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Enhanced ability of information gathering may intensify disagreement among groups
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Today’s society faces widening disagreement and conflicts among constituents with incompatible views.
Escalated views and opinions are seen not only in radical ideology or extremism but also in many other
scenes of our everyday life. Here we show that widening disagreement among groups may be linked to the
advancement of information communication technology by analyzing a mathematical model of population
dynamics in a continuous opinion space. We adopted the interaction kernel approach to model enhancement of
people’s information-gathering ability and introduced a generalized nonlocal gradient as individuals’ perception
kernel. We found that the characteristic distance between population peaks becomes greater as the wider range
of opinions becomes available to individuals or the more attention is attracted to opinions distant from theirs.
These findings may provide a possible explanation for why disagreement is growing in today’s increasingly
interconnected society, without attributing its cause only to specific individuals or events.
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I. INTRODUCTION

Today’s society faces many urgent critical challenges. One
such challenge is addressing the widening disagreement and
conflicts among different social constituent groups with in-
compatible views on politics, economies, international rela-
tionships, religions, cultures, lifestyle, and other aspects of our
life.

Studies on this challenge often focus on how escalated
views and opinions emerge in society [1]. Typical approaches
in this area include detection of extremism in online me-
dia [2–4] and modeling contagious processes of extremism
through social networks [5,6]. While highly relevant to and
valuable for national security concerns, these approaches
necessarily impose an asymmetric point of view to consider
one side as the cause of the problem (“us” being normal
versus “them” being abnormal), making it difficult to obtain
a more system-oriented understanding of how such conflicts
may arise and widen spontaneously at a global societal scale.

Escalated views and opinions are seen not only in radical
ideology or extremism, but also in many other scenes of our
everyday life (typically in a milder form), such as politi-
cal conversations in social media [7,8], health-care choices
(e.g., the antivax movement) [9,10], and dietary preferences
[11,12], to name a few. The widening disagreement among
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those who have escalated views is becoming more prevalent
than before on a variety of subjects. Part of the cause is often
suspected to be the recent advances of information commu-
nication technology (e.g., web media, social media, smart
phones, and other forms of high-speed, high-volume, person-
alized communication) [9,13–15] that continuously increase
information-gathering intensity and enhance users’ ability to
choose their preferred information sources (with some caveats
[16]). In this view, widening disagreement may be modeled
and understood as a spontaneous pattern formation process
in which people’s information-gathering ability plays a key
role as the control parameter. The present study explores this
view through mathematical modeling and analysis of opinion
dynamics.

In this study, we combine the opinion dynamics with
spatial models studied in mathematical biology. Specifically,
we describe the dynamics of popularities of a wide range of
opinions in partial differential equations (PDEs), inspired by
models of diffusion and migration of biological organisms
[17,18]. In particular, we adopt a model of autoaggregation
[19–22] in which organisms aggregate together through a
hill-climbing migration behavior on a terrain of signals. In
our case, we consider people migrating in a space of opinions,
and their migration is driven by the gradient of the opinion
popularity itself.

We also propose a principled way to generalize a local
gradient into a nonlocal perceived gradient based on the
interaction kernel approach used in physics, applied mathe-
matics, and mathematical biology. This allows us to model
the enhancement of people’s information-gathering ability,
which would not be captured by simply using a conventional
local gradient at a single point in the opinion space. It also
allows for parametrization of two distinct aspects of nonlocal
perception: the breadth of information gathering and the level
of selective attention paid to distant opinions, the latter of
which we hypothesize to play a particularly significant role in
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FIG. 1. Schematic overview of the mathematical model proposed in this study. (a) Popularities of opinions represented as distribution
P(x, t ) on opinion x. P(x, t ) follows diffusion-migration dynamics described in Eq. (1), which may show, under typical parameter settings,
aggregation behaviors as illustrated by small horizontal arrows in this figure. Directions of migrations are determined by a perceived gradient
G(P) defined as a cross-correlation between P(x, t ) and a perception kernel g(y) at each location x [Eq. (2), also depicted at the bottom of this
panel]. (b) Structure of the perception kernel g(y) [Eq. (3)]. The black solid curve shows the shape of g(y), which is the sum of two Gaussian
distributions with opposite signs (positive in pink and negative in cyan), one placed on the right and another on the left. (c) Variations of
shapes of g(y) as σ and μ are varied. Having sharp peaks near the center in g(y) (top left) makes G(P) close to a conventional local derivative,
corresponding to the case in which individuals’ attention is limited only to opinions of similarly minded others. Having broader and/or distant
peaks means enhanced information-gathering ability, covering a wider range of opinions and/or paying greater attention to distant opinions,
respectively.

