative transition boundary predicted
by Eq. (66) separates the assortative from nonassortative
two-faction states while the prosocial theoretical boundary of
Eq. (68) separates homogeneous single-faction states from the
nonassortative two-faction states. These regimes relate to the
initial network spectrum as follows: the blue region is where
the homogeneous eigenvalue is both the largest eigenvalue and
outside the main band; the cyan region is where the leading
eigenvalue is part of the main band; and the yellow is where
the contrast eigenvalue is largest and outside the main band.

The horizontal yellow-blue interface observed in Fig. 8(c)
for larger p+

in values corresponds to the signal crossing tran-
sition in which the homogeneous and contrast eigenvectors
exchange places, which occurs outside the noise band (see
Fig. 4). Equating the contrast and homogeneous eigenvalue
expressions, Eqs. (57) and (58), we find that the transition
occurs when ν = μ, which implies that 〈Aout〉 = 0 or equiv-
alently p−

out = 0.5.
Figure 9 shows how the density ratio din/dout and overall

network density d = (din + dout)/2 affect the assortative and
prosocial transition curves. As din/dout increases, the transi-
tion curves become steeper, implying that denser regions of
the connectivity network have more influence on the final
structure than sparse regions. Figure 10 shows how network
size affects the location and shape of the assortative and
homogeneous transitions. As N increases, the transitions be-
come sharper and more closely aligned with the theoretical
prediction for the critical value of p−

out.

VIII. DISCUSSION

In this section, we first make some observations concern-
ing our results on community and, more broadly, network
structure, a subject of relevance to both unsigned and signed
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FIG. 8. (a) Assortativity and (b) homogeneity of final network
states evolved by structural balance model Eq. (69) as a function
of ingroup affinity and outgroup animosity. (c) Assortativity and
homogeneity are mapped using the measure z = r − 2h + 1 to gen-
erate the joint heat map. For convenience, two separate color-bar
scales are shown instead of z. The upper black curve indicates the
assortative transition boundary, Eq. (66), while the lower black curve
indicates the homogeneous transition boundary, Eq. (68). Heatmap
values generated by averaging over four simulations for parameters
din = dout = 0.45 and N = 1000.

networks. We then turn to structural balance dynamics, an
intrinsically signed network avenue of research. As it is
particularly applicable to social systems, we speculate as to
connections between our results and the dynamics of conflicts.

Our results can be applied to unsigned networks by taking
the ingroup and outgroup animosities to be zero so that
p+

in = 1 and p+
out = 1. In this case, our expressions for the

homogeneous and contrast eigenvalues can be reduced to the
the sparse-limit forms reported in Refs. [13,14] for the two
leading eigenvalues of the adjacency matrix. These can be
obtained by neglecting the μ2 and ν2 contributions to σ 2

in Eq. (24) and then inserting into Eqs. (58) and (57) for
the homogeneous and contrast eigenvalues, respectively. This
yields the expressions (outside the noise band),

λH = N (din + dout)

2
+ 1, (73)
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FIG. 9. Final state heat maps for increasing network density d =
(din + dout )/2 and decreasing density ratio din/dout. The assortativity
and homogeneity are integrated via the z metric (see Fig. 8). Heatmap
values generated by averaging over 4 simulations with N = 1000.

λC = N (din − dout)

2
+ din + dout

din − dout
. (74)

These forms, however, do not manifest the μ, ν interchange
symmetry, an essential feature of the signed network case.

An important difference between unsigned and signed
networks concerns which of the two leading eigenvectors
outside the main spectral band may signify community struc-
ture. The above equations can be used to show that we can
never observe the contrast eigenvalue as being larger than the
homogeneous eigenvalue in the unsigned case. The sign of
the difference, λH − λC , depends on the sign of N − 2/(din −
dout). The second term is equal to 1/ν, so that we must
have ν < 1/N for the contrast eigenvalue to exceed the ho-
mogeneous eigenvalue. This condition upon ν in conjunction
with Eq. (63) for the assortative transition in the sparse limit,
which sets the minimum value of ν for λC to appear outside
the noise band, then necessitates μ = (din + dout)/2 < 1/N .
However, this regime is below the threshold, μ∗ = 1/N , for
the prosocial transition in the sparse limit as obtained from
Eq. (67). Further, the righthand sides of Eqs. (63) and (67) are
the same so that the assortative and prosocial transitions occur
at the same critical value, ν∗ = μ∗. For unsigned networks,
ν � μ and so if μ < μ∗, then ν < ν∗. Therefore, if λH is
within the noise band then so must λC and hence we can never
observe λC > λH .