social opinion drift [23,24]. The model and the results of our
analytical and numerical investigations are reported below.

II. MODEL

Our mathematical model represents the dynamics of pop-
ularities of opinions using a population distribution function
P(x, t ) for opinion x and time t � 0 [Fig. 1(a), top]. P(x, t )
is the number (in an arbitrary unit) of people whose current
opinion is x at time t . We assume the population never grows
or decays, so the only changes possible in this model are
due to diffusion and migration. Diffusion represents random
fluctuations of people’s opinions, while migration represents
a directed, active change of people’s opinions caused by social
influence. More specifically, we adopt a widely used assump-
tion [25–27] that people will more likely adopt opinions that
are more supported by others. We also assume the homophily
principle [14,28,29] in people’s information-gathering behav-
ior, which implies that they perceive information only from
a vicinity of their own opinion in the opinion space. The last
two assumptions simplify the migration process into a simple
hill-climbing behavior following the gradient of P(x, t ). Note
that the opinion space modeled here is different from physical

space within which individuals exchange opinions (e.g., social
networks). Such social structure is not modeled explicitly in
this study.

Both diffusion and migration can be modeled using the
transport equation framework [18,22,30]. The model equation
we use in this study to describe the dynamics of P(x, t ) is

∂P

∂t
= d∇2P − c∇ · [PG(P)], (1)

where d∇2P is the diffusion term and −c∇ · [PG(P)] is the
migration term. G(P) is the perceived gradient of popularity
distribution, defined as

G(P) =
∫ ∞

−∞
P(x + y, t )g(y)dy, (2)

g(y) = 1

2μ

1√
2πσ

(
e− 1

2 ( y−μ

σ )2 − e− 1
2 ( y+μ

σ )2)
. (3)

Equation (2) shows that the perceived gradient is defined as a
cross-correlation between P and a perception kernel g given
in Eq. (3) [Fig. 1(a), bottom], based on the interaction kernel
approach commonly used in physics, applied mathematics,
and mathematical biology [21,30,31]. The perception kernel
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g describes how people assign weights (attentions) to nearby
opinions’ popularities when they assess the gradient. In this
study, we define the perception kernel as a combination of
two Gaussian distributions whose width is determined by
σ and whose means are separated by 2μ across the origin,
one positive on the right-hand side and one negative on the
left-hand side, to capture the difference of popularity levels
between the two sides [Fig. 1(b)].

Note that G(P) converges to a simple derivative P′(x) in
the limit of μ → 0+ and σ → 0+, i.e., when g is made of two
Dirac’s delta functions positioned right next to the origin with
opposite signs (see Appendix A). This indicates that G(P) can
be considered a mathematically valid nonlocal generalization
of a spatial derivative.

This generalization of the gradient enables us to explore
different shapes of the perception kernel by varying σ and
μ [Fig. 1(c)] and to study their effects on opinion dynamics,
which would not have been possible if only a local gradient
were used. For example, increasing σ [Fig. 1(c), bottom left]
represents a situation in which people can gather information
from a broader range of opinions. Meanwhile, increasing μ

[Fig. 1(c), top right] represents a situation in which people
tend to pay great attention particularly to distant, extreme
opinions, which may correspond to sensationalism widely
practiced in various media today.