Consequently, in unsigned networks, assortative commu-
nity structure is represented by the second eigenvalue of the

FIG. 10. Assortativity and homogeneity as a function of p−
out for

networks of increasing size. Black stars mark the predicted values
of p−

out at the transition points as given by Eqs. (66) and (68) for
the assortative and prosocial transitions, respectively. Parameter val-
ues are p+

in = 0.5, d = 0.15, 0.75, and N = 40, 100, 1000 averaged
over 2000, 1000, and 10 trials, respectively.

adjacency matrix (when past the detectability threshold) but
not the first. In signed networks, the ordering of μ and ν

is not restricted and so the first eigenvalue may signify the
community structure while the second, if above the prosocial
transition, signifies the homogeneous structure. Relatedly,
while the number of outlying eigenvalues is equal to the num-
ber of communities in unsigned networks [8], this need not be
the case in signed networks. For instance, the case of equal
ingroup affinity and outgroup animosity treated in Sec. VII
has only one outlying eigenvalue but two communities.

The sociality transitions, which involve the homoge-
neous eigenvector, bear upon the question of whether a
network exhibits a propensity toward positive versus neg-
ative tie formation, a question that is unique to signed
networks. In unsigned networks, the prosocial transition
is present but its significance corresponds to the emer-
gence of a giant connected component; Eq. (67) yields a
transition condition of N (din + dout)/2 = 1 in accordance
with the result for a giant component with two-community
structure noted in Sec. II A. Typically, community struc-
ture is taken to connote the existence of multiple com-
munities as it is linked to the community detection prob-
lem and the assignment of nodes to communities. The so-
ciality transitions, which are not relevant to the commu-
nity assignment problem, involve network structure more
generally rather than community structure per se. How-
ever, the sociality transitions do lend themselves to a sense
by which a signed network can be viewed as forming
a single community: the existence of a global tendency,
irrespective of ingroup and outgroup distinctions, toward
the formation of positive versus negative ties. The proso-
cial transition provides a spectral signature for conclud-
ing that the network forms a single community in which
relationships are generally friendly or cooperative. Con-
versely, the antisocial transition provides a signature of a
single (anti)community marked by hostility, a Hobbesian
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state of all against all. The intermediate case, where the
homogeneous eigenvalue does not appear outside the noise
band, can be taken as marking the absence of a single commu-
nity with a definitive inclination toward positive or negative tie
formation.

Turning to the dynamics, taking networks generated by
the stochastic block model and evolving them under the
structural balance model entails a dramatic shift in the pro-
cesses governing network evolution (beyond the change from
stochastic to deterministic): a process in which tie formation
in a dyad depends only upon its ingroup or outgroup identity
is replaced by one where the friendly or hostile relationships
among mutual neighbors drives tie value evolution regardless
of identity. One rationale for such a shift can be provided by
assuming that there is a qualitative change in the nature of the
interactions. For instance, hostile relationships characterized
by insulting words or gestures may be replaced by physical
violence. A second rationale could involve, not a change
in the nature of interactions, but a growing awareness that
hostile interactions have the potential to become much more
prevalent. For example, in a country or region containing two
broad identity types, such as ethnicity or ideology, in which
individuals or small gangs sporadically clash (either within
or across identity lines), a sudden collapse of the central
government may lead to a growing sense of looming systemic
violence. In either of these rationales, nodes are motivated to
seek and maintain allies so that another node’s status as the
enemy of an enemy or friend of a friend becomes a crucial
determinant in relationship formation and evolution.

Our results may inform debates about the interplay of
identity and power in conflicts under anarchy consisting of
many actors such as insurgencies, civil wars, and international
relations. For ethnic conflict, the shift in models discussed
above is supported by the observation that the turn from
nonviolent to violent conflict represents a qualitative change
in dynamics [29]. In the literature on civil wars and ethnic
violence, some theories stress mechanisms in which ethnic
or religious identity plays an intrinsic role in producing high
levels of polarization and violence along identity lines while
other theories stress the role of microprocesses of conflict
among local actors rather than a pre-existing identity schism
[29–31]. As node identity plays no role in the network
evolution, structural balance dynamics is consistent with the
latter view. However, the sharp transition to the assortative
state shows that the dynamics can lock in initial differences
in identity-driven community structure even when they are
not large, a behavior consistent with the observation that the
polarization and violence in ethnic civil wars often appears
to be disproportionate to the initial level of ethnic tension.
But the existence of the nonassortative regime implies that
identity polarization will not arise when the initial structure is
sufficiently weak. Thus, conflict takes on an essentially binary
nature in that it is either completely polarized by identity or
not at all. Additionally, it has been argued that, contrary to
some theories, there is no inherent difference in the dynamics
between ideological and ethnic civil wars in terms of their
potential for polarization and violence [30]. Our results are
consistent with such a claim as it is the initial relationships that
matter regardless of whether they are due to similar ethnicity
or similar ideology.

IX. CONCLUSION

This paper has contributed to two distinct areas of signed
network research—community structure and structural bal-
ance theory, linking them via the impact of the former upon
the latter. We have elucidated the spectrum of unweighted and
undirected signed networks generated by a two-community
stochastic block model via two independent methods, per-
turbation analysis and, in the Appendices, a random ma-
trix theory treatment that extends prior work on unsigned
networks [13,14]. The expected matrix, 〈A〉, in the block
model can be decomposed into two signals—a homogeneous
eigenvector, uH , related to the expected tie value, μ, over
the network and a contrast eigenvector, uC , related to the
half-difference, ν, between the expected ingroup and outgroup
tie values and which encodes the community structure. These
signal eigenvectors exhibit transitions at the points where they
merge with the main spectral band associated with the noise
produced by the zero-mean random matrix X. There are four
potential transitions corresponding to the intersections of the
two signals with the positive and negative edges of the main
band. For the contrast eigenvector, these intersections induce
the assortative and disassortative transitions, respectively, and
mark changes in community detectability. The homogeneous
eigenvector undergoes sociality transitions, prosocial and an-
tisocial, in which emergence from the noise band signifies
an overall tendency toward the formation of cooperative or
conflictual relationships, respectively, with other nodes.

We derived analytical expressions for the signal eigen-
values in the presence of the noise by performing a pertur-
bation expansion in which the contributions from the noise
X were treated as small corrections to the eigenvalues of
〈A〉. Equations (26) and (27) reveal a second-order correction
proportional to the average tie variance and are symmetric
under the interchange of μ and ν. The same expressions
are derived in the Appendices using random matrix theory
along with the formula for the main band edges that is a
straightforward modification of Wigner’s semicircle law. The
transition conditions, Eqs. (60) and (61), were determined by
equating the signal eigenvalues to the band edge eigenvalues.

We investigated structural balance dynamics in the pres-
ence of initial community structure generated by the two-
identity stochastic block model. These dynamics completely
connect all nodes and allow for three broad regimes of final
states: an assortative regime in which two hostile factions
emerge that completely align with the two identity blocks;
a nonassortative regime in which the two final factions are
randomly composed with respect to identity; and a homoge-
neous regime consisting of a single harmonious faction with
only positive ties. Since the dominant eigenvector of the initial
network drives its structural balance dynamics and determines
its final state, our spectral analysis allows us to chart the
parameter conditions under which each of these states will
emerge. The dynamical ascendance of the leading eigenvector
implies that the regime boundaries occur where any two of the
homogeneous signal, the contrast signal, and the noise band
edge exchange places as the first eigenvalue. The assortative
transition marks the boundary between the nonassortative
and assortative regimes and the prosocial transition divides
the nonassortative and homogeneous regimes. The boundary
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between the homogeneous and assortative regimes represents
a reversal in the ranking of the homogeneous and contrast
eigenvalues rather than a transition involving the noise band.
The theoretically predicted boundaries were found to agree
with the simulation results obtained by solving the structural
balance model over many random initial networks.