III. RESULTS

A. Stability analysis

We first conduct a linear stability analysis of Eq. (1) to
find the conditions under which homogeneous population
distributions are unstable and thus heterogeneous patterns will
form. We begin the analysis by replacing the spatiotemporal
function P(x, t ) with a constant homogeneous population
level Ph plus a sinusoidal spatial perturbation with temporally
changing small amplitude �P(t ) [18], as follows:

P(x, t ) → Ph + �P(t ) sin(ωx + φ). (4)

This replacement allows for linearization of Eq. (1) into the
following nonspatial linear dynamical equation of �P (see
Appendix B for details):

d�P

dt
=

(
−dω2 + cωPh

∫ ∞

−∞
sin(ωy)g(y)dy

)
�P. (5)

Therefore, with Q(ω) = ∫ ∞
−∞

sin(ωy)
ω

g(y)dy, if

Q(ω) >
d

cPh
(6)

for ω > 0, then the homogeneous population distribution
is unstable and a nonhomogeneous pattern (i.e., islands of
popular opinions = distinct groups) will form in the opinion
space. This result already tells us that groups are more likely
to form if (i) diffusion is weaker, (ii) active migration is
stronger, and/or (iii) the population level is greater. These
findings are consistent with results obtained for other similar
autoaggregation models [17–20].

We also note that the range of Q(ω) is bounded to [−1, 1],
and Q(ω) approaches its maximum 1 as ω → 0 regardless
of the shape of the perception kernel (see Appendix C).

Therefore, in a sufficiently large opinion space, the low-
frequency perturbations always destabilize the homogeneous
distribution eventually if and only if

1 >
d

cPh
or cPh > d, (7)

which was also confirmed through numerical simulations (see
Appendix D).

B. Numerical study on the disagreement between groups

Our main interest in this study is in the characteristic value
of ω for instability. This is because the spatial period of
perturbation, L = 2π/ω, determines how far away the islands
of opinions are separated from each other in the opinion space,
which indicates the extent of disagreement between groups.

We numerically calculated the values of Q(ω) while vary-
ing σ and μ. Results are shown in Fig. 2, in which warmer col-
ors indicate spatial frequencies ω that are more likely to desta-
bilize the homogeneous population distribution (depending on
the value of d

cPh
as discussed above). These plots show that, the

greater σ and/or μ are, the more concentrated are the unstable
perturbations on low-frequency regions, which correspond to
greater distances between spontaneously formed groups.

Figure 3 shows actual numerical simulation results in a
space-time plot for several values of σ and μ. The peri-
odic boundary condition was used to avoid potential artifacts
arising from cutoff spatial boundaries [32]. The population
distribution initially remains more or less homogeneous for
a certain period of time, but then distinct peaks (groups)
quickly form. Once established, those groups become sta-
ble and remain unchanged for a substantially long period
of time. Interestingly, the intervals between those peaks are
longer for greater values of σ and/or μ, which can be inter-
preted as showing that the disagreement among those estab-
lished groups becomes more intense as people’s information-
gathering ability is enhanced. It is also noticeable that the
effects of σ and μ are slightly different on the group formation
process.

Figure 4 summarizes these results in a single plot of the
characteristic inter-peak distance L as a function of σ and
μ for Ph = 1, c = 1 and d = 0.2. The surface plot shows a
numerically obtained lower bound of L based on the analysis
[Eq. (6)]. Our analysis predicts that perturbations with a char-
acteristic length below this surface would not grow. The peak
distances obtained from numerical simulations (blue dots in
Fig. 4) are all above this surface, which confirms that our
analysis was valid. It is seen in the figure that the characteristic
interpeak distance grows almost linearly with σ and μ, with a
mild nonlinear interaction between them.

C. Temporal change of information gathering ability

This model allows us to test more dynamic scenarios in
which people’s information-gathering ability changes over
time. Investigation of such hypothetical scenarios can pro-
vide us with valuable insight on potential interventions and
possible societal responses to them. We test two hypothetical
dynamic scenarios below.