Finally, we note a few potential directions for future re-
search. As with the unsigned case, spectral analysis of signed
networks with community structure could be extended to
systems with multiple communities, directed ties, and more
realistic network statistics such as nonuniform degree distri-
butions. The structural balance model we used is very simple
and, problematically, leads to tie strengths which blow up
in finite time. Accordingly, the extent to which the dynam-
ical transitions we have identified persist for more realistic
implementations of structural balance dynamics should be
explored. More empirical work is also needed to understand
the conditions under which real networks can be reasonably
modeled by structural balance dynamics or variants thereof.

Code reproducing select results from this paper is available
online [32].
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APPENDIX A: SPECTRUM OF RANDOM MATRIX X

The signal eigenvalues of A are only visible if they are
distinguishable from the noise in the system. In this section
we find O(||X||2) as well as γ the spectral edge of the noise
matrix X using random matrix theory.

We start by characterizing the distribution of eigenvalues.
The empirical spectral distribution (e.s.d.) of a random matrix
X is defined by

ρ(z) = 1

N

n∑
i=1

δ(z − ωi ), (A1)

where ωi are the eigenvalues of X.
Wigner’s semicircle distribution Eq. (A2) defines the

eigenvalue density function for a symmetric random matrix
size N with i.i.d. entries having variance m2,

φ(z) = 1

2πNm2

√
4Nm2 − z2. (A2)

According to the Wigner limit theorem, the spectra of cer-
tain symmetric random matrices converge in distribution to
Wigner’s semicircle distribution [33,34], so that

lim
N→∞

∫ c

−∞
ρ(x)dx =

∫ c

−∞
φ(x)dx, (A3)

where c is any real number. Although the semicircle
law originally applies only to random symmet-
ric matrices with equal variances for all entries

[33,35,36], further inquiry has determined that random
symmetric block Toeplitz matrices [37,38] also weakly
converge to the semicircle law under certain conditions.

X is a random symmetric block Toeplitz matrix with distri-
bution variances σ 2

in and σ 2
out in the on and off diagonal blocks,

respectively, and therefore has a Wigner semicircle distribu-
tion of eigenvalues for some variance parameter m2 which we
have yet to determine. The edges of the semicircle enclose
the band of eigenvalues in the interval (−2m

√
N, 2m

√
N ). As

N → ∞, λ1(X) = 2m
√

N .
We find the variance parameter by bounding ||X||2 with the

Frobenius norm [39],

1√
N

||X||F �||X||2 � ||X||F , (A4)

where

||X||F =

√√√√√ N2
2∑

j=1

|Xin|2 +
N2
2∑

j=1

|Xout|2. (A5)

The ingroup and outgroup sums are distributed as

N2

2∑
j=1

|Xin|2 ∼ N
(

N2

2
σ 2

in,
N2

2
Var(|Xin|2)

)
, (A6)

N2

2∑
j=1

|Xout|2 ∼ N
(

N2

2
σ 2

out,
N2

2
Var(|Xout|2)

)
. (A7)

The random variable Z2 denoting the inside of the square root
in Eq. (A5) is therefore distributed as

Z2 =
N2

2∑
j=1

|Xin|2 +
N2

2∑
j=1

|Xout|2 ∼ N (N2σ 2, N2ξ 2), (A8)

where ξ 2 = Var(|Xin|2) + Var(|Xout|2)

2
. (A9)

The expected value of Z2 scales with σ 2N2 while the stan-
dard deviation only scales with ξN meaning Z2 = O(σ 2N2).
Therefore,

||X||F = O(σN ). (A10)

Equation (A4) then implies that

σ
√

N � ||X||2 � σN. (A11)

Therefore, ||X||2 must scale with σ as

O(||X||2) ∼ σ. (A12)

This result combined with the Wigner’s semicircle distribu-
tion scaling implies that

O(||X||2) = σ
√

N . (A13)

We continue the argument to find the leading eigenvalue of X.
We have found that our variance parameter must scale with
σ, m = O(σ ),

m = aσ = a

√
σ 2

in + σ 2
out

2
, (A14)

for some constant a.
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We set σ 2
in = σ 2

out which implies that we have a traditional
Wigner matrix with i.i.d. entries of variance σ 2

in. This means
m = σin = σ and therefore a = 1. Now let σ 2

in 	= σ 2
out while

keeping σ 2 constant. m scales only with σ and therefore must
be still equal to σ . This means that for all variance values,
m = σ .

This implies that the eigenvalue density function of X
with a diagonal block variance of σ 2

in and an off diagonal
block variance of σ 2

out is equivalent to the eigenvalue density
function of a random matrix with uniform variance σ 2. This
substitution is made in previous derivations of the spectral
band of unsigned stochastic block model matrices [13].

Thus, we have determined that the spectra of X has a
Wigner’s semicircle distribution with variance parameter σ .
Therefore, the edge of the spectral band γ of X is

γ = 2σ
√

N . (A15)

APPENDIX B: SPECTRA OF A DERIVED FROM RANDOM
MATRIX THEORY AND COMPLEX ANALYSIS

We will now use an alternative method to derive the spectra
of A using random matrix theory and complex analysis. In
this argument, we use the eigenvalues of the noise matrix X,
whose spectra we have defined in Appendix A, to find the
eigenvalues of X + νNuCuT

C . We then take these intermediate
eigenvalues and use them to find the eigenvalues of A = X +
νNuCuT

C + μNuH uT
H .

The expected adjacency matrix 〈A〉 is given by Eq. (13).
We consider the spectrum obtained by adding just the con-
tribution of the contrast eigenvector, νNuCuT

C , to the noise
matrix which yields the eigenvalue equation(

X + νNuCuT
C

)
v = zv. (B1)

We wish to solve for the eigenvalues z, and so use the methods
of Ref. [14] to convert Eq. (B1) into a trace representation
Eq. (B6). We begin by rearranging the terms in Eq. (B1) to
eliminate the eigenvector v,

uT
C (z − X)−1uC = 1

νN
. (B2)

The left-hand side of Eq. (B2) can be written as a sum by
performing an eigenvector decomposition on X,

uT
C S(zI − �)−1ST uC = 1

νN
, (B3)

N∑
i=1

(
xT

i uC
)2

z − ωi
= 1

νN
, (B4)

where S�ST is the eigenvector decomposition of X and xi are
the eigenvectors of X (as well as the columns of S). We find
that N (xT

i uC )2 ∼ X 2
1 (the chi-square distribution) and there-

fore E[(xT
i uC )2] = 1

N and Var[(xT
i uC )2] = 2

N2 . This allows us
to make the approximation (xT

i uC )2 = 1/N in Eq. (B4), giving
us

N∑
i=1

1/N

z − ωi
= 1

νN
, (B5)

1

N
Tr(z − X)−1 = 1

νN
. (B6)

We define f (z) as follows:

f (z) = Tr(z − X)−1. (B7)

The values of z that satisfy f (z) = 1
ν

are the eigenvalues of
the matrix X + νNuCuT

C . f (z) has simple poles where z =
ωi, f (z) → −∞ as z ↗ ωi and f (z) → ∞ as z ↘ ωi. f (z) is
a continuous function within the interval z ∈ [ωi, ωi−1], there-
fore for each interval f (z) = 1

ν
for some value z ∈ [ωi, ωi−1].

This means the eigenvalues zi and ωi are interlaced with the
leading eigenvalue z1 > ω1. The largest solution to f (z) = 1

ν

Eq. (B7) is the leading eigenvalue of X + μNuCuT
C .

We now can repeat this process to find a formula for both
leading eigenvalues by adding the homogeneous signal in
addition to the contrast signal back into the noise matrix and
solving for the resulting eigenvalues λ [14].