The first scenario assumes that people’s information-
gathering ability gradually increases over time. This can be
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FIG. 2. Heatmaps showing the value of Q(ω) as a function of ω (horizontal axis), μ (vertical axis), and σ [varied in three panels: (a) σ =
0.5, (b) σ = 1, and (c) σ = 2]. Red solid curves show contours that correspond to Q(ω) = d

cPh
= 0.2, the critical threshold under the parameter

setting used for numerical simulations in this paper.

simulated by increasing values of σ and μ in the course of
a numerical simulation. This scenario imitates the gradual
advancement of information communication technology, by
which people gain access to a broader range of opinions (by
greater σ ) and pay greater attention to opinions distant from
their own (by greater μ). Figure 5(a) shows an illustrative
example of this scenario, in which both σ and μ, initially set
to 0.5, begin to increase linearly with time at t = 20, up to 5.0
by the end of the simulation at t = 200. The smaller groups
existing at the beginning gradually merge to form larger, more
distant (more disagreeing) groups as σ and μ increase. By the
end of this particular simulation, more than a dozen of the
initial small groups are integrated into just three large groups.

The second scenario models an attempt of external in-
tervention to the population behavior observed in the first
scenario. Specifically, we test what would happen if people’s
information-gathering ability were suppressed in the middle
of the first scenario with an intention to dissolve the emerging
larger groups. This scenario can be considered a simulation of
government regulation or other forms of exogenous control,
which can be simulated by lowering the values of σ and μ

after a certain period of group formation. Figure 5(b) shows
an example of this scenario, which proceeds in the exact same
way as in Fig. 5(a) for the first half, but then σ and μ are
suddenly reset to their initial value 0.5 at t = 100 and remain
constant thereafter. Interestingly, the large groups that are al-
ready established by the time of the intervention never become
diffused, but to the contrary, they become more concentrated
and more stable than before the intervention. This is because,
unlike in other spatial biological/ecological models that have
parameter-dependent characteristic scales of patterns [33–36],
groups are generally stable in autoaggregation models like
ours once they are established, regardless of parameter values
of aggregation behavior. They may be absorbed into other
groups or destroyed by sufficiently strong diffusion, but it
is extremely difficult for them to disintegrate into smaller
groups. This result implies that suppressing people’s infor-
mation gathering may not work as a means to dissolve those
large groups with conflicting opinions, if they are already
established.

IV. DISCUSSIONS AND CONCLUSIONS

In this study, we proposed a PDE-based mathematical
model of opinion dynamics in a continuous opinion space, and
we studied its dynamics using both analytical and numerical
means. Contributions of this work can be summarized in the
following four points.

First, we presented an unconventional perspective to con-
sider growing disagreement and conflicts in society the result
of spontaneous pattern formation in an opinion space, in
which the characteristic distance between population peaks
represents how severe the disagreement is among distinct
groups. This perspective allows us to understand intensifying
disagreement as a system-level global property rather than
a consequence caused by specific individuals or events to
blame. Second, we proposed a generalized nonlocal spatial
gradient and used it as a mathematical representation of
the enhanced information-gathering ability of people. This
enabled us to explore different shapes of perception kernels,
and it also facilitated the linear stability analysis of the
model. Third, we obtained several key analytical results on the
general threshold between pattern-forming and non-pattern-
forming regimes, as well as the effects of the parameters
of information-gathering behavior on the distance between
resulting groups, which were confirmed by numerical sim-
ulations. The result clearly showed that the distance among
groups became greater as people’s information-gathering abil-
ity was enhanced. Finally, we tested a few dynamic scenarios
that produced relevant implications of increasing information
communication technology for social dynamics and also some
insight into the (lack of) effectiveness of external interven-
tions.