The new eigenvalue equation becomes(
X + νNuCuT

C + μNuH uT
H

)
v = λv. (B8)

We solve this equation for the eigenvalues λi using the same
method used to solve Eq. (B1) and which is detailed in
Ref. [14]. The resulting equation g(λ) has a similar form to
f (z) but with an additional term,

1/N

λ − z1
+

N∑
i=2

1/N

λ − zi
= 1

μN
, (B9)

g(λ) = 1

λ − z1
+

N∑
i=2

1

λ − zi
. (B10)

The values of λ that satisfy g(λ) = 1
μ

are the eigenvalues of

the matrix X + νNuCuT
C + μNuH uT

H . Without loss of gen-
erality, assume ν > μ, meaning we have added the largest
eigenvalue mode to the noise matrix followed by the second
largest eigenvalue mode. When |λ − z1| � 1

N , 1
λ−z1

= O(1)

and
∑N

i=2
1

λ−zi
= O(N ). Because 1

λ−z1
is the dominant term

only when |λ − z1| = O(1/N2) and the spectral values zi that
constitute the spectral band of X + νNuCuT

C are interlaced
with the spectrum of X, we may approximate g(λ) with our
previous function f (λ) = Tr(λ − X)−1 for all λ values away
from z1. g(λ) has a singularity at z1 meaning there is an
additional solution to g(λ) = 1

μ
when λ ≈ z1.

Therefore, the signal eigenvalues, λH and λC are the largest
magnitude solutions to f (λ) = 1

ν
and f (λ) = 1

μ
. We can find

an analytical form for f (λ) by taking advantage of the Stieltjes
transform representation of Tr(X − λ)−1.

The Stieltjes transform Sρ (λ) of density ρ(t ) is a function
of the complex variable λ and is defined outside the real
interval I ,

Sρ (λ) =
∫

I

ρ(t )

λ − t
dt, λ ∈ C\I. (B11)

The normalized trace of (X − λ)−1 is equivalent to the Stielt-
jes transform of the spectral density of X [34],

1

N
Tr(X − λ)−1 = Sρ (λ) =

∫
I

ρ(x)

x − λ
dx, (B12)

where the e.s.d. has been previously defined, Eq. (A1). We
may substitute the eigenvalue density function φ(x) for the
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e.s.d. integrand in the Stieltjes transform since these functions
converge in distribution [34],

Sρ (λ) =
∫

I

ρ(x)

x − λ
dx =

∫
I

φ(x)

x − λ
dx. (B13)

Substituting Eq. (A2) for φ(x) yields

Sφ (λ) =
∫

I

φ(x)

x − λ
dx = 1

2πNσ 2

∫ 2
√

Nσ

−2
√

Nσ

√
4Nσ 2 − x2

x − λ
dx.

(B14)

We solve this integral using multiple changes of variables.
Our argument is adapted from previous work [34]. Letting
x = 2

√
Nσ cos(y), the above becomes

Sφ (λ) = 1

π

∫ 2π

0

sin2(y)

2
√

Nσ cos(y) − λ
dy (B15)

= 1

π

∫ 2π

0

(
eiy−e−iy

2i

)2

2
√

Nσ
(

eiy+e−iy

2

) − λ
dy. (B16)

The second change of variables is ζ = eiy, which gives

Sφ (λ) = i

4πσ
√

N

∮
|ζ |=1

(ζ 2 − 1)2

ζ 2
(
ζ 2 − λ

σ
√

N
ζ + 1

)dζ , (B17)

Let h(ζ ) = (ζ 2 − 1)2

ζ 2
(
ζ 2 − λ

σ
√

N
ζ + 1

) . (B18)

The function h(ζ ) has three poles,

ζ0 = 0, (B19)

ζ1 = λ + √
λ2 − 4Nσ 2

2σ
√

N
, (B20)

ζ2 = λ − √
λ2 − 4Nσ 2

2σ
√

N
. (B21)

We must determine which poles are inside the radius |ζ | = 1
and then use the residue theorem to compute the integral. ζ0 is
a pole of order 2 and is inside the contour. Note that ζ1ζ2 = 1,
and therefore if |ζ2| 	= |ζ1| then only one of these poles can
be inside the contour. We find, with the argument to follow,
that ζ2 is the pole inside the contour for λ values for which
Im(λ) > 0 and ζ1 is the pole inside the contour for λ values
for which Im(λ) < 0.

We find that ζ2 is the enclosed pole for Im(λ) >

0 by first supposing that Re(λ) > 0. It follows that
Re(

√
λ2 − 4Nσ 2) > 0 and Im(

√
λ2 − 4Nσ 2) > 0, and there-

fore |λ − √
λ2 − 4Nσ 2| < |λ + √

λ2 − 4Nσ 2|, which reveals
that |ζ2| < |ζ1|. Let us now suppose that Re(λ) < 0. It follows
that Re(

√
λ2 − 4Nσ 2) < 0 and Im(

√
λ2 − 4Nσ 2) > 0, and

therefore, by the same argument as above, once again |ζ2| <

|ζ1|, meaning that ζ2 is the enclosed pole.
We use a repetitive argument to show that ζ1 is the enclosed

pole for Im(λ) < 0. Supposing that Re(λ) < 0, we find that
Re(

√
λ2 − 4Nσ 2) > 0 and Im(

√
λ2 − 4Nσ 2) > 0 which in-

forms us that |ζ1| < |ζ2|. Now supposing that Re(λ) > 0, we
find that Re(

√
λ2 − 4Nσ 2) < 0 and Im(

√
λ2 − 4Nσ 2) > 0

and therefore |ζ1| < |ζ2|, meaning that ζ1 is the enclosed pole.
We now know that ζ1 is inside the contour and ζ2 is

outside for Im(λ) < 0 while ζ2 is inside the contour and ζ2

is outside for Im(λ) > 0. We use the Residue theorem and the
three poles Eqs. (B19)–(B21) to finish solving Eq. (B17) by
integrating∮

|ζ |=1
h(ζ )dζ = 2π i[Res(h, ζ0) + Res(h, ζ∗)], (B22)

where ζ∗ =
{
ζ1, for Im(λ) < 0,

ζ2. for Im(λ) > 0.
(B23)

Evaluating the residues yields∮
|ζ |=1

h(ζ )dζ = 2π i

[
λ

σ
√

N
±

√
λ2 − 4Nσ 2

σ
√

N

]
. (B24)

The ± in the above expression results from the two different
residues for Im(λ) > 0 and Im(λ) < 0. We now multiply our
result by the constant term to finish solving Eq. (B17),

Sφ (λ) = −λ ± √
λ2 − 4Nσ 2

2Nσ 2
. (B25)

(a)

f(λ)

λ

λCλH

f(λ)

fn(λ)

1/μ

1/ν

λ(A)

(b)

λH

λC

fn(λ)

1/μ

1/ν

λ(A)

λ

f(λ)

FIG. 11. Intersections of the function f (λ) and 1/μ and 1/ν

yield eigenvalue locations. (a) fn(λ) is the numerical solution to f (λ)
and intersects with 1/μ and 1/ν at λH and λC . f (λ) is only defined
away from the spectral band; the analytical solution diverges from
the numerical approximation upon approaching the spectral edge.
(b) The case where λH and λC are on opposite sides of the spectral
band as the signal eigenvalues can be either positive or negative in
signed networks.
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Now we have a closed form solution for the Stieltjes
transform of the spectral density of X which gives us an
analytical formula for f (λ) in the region when λ is outside
of the spectral band, |λ| > 2σ

√
N = γ ,

f (λ) = Tr(λ − X)−1 = λ ± √
λ2 − 4Nσ 2

2σ 2
, |λ| > γ .

(B26)

We now solve for the eigenvalue λ of A that corresponds to
the contrast signal,

f (λ) = 1

ν
, (B27)

λ ± √
λ2 − 4Nσ 2

2σ 2
= 1

ν
(B28)

⇒ λ = νN + σ 2

ν
, |ν| � σ√

N
. (B29)

If |ν| � σ√
N

, then |λ| � |γ |, and the contrast eigenvalue λ is
outside the spectral band, otherwise the leading eigenvalue
is included in the spectral band. The analogous formula for
the eigenvalue corresponding to the homogeneous signal is
found by replacing ν by μ in Eq. (B29). Figure 11 shows
how the intersections between f (λ) and 1/μ and 1/ν generate
the eigenvalue locations. We have therefore found the same
solutions for the signal eigenvalues of A using random matrix
theory and complex analysis as done via perturbation theory
in the main text, Eqs. (57) and (58).
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