Our results are generally in agreement with the now com-
monly made claim that the rapid development of the Internet,
social media, smart phones, and other personal information
communication technologies has contributed to the increase of
societal conflicts and ideological escalation. Our information-
gathering ability today is not comparable even to that of 20
years ago, and such a rapid change of our “perception ker-
nel” may have already been producing emergent macroscopic
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FIG. 3. Numerical simulation results of the population dynamics of the proposed model visualized in space (x: horizontal axis) and time (t :
vertical axis, going from bottom to top). Colors represent population density (blue = 0, cold = low, warm = high, red = 3 or above). Ph = 1,
c = 1, and d = 0.2. See Sec. V for details on the numerical integration. Results with several different values of σ and μ are shown in this
figure [left column (a,d,g): σ = 0.5; center column (b,e,h): σ = 1.0; right column (c,f,i): σ = 2.0; top row (a,b,c): μ = 0.5; middle row (d,e,f):
μ = 1.0; bottom row (g,h,i): μ = 2.0]. The average distance L between population peaks at t = 100 was as follows: (a) [(σ,μ) = (0.5, 0.5)]:
L = 3.571 43; (b) [(σ,μ) = (1.0, 0.5)]: L = 6.25; (c) [(σ,μ) = (2.0, 0.5)]: L = 12.5; (d) [(σ,μ) = (0.5, 1.0)]: L = 4.545 45; (e) [(σ,μ) =
(1.0, 1.0)]: L = 7.142 86; (f) [(σ,μ) = (2.0, 1.0)]: L = 12.5; (g) [(σ,μ) = (0.5, 2.0)]: L = 8.333 33; (h) [(σ,μ) = (1.0, 2.0)]: L = 10.0; (i)
[(σ,μ) = (2.0, 2.0)]: L = 12.5.

social patterns (such as those shown in Fig. 5) that go beyond
any single individual’s intention.

The results of the last scenario simulations illustrate chal-
lenging aspects of the observed opinion dynamics. As the
perception kernel becomes wider and/or more focused on
distant opinions, groups tend to merge hierarchically to even-
tually form a small number of large groups that are in

significant disagreement from each other. Once they have
formed, reducing the perception kernel would have no effect
on their existence, but rather, it helps make those groups more
crystallized. This leads us to questioning whether there are
ways to remedy disagreement between those large groups and
let them gracefully revert back to smaller groups with more
distributed and more diversified opinions.
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FIG. 4. Characteristic distance between population peaks (L)
visualized as a function of σ and μ. Ph = 1, c = 1, d = 0.2. The
surface plot shows a critical lower bound Lc below which such
perturbations would not grow. The lower bound Lc was obtained
as Lc = 2π

ωc
, where ωc is a numerically obtained critical value of ω

that satisfies Q(ω) = d
cPh

. The blue dots show actual peak distances
measured in numerical simulations (e.g., Fig. 3), which are all above
the surface. This confirms the validity of the analytical prediction
that enhanced information-gathering ability (increased σ and/or μ)
always results in a greater distance between population peaks.

Our model suggests that, at least mathematically, several
different options exist for addressing this question. The first
option is to increase the random diffusion rate d or decrease
the active migration rate c so that Eq. (6) no longer holds. The
second option is to reduce μ all the way to a negative value
so that people seek originality rather than social conformity,
changing the dynamics of the model from autoaggregation to
autoavoidance. These two options are essentially suggesting
altering people’s behavior, but it is not obvious how one could

achieve such global behavioral changes in reality (some well-
designed educational initiatives might help). The third option
is to increase σ and μ to extremely large values so that the
boundaries of groups become more gradual and less defined [a
sign of this phenomenon is seen near the end of the simulation
in Fig. 5(a)]. The last option suggests to promote, rather than
suppress, people’s information gathering, but it would then
bring another problem in that people’s cognitive ability would
be too limited to process the massive amount of information
collected. None of these options is problem-free, but they may
still suggest directions of potential solutions to be explored
further.

We conclude this paper by pointing out several limita-
tions of the study and identify future research questions.
The model discussed in this study is still quite limited in
both mathematical and practical aspects. Mathematically, we
used only one form of the perception kernel to facilitate a
parametrized representation of information-gathering behav-
ior, but there should be many other functional forms that
are plausible as a model of human information-gathering
behaviors. For example, it was recently reported that expo-
sure to distant opinions may have a repulsion effect [15],
which was not considered in the present study but could
be incorporated by revising the shape and sign of the per-
ception kernel. Exploring different forms of the percep-
tion kernel and studying their effects on the resulting opin-
ion dynamics would likely produce a more comprehensive
understanding of this model. We also used only one bound-
ary condition (periodic) in all of the numerical simulations
presented, but the interactions of self-organizing patterns with
nontrivial boundaries (i.e., the structure of possibilities in the
idea space) are another area that warrants further systematic
study.

In terms of practical aspects, it is certain that our model
oversimplified the complexity of real human social dynamics.

FIG. 5. Numerical simulation results of dynamic scenarios in which the values of σ and μ are varied over time. The simulation method,
initial condition, and meaning of colors are all the same as in Fig. 3. Simulations were conducted until t = 200 in these plots. Yellow dashed
lines represent key time points. (a) Initially σ = μ = 0.5, but after t = 20 those parameters are linearly increased with time up to 5.0 by
t = 200. This scenario imitates the gradual advance of information communication technology. As σ and μ increase, existing groups tend to
merge to form larger, more distant (= disagreeing) groups over time. (b) Conditions are the same as in (a), except that σ and μ are reset to their
initial value 0.5 at t = 100 and remain constant thereafter. This scenario imitates external intervention to reduce people’s information-gathering
ability, but it fails to diffuse the already established groups.
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We assumed only one-dimensional continuous opinion space,
but opinions and ideas can be multidimensional. While we
expect that the essential conclusions obtained from the sta-
bility analysis would still hold in multidimensional opinion
space, details of implications would likely be influenced by
the number of dimensions. In addition, this study did not
explicitly consider the nontrivial social network structure of
opinion exchange. The structure of society is implicit in this
model, represented indirectly by the perception kernel (which
allows individuals whose opinion states are close to each
other to interact). In other words, the proposed model assumes
that social connectivity is dynamically correlated with the
proximity of opinions of individuals in the opinion space.
Assumptions of a nontrivial social network structure with
features such as heterogeneous degrees and communities are
orthogonal to opinion dynamics. This can be incorporated into
the model, but it is beyond the scope of the present study.

Furthermore, this study did not consider the behavioral
diversity of individuals within the population at all. Such
an assumption of homogeneous attributes shared among all
components is still a common practice used in many theoret-
ical studies of social dynamics, yet we have recently shown
in a separate study that having even the simplest kind of
individual diversity can greatly influence macroscopic behav-
iors of social systems [37]. Introducing behavioral diversity
to the model may produce fundamentally different outcomes
and implications. Finally, the proposed model has yet to be
validated in comparison with quantitative real-world data.
Equation (7) showed a unique dimensionless quantity d

cPh
and

its critical threshold 1. This would allow at least for empirical
testing of the global pattern formation condition using real-
world data, regardless of specific choices of measurement
units. Meanwhile, it might be difficult to obtain large-scale
sociobehavioral data that could be directly used to test the
effects of the perception kernel’s shape, and therefore we an-
ticipate the full model validation to be done through multiple
hypothesis generation and testing.

V. METHODS

Numerical integration of the PDEs was conducted in a
discretized space-time with spatial interval �x = 0.05 and
temporal interval �t = 0.001 using a simple Euler-forward
numerical integration method. The initial condition was a
homogeneous population at Ph = 1 everywhere in a spatial
domain [0, 50], with small random perturbation (a random
number sampled from a uniform distribution [−0.02, 0.02])
added to each discrete spatial location. The boundary condi-
tion was set to be periodic.

The numerical solver was implemented by the author in
Julia 1.3.0, whose source code is available upon request.

Analysis and visualization of the simulation results were
conducted using Wolfram Research Mathematica 12.0.0.

The data that support the findings of this study (source
codes for numerical simulations, mathematical analysis, and
visualization, as well as raw data for figures) are available
from the author upon request.
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APPENDIX A: RELATIONSHIP BETWEEN LOCAL
AND NONLOCAL GRADIENTS

Here we show that the nonlocal gradient G(P) introduced
in this study converges to a simple local gradient (derivative)
P′ in the limit of μ → 0+ and σ → 0+, as follows:

lim
μ,σ→0+

G(P) = lim
μ→0+

1

2μ
lim

σ→0+

∫ ∞

−∞
P(x + y)

× 1√
2πσ

(
e− 1

2 ( y−μ

σ )2 − e− 1
2 ( y+μ

σ )2)
dy (A1)

= lim
μ→0+

P(x + μ) − P(x − μ)

2μ
(A2)

= P′(x). (A3)

We also confirmed this convergence numerically (results not
shown).

APPENDIX B: DETAILS OF LINEAR
STABILITY ANALYSIS

We replace P(x, t ) in Eq. (1) with a homogeneous pop-
ulation level Ph plus a sinusoidal spatial perturbation with
temporally changing small amplitude �P(t ), as follows:

P(x, t ) → Ph + �P(t ) sin(ωx + φ). (B1)

Then Eq. (1) is rewritten as follows:

sin(ωx + φ)
d�P

dt

= −dω2 sin(ωx + φ)�P − c
∂

∂x

[
[Ph + �P sin(ωx + φ)]

×
∫ ∞

−∞
{Ph + �P sin[ω(x + y) + φ]}g(y)dy

]
. (B2)

By ignoring the second-order term of �P and exploiting the
fact that g(y) is an odd function, this equation is linearly
approximated as follows:

sin(ωx + φ)
d�P

dt
≈ −dω2 sin(ωx + φ)�P − cPh

∂

∂x

∫ ∞

−∞
�P sin[ω(x + y) + φ]g(y)dy (B3)

= −dω2 sin(ωx + φ)�P − cωPh�P
∫ ∞

−∞
[cos(ωx + φ) cos(ωy) − sin(ωx + φ) sin(ωy)]g(y)dy (B4)

= −dω2 sin(ωx + φ)�P + cωPh sin(ωx + φ)�P
∫ ∞

−∞
sin(ωy)g(y)dy. (B5)
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FIG. 6. Numerical simulation results with c = Ph = 1 and σ = μ = 0.1. (a) Result with d = 1.01, which is slightly above cPh = 1,
therefore even the lowest-frequency perturbations gradually decay. (b) Result with d = 0.99, which is slightly below cPh = 1, therefore
lowest-frequency perturbations gradually grow and some peaks become more manifested over time. See Sec. V for details on the numerical
integration. Note that the vertical axis is set on a small range to show the subtle difference between these two cases.

By dividing all terms by sin(ωx + φ) and collecting the
coefficients of �P together, we obtain the following one-
dimensional linear dynamical equation of �P:

d�P

dt
=

(
−dω2 + cωPh

∫ ∞

−∞
sin(ωy)g(y)dy

)
�P. (B6)

If the coefficient inside the parentheses above is positive, the
small perturbation sin(ωx + φ) will grow, i.e., the homoge-
neous population distribution will be unstable, and nonhomo-
geneous patterns (distinct groups) will form.

With Q(ω) = ∫ ∞
−∞

sin(ωy)
ω

g(y)dy, this condition for pattern
formation is summarized as

Q(ω) >
d

cPh
(B7)

for ω > 0, as described in the main text.

APPENDIX C: PROPERTIES OF Q(ω)

We note that Q(ω) is, by itself, the generalized nonlocal
gradient of sin(ωx)/ω around x = 0. This indicates that the
range of Q(ω) is bounded by the range of the gradients of the

original function sin(ωx)/ω, which is cos(ωx), hence Q(ω) ∈
[−1, 1].

Moreover, we show that Q(ω) approaches its maximum
1 regardless of the shape of g(y) in the limit of ω → 0, as
follows:

lim
ω→0

Q(ω) = lim
ω→0

∫ ∞

−∞

sin(ωy)

ω
g(y)dy (C1)

= lim
ω→0

∫ ∞

−∞
y g(y)dy (C2)

= 1. (C3)

APPENDIX D: NUMERICAL SIMULATIONS
DEMONSTRATING THE cPh > d INSTABILITY

CONDITION

Our analysis shows that, if the opinion space is sufficiently
large, the low-frequency perturbations always destabilize the
homogeneous population distribution if and only if cPh > d .
This prediction can be confirmed through numerical simula-
tions. Illustrative cases are shown in Fig. 6.
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